\(^{39}\text{Ar} \) Detection at the \(10^{-16}\) Isotopic Abundance Level with Atom Trap Trace Analysis

Peter Müller
Radioargon Dating - ^{39}Ar

cosmogenic isotope; half-life = 270 years; $^{39}\text{Ar}/\text{Ar} = 8 \times 10^{-16}$

Radio-Argon Dating:
- 50 – 1000 year range
- study ocean and groundwater
- previously with LLC and AMS

Dark Matter Searches:
- LAr detectors (WARP, DEAP/CLEAN)
- ^{39}Ar major background
- search for old / depleted Argon

ATTA-2: ^{81}Kr loading rate \sim10 atoms/h ($^{81}\text{Kr}/\text{Kr} \sim 5 \times 10^{-13}$)

-> one ^{39}Ar atom every 3 days
ATTA-3 Loading Rate Improvements

<table>
<thead>
<tr>
<th>Atomic Beam Stage</th>
<th>ATTA-2</th>
<th>ATTA-3</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LN$_2$ pre-cooling</td>
<td>N.A.</td>
<td>2</td>
<td>x2</td>
</tr>
<tr>
<td>Transverse Cooling</td>
<td>70</td>
<td>140</td>
<td>x2</td>
</tr>
<tr>
<td>Sidebands in T.C.</td>
<td>N.A.</td>
<td>3</td>
<td>x3</td>
</tr>
<tr>
<td>2D-MOT</td>
<td>N.A.</td>
<td>3</td>
<td>x3</td>
</tr>
<tr>
<td>New Zeeman Slower</td>
<td>1000</td>
<td>3000</td>
<td>x3</td>
</tr>
<tr>
<td>More Trapping Power</td>
<td>N.A.</td>
<td>1.5</td>
<td>x1.5</td>
</tr>
</tbody>
</table>

- **Loading Rate**: x 160
Argon Atom Level Diagram

Ground-level

Metastable $\tau \approx 40$ sec

12 eV
electron collision

812 nm

4p[5/2]$_3$

4s[3/2]$_2$

3p6
$^{39}\text{Ar} \text{ Hyperfine Structure}$

$^{39}\text{Ar}: I = 7/2$

- $4s[3/2]_2$
- $4p[5/2]_3$

Trapping transition
\(^{39}\text{Ar}\) Hyperfine Structure

\(^{39}\text{Ar}: I = \frac{7}{2}\)

4s[3/2] \text{\(_2\)}

4p[5/2] \text{\(_3\)}

Re-pump transitions

Trapping transition
\(^{39}\text{Ar Hyperfine Structure} \)

\(^{39}\text{Ar: } I = 7/2 \)

\(^{4s}[3/2]_2 \)

\(^{4p}[5/2]_3 \)

Re-pump transitions

Trapping transition

Frequencies in MHz

W. Williams et al., Physical Review A 83, 012512 (2011)
Argon Single Atom Signals

(a) ^{38}Ar

(b)

Nr. of atoms

(c) ^{39}Ar

(d)

5.5σ

BG

CCD Signal (a.u.)
Ar-39 Single Atom Picture

CCD camera picture

One 39Ar Atom
^{39}Ar at Parts-per-quadrillion

Atmospheric $^{39}\text{Ar}/\text{Ar} = 8 \times 10^{-16}$

Depleted $^{39}\text{Ar}/\text{Ar} < 1 \times 10^{-16}$
Radioargon Dating Outlook

Current status of ^{39}Ar ATTA @ Argonne
- ^{39}Ar detected in atmospheric and old water sample
- No isotopic/isobaric interference ($< 1 \times 10^{-16}$)
- Loading rates
 - ^{38}Ar: 1.3×10^9 atoms/s (I.A. 0.063 %)
 - ^{39}Ar: 5 atoms/day for atmospheric sample
- Sample consumption rate
 - 10 mL (STP) / day with partial recirculation

Next Steps
- Improve HFS re-pumping, continuous counting
 - ^{39}Ar loading rate 100 atoms/day
- Implement full recirculation
 - 0.5 mL (STP) / day
- Build dedicated argon trap and laser system
Thank You!

Wei Jiang, William Williams, Kevin Bailey, Tom O’Connor, Z.-T. Lu, P. Mueller
Physics Division, Argonne National Laboratory

Roland Purtschert
Institute of Physics, University of Bern

Neill Sturchio
Department of Earth and Environmental Science, University of Illinois

Andrew Davis
Department of Geophysical Sciences, University of Chicago

Shuiming Hu, Bob Sun
4Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of

Funding
DOE, Office of Nuclear Physics
NSF, Earth Science Division

http://www.phy.anl.gov/mep/atta/