Mean-field and Beyond
Past, Present and Future

- Mean-field methods: what can and what cannot be calculated
- Applications and good reasons to go beyond mean-field
- How to do it (today)
- Applications

- The density functional theory: theorems

- Missing ingredients, new developments
- What remains to be done
Our group:

The precursors: P. Bonche, H. Flocard, M. Weiss, J. Dobaczewski

The successors: M. Bender, T. Duguet

Many collaborators: G. Bertsch, S. Cwiok, W. Nazarewicz, J. Skalski, P. Magierski…
Today:
the working tools

• Mean-field with effective interactions
• Typical applications
• First step beyond mean-field
 - symmetry restorations
 - configuration mixing
• Selected applications
Mean-field Methods

• Based on an “effective interaction” or a “density functional”
 The (small number of) parameters of the effective interaction
 are fixed by general considerations (no local adjustments)
• Pairing correlations are included at the BCS or better HFB level

• Full self-consistency
• No restrictions to a few shells, mean-field equations are solved
 as precisely as one wishes.
• Spherical and deformed nuclei are treated on the same footing,
 no “parametric deformation”
An example of an effective interaction: the Gogny force

It contains:
- A finite range central term:

$$V_C = \sum_{i=1,2} (V_W^i + V_M^i P^r + V_B^i P^\sigma + V_H^i P^\sigma P^r) \exp(-r^2/b_i^2)$$

- A zero range density dependent term

$$t_3(1 + x_3 P^\sigma)\rho(\vec{r})^\alpha$$

- Spin orbit and Coulomb

Parameters are adjusted on nuclear matter properties (saturation, ...) properties of a few magic nuclei
Mean-field energy curves (β_2 proportional to Q)
The competitors

Three families:

- **Gogny**: finite range including a density dependence, same interaction for HF and pairing
 (Bruyères le Chatel, Madrid, some Japanese groups)

- **Skyrme**: zero range, specific interaction for pairing, easy
 ("French group", "Polish group", P. Rheinardt et al., Japanese groups,…)

- **RMF**: relativistic but no exchange, pairing non relativistic
 (Munich-Zagreb, ….)
Skyrme HFB

Q_α for isotopic chains for super heavy elements (only even-even)

Cwiok, Heenen, Nazarewicz
Nature 2005
Skyrme HFB

Deformation properties of super-heavies
Beyond ground state properties of even-even nuclei

Breaking of time reversal invariance by a cranking constraint:

\[H' = H - \omega J_x \]

rotational bands for deformed nuclei

by quasi particle excitations:
Odd nuclei : 1 qp states:
Even nuclei: 2qp states

Still a mean-field method
Full self-consistency for mean-field and pairing
Moments of inertia

Fig. 3. Kinematical (circles) and dynamical (diamonds) moment of inertia for 240Pu (top) and 244Pu (bottom). Open (filled) markers denote calculated (experimental) values.
Spectra of odd Z nuclei

![Diagram showing energy levels for nuclei 247Es, 251Md, and 255Lr.](image)
Plus and minus of the mean-field approach:

Plus:
- Starts from an effective interaction: generality
- Can describe any kind of shapes (from ground state to fission)
- Cranking (or qp excitations) well justified for deformed nuclei

Minus:
- Validity only for energy (variational) and one-body operators
- Breaking of symmetries (no direct determination of transitions)
- Soft nuclei? Shape coexistence?
- Effects of correlations beyond mean-field on masses?
Correlations

Explicitly included at the mean-field level:
• Statistics (fermions)
• Pairing (BCS or HFB)
• Deformation (can bring up to 20 MeV!)

Absent:
• Symmetry restoration
• Configuration mixing (shape, multi qp excitations, …)

Can all missing correlations be included in the interaction? ("DFT spirit")
Beyond mean-field

Set of mean-field wave functions depending on axial q

- Projection on N, Z, J:

 $$|J0q\rangle = \frac{1}{N_{J0q}} \hat{P}_Z \hat{P}_N |q\rangle,$$

- New wave functions by mixing on q:

 $$|J0k\rangle = \sum_q f_{J,k}(q) |J0q\rangle$$

with $f_{J,k}(q)$ determined by minimizing the energy:

$$E_{J,k} = \frac{\langle J0k | \hat{H} | J0k \rangle}{\langle J0k | J0k \rangle}$$
PLUS:
- Very rich basis with many ph components (more precisely qp excitations with respect to a spherical basis)
- GCM is not limited to small amplitude motion as the QRPA

MINUS:
- Kind of ph excitations determined by the constraint used in the mean-field
- Only time reversed pairs are excited
- Up to now, only axial states
Projection on angular momentum

=

From intrinsic to laboratory frame of reference

No approximation based on the collective model for transition probabilities.
The spectroscopic quadrupole moment is given by:

\[
Q_c(J_k) = \sqrt{\frac{16\pi}{5}} \langle J, M = J, k|\hat{Q}_{20}|J, M = J, k \rangle \\
= \sqrt{\frac{16\pi}{5}} \frac{\langle J, J20|J,J \rangle}{\sqrt{2J+1}} \times \sum_{q,q'} f^*_{J,k}(q) f_{J,k}(q') \langle Jq||\hat{Q}_{20}||Jq' \rangle,
\]

Deformation parameters similar to collective ones have to be defined:

\[
\beta_2^{(s)}(J_k) = \sqrt{\frac{5}{16\pi}} \frac{4\pi Q_2^{(s)}(J_k)}{3R^2Z} \\
Q_2^{(s)}(J_k) = -\frac{2J+3}{J} Q_c(J_k)
\]

with \(R = 1.2 A^{1/3} \) and \(K = 0 \).
Mean field projected on J=0

Bars in red: 0\(^+\) states obtained after configuration mixing
Hartree-Fock + BCS (Skyrme SLy6 interaction + density dependent zero-range pairing force) \[\Rightarrow\] configuration mixing of angular-momentum and particle-number projected self-consistent mean field states

(M. Bender, P. Bonche, T. Duguet, and P.H. Heenen, PRC 69, 2004, 064303)

\[^{188}\text{Pb} \]

\[\beta = 0.286(14) \]

\[\beta = 0.30 \]
FIG. 14: Partial level scheme of 168Pb obtained by configuration mixing. The values of the B(E2) between all the states are given in Weisskopf units.
Pb isotopic shifts

Fig. 3: Difference from the experimental mean square charge radii (Expt), the beyond mean field calculations with normal [4] (MF) and decreased pairing [18] (MF*) and the IBM calculations (IBM) to the droplet model calculations for a spherical nucleus. Iso-deformation lines from the droplet model at $\beta_2 = 0.1$ and 0.15 are shown.
Collective wave functions
Global calculations

Correlations due to:
- symmetry restorations
- configuration mixing
Difference between exp and theory for masses

Red: with correlations
Two-proton gap for chains

Isotonic

Isotopic