The dispersive optical model (DOM), originally conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. Extensions of this framework developed in St. Louis, have introduced a fully nonlocal implementation for ^{40}Ca, ^{48}Ca, and ^{208}Pb. For the first time properties below the Fermi energy like the charge density and the presence of high-momentum nucleons can be included in the DOM while elastic cross section data continue be represented as accurately as in the local DOM implementation. Application of the nonlocal DOM to ^{48}Ca generates a prediction for the neutron skin of 0.249 ± 0.023 fm for this nucleus, which is larger than most mean-field and available ab initio results. The DOM provides critical ingredients for the description of important nuclear reactions. Application to the $(e,e'p)$ reaction provides an assessment of the validity of the distorted-wave impulse approximation used to describe Nikhef data. Improved descriptions of transfer reactions like (d,p) and (p,d) are also discussed while identifying a strategy to raise the standard of the treatment of the deuteron.