Weak Interactions and Fundamental Symmetries
Exotic Beam Summer School

Alejandro Garcia
University of Washington

Fundamental symmetries
Outline

LECTURE I
Fermi’s Golden rule, phase space
Determination of the neutrino mass: Katrin, P8
Structure of the weak interaction, history, P violation
The quark mixing and Vud
Neutron beta decay life-time and beta asymmetry

LECTURE II
Right-handed currents
Chirality flipping currents
Time Reversal symmetry breaking and Electric Dipole Moments
Fermi’s Golden rule (for nuclear beta decay)

\[dN \propto |\langle \psi_f | \hat{\Delta} | \psi_i \rangle|^2 d^3 p_e d^3 p_\nu \delta(E_e + E_\nu - E_0) \]

Beta spectrum:

\[dN \propto |\langle \psi_f | \hat{\Delta} | \psi_i \rangle|^2 p_e^2 d p_e \ p_\nu^2 d p_\nu \delta(E_e + E_\nu - E_0) \]
\[dN \propto |\langle \psi_f | \hat{\Delta} | \psi_i \rangle|^2 p_e E_e d E_e \ p_\nu E_\nu d E_\nu \ \delta(E_e + E_\nu - E_0) \]
\[dN \propto |\langle \psi_f | \hat{\Delta} | \psi_i \rangle|^2 p_e E_e d E_e \ \sqrt{(E_0 - E_e)^2 - m_\nu^2} (E_0 - E_e) \]

(neglect small recoil contribution)

(use \(p_e d p_e = E_e d E_e \); \(p_\nu d p_\nu = E_\nu d E_\nu \))

(integrating over the unobserved neutrino)
Fermi’s Golden rule (for nuclear beta decay)

\[dN \propto |\langle \psi_f | \hat{\mathcal{O}} | \psi_i \rangle|^2 p_e E_e dE_e \sqrt{(E_0 - E_e)^2 - m_\nu^2 (E_0 - E_e)} \]

From careful analysis of solar and atmospheric neutrinos we now know

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

Mass eigenstates

Weak eigenstates

\[dN/dE_e \propto p_e E_e \sum_i |U_{ei}|^2 \sqrt{(E_0 - E_e)^2 - m_{\nu_i}^2 (E_0 - E_e)} \]
Kinematic determination of neutrino mass from tritium beta decay:

\[\frac{dN}{dE_e} \propto F(E_e) \ p_e E_e \ \sum_i |U_{ei}|^2 \sqrt{(E_0 - E_e)^2 - m_{\nu i}^2 (E_0 - E_e)} \]

"Coulomb" correction

Key requirements:
- High activity source
- Low-endpoint β emitter
- Excellent energy resolution (MAC-E filter)

Spectral distortion measures "effective" mass squared
\[m^2(\nu_e) := \sum_i |U_{ei}|^2 \ m_i^2 \]

Fundamental symmetries

Thanks: Peter Doe
Neutrino mass... Via Tritium Beta Decay

T_2 beta decay has long, rich history: 1949 - present

Chalk River 1949 ($M_\nu < 500$ eV), ITEP’ 80’s, Los Alamos ‘91, Tokyo ‘91, Zurich 91, Beijing ’93, Livermore ’95, Mainz and Troitsk experiments, 2000 – 2012 (Current limit $M_\nu < 2$ eV), KATRIN 2018 - 2023
Goals of KATRIN

• A model independent (mostly) probe of the ν mass:
 After 5 calendar years of running:
 Sensitivity: $M_\nu \leq 200\text{meV} \ (90\% \ C.L.)$
 Discovery potential : $M_\nu = 360\text{meV} \ (5 \ \text{sigma})$

• Search for evidence of sterile neutrino, eV and keV region
KATRIN design:
- Drawing on the experience of past experiments...
- Intense (10^{11} Bq) window-less gaseous T2 source.
- Hi resolution (0.93 eV) retarding potential spectrometer.
- Control of systematic errors.
Adiabatic invariance and pitch angle
(theme will come back later)

If the cyclotron period is much shorter than the characteristic time for changes in the B-field intensity:

$$\frac{2\pi}{\omega} \gg \frac{B}{\nabla B} \frac{1}{v_{\parallel}}$$

then the flux of B through the cyclotron orbits is constant of motion.

Cyclotron radius:

$$R = \frac{\gamma m v_{\perp}}{q B}$$

Flux $\propto B \left(\frac{v_{\perp}}{B}\right)^2 = \frac{v_{\perp}^2}{B} = \frac{(\sin \theta)^2}{B}$ (as B increases, θ increases)

Typical example of consequence of adiabatic invariance

Fundamental symmetries

Thanks: Peter Doe
MAC-E filter

Retarding spectrometer: integrate number of e’s that make it through an electrostatic barrier.

Transverse (cyclotron) motion not affected by E field.

Improve sensitivity minimizing transverse motion \rightarrow let trajectories expand in low B field so longitudinal comp. of p_e highest.
KATRIN detector

- Design, fabrication 2007-2010
- Installation at KIT 2010-2011

2013 – Present... Primary KATRIN commissioning tool
KATRIN present status:

All detection systems ready;
The recent very successful operation using Kr sources is a major step towards ensuring that KATRIN will begin Tritium operation as planned in June 2018

Data collection expected: 2018+ 5 years
Project 8 collaboration gets FWHM/E $\sim 10^{-3}$ resolution for conversion electrons of 18-32 keV.
Project 8 in a nutshell

Looking at Tritium decay to get ν mass. Electrons emitted in an RF guide within an axial B field. At end, cyclotron radiation is amplified.

$$\omega = \frac{qB}{E}$$

Electrons of ~ 30 keV from a gaseous source were let to decay within a 1 tesla field with an additional pair of coils to set up a *magnetic trap*:

Longitudinal comp. of momentum decreases as B increases up to return point, z_{max}. Axial oscillations with ω_z.

Fundamental symmetries
Project 8 electronics (guide needs cooling to 15K)
Some details

Motion can be thought off as cyclotron orbits, axial oscillations and magnetron motion.

\[\omega_C : \omega_z : \omega_{\text{mag}} = 1 : 4 \times 10^{-3} : 2 \times 10^{-5} \]

Time bins \(\sim 30 \, \mu s \).

As electrons loose energy the cyclotron freq. goes up. Jumps due to collisions with hydrogen in imperfect vacuum.

Initial frequency gives \(E \)

\[\omega = \frac{qB}{E} \]
Project 8 in a nutshell

Looking at Tritium decay to get ν mass. Electrons emitted in an RF guide within an axial B field. At end, cyclotron radiation is amplified.

$$\omega = \frac{qB}{E}$$

Advantage

Electrons hitting walls quickly (<1 ns) loose energy and disappear. No signal from these.

For the same reason: background radiation hitting walls does not generate signals.
Project 8 timeline

- Have performed proof-of-principle of detection of cyclotron radiation.
- Next phase: show detection of molecular tritium.
- Eventually: trap atomic tritium

From Esfahani et al. arXiv:1703.02037

Figure 8. Timeline for Project 8 phases, with reference to expectations from KATRIN and cosmological observations. Cosmological expectations are from Lesgourgues and Pastor [4]
Structure of the weak interaction

A bit of history: the Dirac Eq.

To reconcile QM with Relativity, Dirac used

\[H = -\alpha \cdot \nabla + \beta m \]

with \(\alpha_i = \gamma^0 \gamma^i \) and \(\beta = \gamma^0 \) and

\[
\gamma^0 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix}
\]

\[
\gamma^\mu (\mu = 0, 1, 2, 3)
\]

E&M interaction by Dirac

\[
H_{EM} = \bar{\psi}_\mu \gamma^\mu \psi_\mu \frac{-e^2}{-q^2} \bar{\psi}_e \gamma_\mu \psi_e
\]
Structure of the weak interaction

Fermi proposed assuming the Weak current had similar structure

\[H_W = \bar{\psi}_v \gamma^\mu \psi_\mu \frac{-g^2}{M^2 - q^2} \bar{\psi}_e \gamma^\mu \psi_v \]

To account for the short range

\[H_{EM} = \bar{\psi}_\mu \gamma^\mu \psi_\mu \frac{-e^2}{-q^2} \bar{\psi}_e \gamma \psi_e \]
Fermi proposed assuming the Weak current had similar structure

\[H_W = \bar{\psi}_v \, \gamma^\mu \psi_\mu \, \frac{-g^2}{M^2 - q^2} \, \bar{\psi}_e \, \gamma^\mu \psi_v \]

Nuclear beta decay
\[q \ll M \Rightarrow \]

\[H_W \approx \bar{\psi}_v \, \gamma^\mu \psi_\mu \, \frac{-g^2}{M^2} \, \bar{\psi}_e \, \gamma^\mu \psi_v \]

“Weak” interaction looks weak at nuclear beta decay momenta. But \(g \) of same order as \(e \).

E&M interaction by Dirac

\[H_{EM} = \bar{\psi}_\mu \gamma^\mu \psi_\mu \, \frac{-e^2}{-q^2} \, \bar{\psi}_e \gamma_\mu \psi_e \]
Experimental Observation of Parity Violation (1957)

\[P \vec{r} = -\vec{r} \]
\[P \vec{p} = -\vec{p} \]
\[P(\vec{r} \times \vec{p}) = (\vec{r} \times \vec{p}) \]

P inverts coordinates and momenta, but *not* angular momenta →

If *P* were conserved electrons should come out isotropically from polarized ^{60}Co.

Chien-Shiung Wu showed that electrons come mostly opposite the polarization of ^{60}Co.
Helicity

Projection of spin onto momentum

\[\mathcal{H} = \frac{\sigma \cdot p}{|\sigma| \ |p|} \]

- **R handed**
 - $\sigma \rightarrow$
 - $p \rightarrow$
 - $\mathcal{H} = +1$

- **L handed**
 - $\sigma \rightarrow$
 - $p \leftarrow$
 - $\mathcal{H} = -1$

Helicity *is not* a Lorentz invariant:
- moving faster than an *R*-handed particle makes it look *L*-handed
Chirality
A Lorentz invariant property related to helicity

The instantaneous velocity of a particle:
\[v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \]

But in QM: \(\Delta t \Delta E \sim \hbar \) so instantaneous velocity
\[v = \pm c \]

A state with finite \(E,p \) and spin in a particular direction can be expressed as linear comb. of the \(R \) and \(L \) chirality states.

\[
u_{\uparrow}(E,p) = \sqrt{\frac{1 + \frac{p}{E}}{2}} \phi_{\uparrow}(+c) + \sqrt{\frac{1 - \frac{p}{E}}{2}} \phi_{\uparrow}(-c)\]

State with well-defined spin and \(E,p \).

For \(v \approx c \) chirality \(\equiv \) helicity
Chirality: γ^5

Reminder: we showed above how Dirac used matrices to combine QM and Relativity.

$$\gamma^0 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & -\sigma_i \\ \sigma_i & 0 \end{pmatrix}$$

It turns out that the operator: $\gamma^5 = i \gamma^1 \gamma^2 \gamma^3 \gamma^0 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$ is a relativistic invariant related to the helicity.
For relativistic particles $-\gamma^5 \equiv \mathcal{H}$.

Projectors on chirality states:

$$P_L = \frac{1}{2} (1 + \gamma^5) \Rightarrow \psi_e^L = P_L \psi_e$$
$$P_R = \frac{1}{2} (1 - \gamma^5) \Rightarrow \psi_e^R = P_R \psi_e$$
E&M current is not biased to a particular *chirality*.

\[
\bar{\psi}_\mu \gamma^\nu \psi_\mu = \bar{\psi}^R_\mu \gamma^\nu \psi^R_\mu + \bar{\psi}^L_\mu \gamma^\nu \psi^L_\mu
\]

Projectors on *chirality* states:

\[
P_L = \frac{1}{2} (1 + \gamma^5) \Rightarrow \psi^L_e = P_L \psi_e
\]

\[
P_R = \frac{1}{2} (1 - \gamma^5) \Rightarrow \psi^R_e = P_R \psi_e
\]
Charged weak current in SM only sensitive to L:

$$\bar{\psi}_e O^\mu \psi_\nu = \bar{\psi}_e^L \gamma^\mu \psi_\nu^L$$

Projectors on *chirality* states:

$$P_L = \frac{1}{2} (1 + \gamma^5) \Rightarrow \psi^L_e = P_L \psi_e$$

$$P_R = \frac{1}{2} (1 - \gamma^5) \Rightarrow \psi^R_e = P_R \psi_e$$
Charged weak current in SM only sensitive to L:

$$\bar{\psi}_e \gamma^\mu \psi_\nu = \bar{\psi}_e^L \gamma^\mu \psi_\nu^L$$

Sorting this out took much experimental effort and ingenuity to come out of confusing times.
(Circa 1957)

When I came back to the United States, I wanted to know what the situation was with beta decay. I went to Professor Wu's laboratory at Columbia, and she wasn't there, spinning to the left in the beta decay, came out on the right in some cases. Nothing fit anything. When I got back to Caltech, I asked some of the experimenters what the situation was with beta decay. I remember three guys, Hans Jensen, Aaldert Wapstra, and Felix Boehm, sitting me down on a little stool, and starting to tell me all these facts: experimental results from other parts of the country, and their own experimental results. Since I knew those guys, and how careful they were, I paid more attention to their results than to the others. Their results, alone, were not so inconsistent; it was all the others plus theirs. Finally they get all this stuff into me, and they say, "The situation is so mixed up that even some of the things they've established for years are being questioned - such as the beta decay of the neutron is S and T. It's so messed up, Murray says it might even be V and A."

I jump up from the stool and say, "Then I understand EVVVVVERYTHING!"
Charged weak current in SM only sensitive to L:

$$\bar{\psi}_e O^\mu \psi_v = \bar{\psi}_e^L \gamma^\mu \psi_v^L$$

Although the currents look very simple for leptons, for quarks within the nucleon/nuclear medium, we have to separate them according to their properties under P and rotations:

$$H_{int} = \bar{\psi}_p (C_V \gamma^\mu - C_A \gamma^\mu \gamma^5) \psi_n \quad \bar{\psi}_e^L \gamma^\mu \psi_v^L$$

C_V and C_A don’t need to be identical: due to the strong interaction within the nucleon/nuclear medium $C_A/C_V \approx -1.27$. F
damental symmetries
Isospin

Notice $n+n$, $n+p$, $p+p$ hadronic interactions are very similar.
Use spin formalism to take into account Pauli exclusion principle etc.

The charge is given by: $\hat{q} = e\left(\frac{1}{2} + \hat{I}_z\right)$

$$|p\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \quad |n\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Think of spin for the electron. The fact that e's come in two varieties, spin-up and -down, allows to circumvent the Pauli principle.

Likewise here: the nucleons (p and n) can be thought off as being identical except for their elec. charge.
(Only an approximation, but a useful one).
Isospin

\[p = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad n = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]
Nucleons form an isospin doublet.

\[\pi^+ = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \]

\[\pi^0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \]
Pions form an isospin triplet.

\[\pi^- = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \]
Isospin

\[p = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad n = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

\[\pi^+ = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \pi^0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \pi^- = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \]

<table>
<thead>
<tr>
<th>Hadron</th>
<th>Mass (MeV/c²)</th>
<th>I</th>
<th>I₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>938.3</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>n</td>
<td>939.6</td>
<td>1/2</td>
<td>-1/2</td>
</tr>
<tr>
<td>π⁺</td>
<td>139.6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>π⁰</td>
<td>135.0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>π⁻</td>
<td>139.6</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>K⁺</td>
<td>494.6</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>K⁰</td>
<td>497.7</td>
<td>1/2</td>
<td>-1/2</td>
</tr>
<tr>
<td>K⁻</td>
<td>497.7</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>η⁰</td>
<td>548.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Λ⁰</td>
<td>1115.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Σ⁺</td>
<td>1189.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Σ⁰</td>
<td>1192.6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Σ⁻</td>
<td>1197.4</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Ω⁻</td>
<td>1672.4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Notice the higher level density in ^7Li, ^7Be, which can have both $I = 1/2$ and $I = 3/2$.

A=7 Isobaric multiplets
Isospin symmetry in $A = 18$ nuclei. Model as $^{16}\text{O}+2$ nucleons
Each nucleon (n or p) has $I = \frac{1}{2}$. So one can get $I = 0$ or $I = 1$.
Near stability: lower $I \rightarrow$ lower E

Notice the higher level density in ^{18}F, which can have both $I = 0$ and $I = 1$.

Fundamental symmetries
Useful trick to get the expected J^π, I (and understand the gross features)

For $A=18$ lowest orbits from $1d_{5/2}$ orbits with identical particles ($I = 1$):

Basic shell model scheme from spherical harmonic oscillator with spin-orbit interaction.

Should see ($I = 1$)

$J^\pi = 0^+, 2^+, 4^+$

Similarly ($I = 0$)

$J^\pi = 1^+, 3^+, 5^+$
The non-relativistic limits of these are:

\[
\hat{O} = \begin{cases}
\text{(Vector)} & I^\pm \gamma_\mu \rightarrow \tau^\pm (1, \vec{v}/c) \\
\text{(Axial Vector)} & I^\pm \gamma_\mu \gamma_5 \rightarrow \tau^\pm (|\vec{v}|/c, \vec{\sigma})
\end{cases}
\]

Operator Selection rules
\[
\hat{O}_F = I^\pm \quad \Rightarrow \Delta J = 0, \Delta I = 0
\]
\[
\hat{O}_{GT} = \sum_i I_i^\pm \sigma_i \quad \Rightarrow \Delta J = 1, \Delta I = 1
\]

Fundamental symmetries
Charged Weak current involves quark transformations

\[
\begin{pmatrix}
 u \\
 d' \\
\end{pmatrix}
\begin{pmatrix}
 c \\
 s' \\
\end{pmatrix}
\begin{pmatrix}
 t \\
 b' \\
\end{pmatrix}
\]

From top to bottom
Or bottom to top.

\[
\begin{pmatrix}
 d' \\
 s' \\
 b' \\
\end{pmatrix}
=
\begin{pmatrix}
 V_{ud} & V_{us} & V_{ub} \\
 V_{cd} & V_{cs} & V_{cb} \\
 V_{td} & V_{ts} & V_{tb} \\
\end{pmatrix}
\begin{pmatrix}
 d \\
 s \\
 b \\
\end{pmatrix}.
\]

Non-diagonal elements of the matrix are small. So largest transitions are
\(u-d, c-s, t-b \).
Manifestations of the mixing

One manifestation of the mixing is flavor oscillations: e.g. ν’s, K_0’s

Another is the alteration of the decay strength.

In nuclear beta decay there is not enough energy to produce s quarks.
Alteration of the decay strength.

decay rate \(\propto \left(GV_{ud} \right)^2 \)

e.g. \(n \to p e^- \nu_e \)

decay rate \(\propto G^2 \)

decay rate \(\propto \left(GV_{us} \right)^2 \)

e.g. \(K^+ \to \pi^0 e^+ \nu_e \)

Ratio of nuclear /muon yields \(V_{ud} \).
Is the CKM matrix really unitary?

\[
\begin{pmatrix}
 d' \\
 s' \\
 b'
\end{pmatrix} =
\begin{pmatrix}
 V_{ud} & V_{us} & V_{ub} \\
 V_{cd} & V_{cs} & V_{cb} \\
 V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
 d \\
 s \\
 b
\end{pmatrix}
\]

\[|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1?\]

If not, who is the culprit?

• Contributions that affect \(\mu \) and quark decays in different ways? Right-handed currents,

 Super-symmetry,...

• ...
Determine V_{ud}; Fermi's golden rule:

$$\frac{1}{f(E)t} = \frac{2\pi}{\hbar} |\langle f \, e \, v | \hat{H} | i \rangle|^2 = \frac{(G_F V_{ud})^2}{K} \frac{2\pi}{\hbar} |\langle f | \hat{\sigma} | i \rangle|^2$$

Naïve approach: approximate

$$|\langle f | \hat{\sigma} | i \rangle|^2 \approx I(I + 1) - l_z(l_z - 1)$$

\rightarrow extract $G_F \, V_{ud}$. Works to few %.

Problem: ft-value depends on Z.

From Hardy, Towner
PRC 79, 055502 (2009)
Determine V_{ud}; Fermi’s golden rule:

$$\frac{1}{f(E)t} = \frac{2\pi}{\hbar} \left|\langle f \mid e \nu \mid i \rangle\right|^2 = \frac{(G_F V_{ud})^2}{K} \frac{2\pi}{\hbar} \left|\langle f \mid \bar{o} \mid i \rangle\right|^2$$

Naïve approach: approximate

$$\left|\langle f \mid \bar{o} \mid i \rangle\right|^2 \approx I(I+1) - I_z(I_z - 1)$$

\rightarrow extract $G_F V_{ud}$. Works to few %.

Problem: ft-value depends on Z.

Solution: isospin-breaking and radiative corrections:

$$Ft = ft (1 + \delta' R)(1 + \delta_{NS} - \delta C)$$

$$\frac{1}{Ft} = \frac{(G_F V_{ud})^2}{K} (1 + \Delta^V R)$$
Determine V_{ud} from neutron decay.

Advantage: avoid nuclear structure details (isospin breaking etc.)

$$f(E) t = \frac{G_F V_{ud}^2}{K} \frac{2\pi}{\hbar} (1 + 3\lambda^2)$$

$$\lambda = \frac{g_A}{g_V}$$

Now in addition to half-life need another observable to determine λ
Neutron lifetime: recent results from UCNτ collaboration

UCNτ: a measurement of the neutron lifetime using ultracold neutrons stored in an asymmetric magnetic trap

Authors:

Affiliations:
1 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2 Center for Exploration of Energy and Matter and Department of Physics, Indiana University, Bloomington, IN 47408, USA
3 Triangle Universities Nuclear Laboratory and North Carolina State University, Raleigh, NC 27695, USA
4 Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
5 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
6 Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
7 West Point Military Academy, West Point, NY 10996, USA
8 Department of Physics, Tennessee Technological University, Cookeville, TN 38505, USA
9 Department of Physics and Astronomy, DePauw University, Greencastle, IN 46135-0037, USA
10 Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
11 Joint Institute for Nuclear Research, Dubna, Moscow region, Russia, 141980
12 Institut Laue-Langevin Grenoble, France, CS 20156

* R. W. Pattie, submitted to Science; submitted to Arxiv

Fundamental symmetries

Thanks: Dan Salvat, C. Morris
UCN for beta decay measurements

\[V_{58}^{\text{Ni}} = \frac{2\pi\hbar^2 \rho_n a}{m} = 335 \ nV \rightarrow v = 8 \ m/\text{sec} \]

\[V = mgh = 102 \ nV/\text{m} \]

\[V = \mu \cdot B = 60 \ nV/T \]

- UCN can be stored using materials, gravity, and magnetic fields
- Decays/beam large
- Backgrounds low
Measuring the lifetime with bottled UCN is challenging

- Beam measurements require precise determination of the neutron beam fluence, decay volume, and absolute proton detector efficiency
 - Have involved multiple systematic corrections of order 5 sec
- Bottle measurements must correct for UCN losses other than neutron beta decay
 - These corrections are often of the same order as the quoted uncertainty
- We have designed a bottle that has negligible intrinsic losses

A. Serebrov, et al. (2008)

Thanks: Dan Salvat, C. Morris
UCN "Pokotilovsky" source operating at the Los Alamos Neutron Science Center (LANSCE)

Source upgrade:
- Better moderator cooling
- NiP guides
- Optimized geometry
UCN density measured by Vanadium activation: 184 UCN/cc.

A. Saunders, et al. REVIEW OF SCIENTIFIC INSTRUMENTS 84, 013304 (2013)
UCN\(\tau\) Magneto-gravitational trap

- Large Halbach array of permanent magnets – large neutron statistics
- Intrinsically long lifetime - no material interactions during storage period
- Asymmetric trap for rapid evolution and mixing of the phase space – fast removal of quasi-bound neutrons
- \textit{In situ} active detector – neutron unloading observed in real time
Illustration of cleaning and unloading

- Load trap for 150 sec
- Clean for a variable time (100-400 sec)
- Cleaners in trap for loading and cleaning
- Dagger can also be lowered during loading and cleaning – “dagger cleaning”
- Cleaners and dagger raised during storage time (10 – 1510 sec)
- Dagger lowered to count remaining UCN – either in 1 single step, or multiple steps

Fundamental symmetries

Thanks: Dan Salvat, C. Morris
UCNτ: New results

Year

τ(s)

860 865 870 875 880 885 890 895 900

PDG

Cold Neutron Beam
UCN trap
UCNTau results
Bottle Average

Fundamental symmetries

Thanks: Dan Salvat, C. Morris
2017 Picture: Lifetime, Correlations, V_{ud} all painting a very consistent picture now IF we use the “precision” results only

\[A = - \frac{2\lambda(\lambda + 1)}{1 + 3\lambda^2} \]

\[|V_{ud}|^2 = \frac{4908.7 \text{ sec}}{\tau_n \left(1 + 3\lambda^2\right)} \]

- bottle τ_n
- beam τ_n
- UCN+beam λ
- $0^+ \rightarrow 0^+$ decays

Fundamental symmetries

Thanks: Dan Salvat, C. Morris
Backup slides
First measurement of angular correlations using UCN (measures correlation between neutron spin and p_β)

Utilizes first spallation-driven solid deuterium source of UCN

$A_0 = -0.11954(55)_{\text{stat}}(98)_{\text{syst}}$

Why UCN?

UCN provide a unique handle on key neutron-related systematic errors.

Polarization: “Potential barrier” polarization demonstrated effective alternative to supermirror/3He cell technology currently with $P \geq 99.5\%$ and uncertainties at or below $\sim 0.35\%$ level, limited by statistics of polarimetry measurements.

Neutron generated backgrounds: small number of neutrons and high probability of decay in the cell create negligible beam-generated backgrounds.
The UCN Source at LANL

2010:
V: 52±9 UCN/cm³
Mon: 79±16 UCN/cm³

2016 LANL Source Upgrade:
• 184±18 UCN/cm³ at biological shield exit
• 36±4 UCN/cm³ polarized in EDM cell

First source of (extracted) UCN for experiments in US constructed for UCNA at LANL!
Pushing Down the Limits: 2011/2012 and beyond...

<table>
<thead>
<tr>
<th>Systematic</th>
<th>corr. (%)</th>
<th>unc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>+0.17</td>
<td>±0.56</td>
</tr>
<tr>
<td>Δ backscattering</td>
<td>+1.36</td>
<td>±0.34</td>
</tr>
<tr>
<td>Δ angle</td>
<td>-1.21</td>
<td>±0.30</td>
</tr>
<tr>
<td>Energy reconstruction</td>
<td></td>
<td>±0.31</td>
</tr>
<tr>
<td>Gain fluctuation</td>
<td></td>
<td>±0.18</td>
</tr>
<tr>
<td>Field non-uniformity</td>
<td>+0.06</td>
<td>±0.10</td>
</tr>
<tr>
<td>e^mu/e^tau</td>
<td>+0.12</td>
<td>±0.08</td>
</tr>
<tr>
<td>Muon veto efficiency</td>
<td></td>
<td>±0.03</td>
</tr>
<tr>
<td>UCN-induced background</td>
<td>+0.01</td>
<td>±0.02</td>
</tr>
<tr>
<td>σ statistics</td>
<td></td>
<td>±0.47</td>
</tr>
<tr>
<td>Theory contributions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recoil order [19-21]</td>
<td>-1.71</td>
<td></td>
</tr>
<tr>
<td>Radiative [22]</td>
<td>-0.10</td>
<td></td>
</tr>
</tbody>
</table>

2010 method calibrated, but required MC corrections: add shutter, remove MC corrections

Polarimetry

Scattering corrections

Backscattering limited by foils: reduce areal density

Energy Reconstruction

Add more conversion sources, Xe position-dependent gain maps, LED pulser
Analysis of 2011/2012 Data-Set: Current Status

- Present (still blinded uncertainties) which depend on energy cut – total between 0.6 and 0.7% at present
 - Statistical ~0.46%
 - Polarization <~ 0.33% (2010: 0.56)
 - Energy reconstruction ~0.14% (2010: 0.31)

- Significant progress made in calibration (esp. interpreting MWPC signals, and modeling response)

- Polarimetry also improved w/ shutter (raw unc. currently <~0.05%)

- Unblinding this summer
Future Prospects

- With LANL UCN source upgrade, can achieve <0.15% statistics within one run cycle (depends on useful energy window)

- Learned how to use LED pulser signals - should permit further reduction in energy reconstruction errors currently at 0.14% (implementing now for 2011-2013 Fierz analysis)

- Polarimetry now effectively limited by statistics, with 2012 data uncertainties <0.2% -- source upgrade should permit <0.1% even without new diagnostic runs and recognized improvements to shutter

- Scattering corrections still under assessment, nominally place at 0.1% level or below - there is enthusiasm within our collaboration to investigate detector and apparatus repairs/upgrades which reduce these corrections further - UCNA+

Conclusion: very promising, R&D needed to settle strategy and projected error budget
Isospin symmetry breaking
(Towner, Hardy, PRC 82, 065501 (2010))

\[M_F = \sum_{\alpha, \pi} \langle f | \alpha^+ | \pi \rangle \langle \pi | \beta_\alpha | i \rangle \]

\[\left\{ \begin{array}{c} | f \rangle, | i \rangle \\ | \pi \rangle \end{array} \right\} \] A body exact solutions

In the absence of symmetry breaking:

\[M_0 = \sum_{\alpha, \pi} \left| \langle f | \alpha^+ | \pi \rangle \right|^2 \]

\[\sum_{\alpha, \pi} \langle \tilde{f} | \alpha^+ | \pi \rangle \langle \pi | \beta_\alpha | \tilde{i} \rangle = M_0 \sqrt{1 - \delta_{C1}} \]

\[\left\{ \begin{array}{c} | \tilde{f} \rangle, | \tilde{i} \rangle \\ | \pi \rangle \end{array} \right\} \] A body approx.

\[\sum_{\alpha, \pi} \left| \langle \tilde{f} | \alpha^+ | \pi \rangle \right|^2 r^\pi_\alpha = M_0 \sqrt{1 - \delta_{C2}} \]

\[\left\{ \begin{array}{c} | \tilde{f} \rangle, | \tilde{i} \rangle \\ | \pi \rangle \end{array} \right\} \] A-1 body approx.

Fundamental symmetries
Isospin symmetry breaking: pictorial representation

1) `shell-model' configurations get mixed due to ISB interaction

\[|\psi\rangle = |I, I_z\rangle + \epsilon |I \pm 1, I_z\rangle \]

2) decaying proton and daughter neutron sample different mean fields.

Fundamental symmetries
The Damgaard (NPA 130, 233 (1969)) model is illuminating:

- Ignore δ_{C1}
- Use harmonic oscillator wave functions
- Assume all difference between parent neutron and daughter proton is due to proton moving in the (uniform charge) Coulomb field.

Yields a simple expression: $\delta_C \approx 0.26 Z^2 A^{-2/3} (n + 1)(n + l + 3/2)$

This model, while primitive, does remarkably well. Shows what is the most important effect.

Hardy, Towner propose inverting the relation

$$Ft = ft \left(1 + \delta_R^* \right) \left(1 + \delta_{NS} - \delta_C \right) \Rightarrow \delta_C = 1 + \delta_{NS} - \frac{\langle Ft \rangle}{ft \left(1 + \delta_R^* \right)}$$

to test models
Fundamental symmetries

Hardy, Towner, PRC 82, 065501 (2010)
From Hardy, Towner, PRC 82, 065501 (2010)

<table>
<thead>
<tr>
<th>Parent nucleus</th>
<th>Experimental</th>
<th>δ_C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ft value (s)</td>
<td>δ_R (%)</td>
</tr>
<tr>
<td>$T_2 = -1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10C</td>
<td>3041.7(43)</td>
<td>1.679(4)</td>
</tr>
<tr>
<td>14O</td>
<td>3042.3(11)</td>
<td>1.543(8)</td>
</tr>
<tr>
<td>22Mg</td>
<td>3052.0(70)</td>
<td>1.466(17)</td>
</tr>
<tr>
<td>34Ar</td>
<td>3052.7(82)</td>
<td>1.412(35)</td>
</tr>
<tr>
<td>$T_2 = 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26Al</td>
<td>3036.9(9)</td>
<td>1.478(20)</td>
</tr>
<tr>
<td>34Cl</td>
<td>3049.4(11)</td>
<td>1.443(32)</td>
</tr>
<tr>
<td>38K</td>
<td>3051.9(5)</td>
<td>1.440(39)</td>
</tr>
<tr>
<td>42Sc</td>
<td>3047.6(12)</td>
<td>1.453(47)</td>
</tr>
<tr>
<td>46V</td>
<td>3049.5(8)</td>
<td>1.445(54)</td>
</tr>
<tr>
<td>50Mn</td>
<td>3048.4(7)</td>
<td>1.444(62)</td>
</tr>
<tr>
<td>54Co</td>
<td>3050.8(10)</td>
<td>1.443(71)</td>
</tr>
<tr>
<td>62Ga</td>
<td>3074.1(11)</td>
<td>1.459(87)</td>
</tr>
<tr>
<td>74Rb</td>
<td>3084.9(77)</td>
<td>1.50(12)</td>
</tr>
</tbody>
</table>

Notice only model that fits well all data is SM-SW.

From Hardy, Towner, PRC 82, 065501 (2010)

A variation on the potential: Satuła, Dobaczewski, Nazarewicz, Werner, PRC 86, 054316 (2012)

Figure 10. Comparison of the ISB corrections to the 12 canonical superallowed $0^+ \rightarrow 0^+$ transitions calculated in [30] (open symbols) and in [60] (filled symbols). In the latter calculations, the 0^+ states projected from $|\varphi\rangle$, $|\varphi\rangle$, and $|\varphi\rangle$ configurations were mixed dynamically by solving the HWG equation. In the former, matrix elements were calculated independently for each orientation and $T_z = 0 \rightarrow T_z = 1$ transitions. Our adopted values for $T_z = -1 \rightarrow T_z = 1$ transitions (filled circles; shaded band marks errors) and [12] (filled triangles).
V_{ud} from nuclear, neutron, pion

From Hardy, Towner
Now $\sim 10^{10}$ atoms of 6He/s at Seattle via 7Li(d,3He)6He

A. Knecht et al.
NIM A. 660, 43 (2011)

Intense source of 6He at CENPA.

Statistics not a problem.

$$E_{\text{thres}} = 1 \text{ keV} \quad \Rightarrow \Delta b \approx 8 / \sqrt{N}$$

$$E_{\text{thres}} = 1150 \text{ keV} \Rightarrow \Delta b \approx 29 / \sqrt{N}$$
TM modes for cylindrical guides
Waveguides: each mode propagates above a certain cut-off freq.

\[
\left(\nabla^2 + \frac{\omega^2}{c^2} \right) \{E, B\} = 0
\]

\[
E = \begin{cases}
E(x, y)e^{\pm ikz - i\omega t} \\
B(x, y)e^{\pm ikz - i\omega t}
\end{cases}
\]

\[
\left[\nabla_t^2 + \left(\frac{\omega^2}{c^2} - k^2 \right) \right] \{E(x, y)\} \{B(x, y)\} = 0
\]

\[
\frac{\omega^2}{c^2} - k^2 \equiv \gamma^2
\]

\[
E = E_z + E_t
\]

TM waves: \(E_t = \pm \frac{ik}{\gamma^2} \nabla_t \psi \)

TE waves: \(H_t = \pm \frac{ik}{\gamma^2} \nabla_t \psi \)

\[(\nabla_t^2 + \gamma^2)\psi = 0\]

\[
\psi_{m,n}(x, y) = H_0 \cos \left(\frac{m\pi x}{a} \right) \cos \left(\frac{n\pi y}{b} \right)
\]

There are cutoff frequencies for each mode.

Fundamental symmetries
Cutoff frequencies for d=1cm guide. For 0.455” divide by 1.1557.

Active in 18-24 GHz: TE$_{1,1}$, TM$_{0,1}$ (but TM$_{0,1}$ doesn’t couple to WR42)

<table>
<thead>
<tr>
<th>n</th>
<th>$f_{n,1}^{TE}$</th>
<th>$f_{n,2}^{TE}$</th>
<th>$f_{n,3}^{TE}$</th>
<th>$f_{n,1}^{TM}$</th>
<th>$f_{n,2}^{TM}$</th>
<th>$f_{n,3}^{TM}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>36.57</td>
<td>67.00</td>
<td>97.15</td>
<td>22.97</td>
<td>52.71</td>
<td>82.64</td>
</tr>
<tr>
<td>1</td>
<td>17.58</td>
<td>50.90</td>
<td>81.51</td>
<td>36.59</td>
<td>67.00</td>
<td>97.15</td>
</tr>
<tr>
<td>2</td>
<td>29.16</td>
<td>64.03</td>
<td>95.21</td>
<td>49.03</td>
<td>80.38</td>
<td>110.96</td>
</tr>
</tbody>
</table>

Only the TE11 mode transmits

![Diagram showing distributions below along this plane]