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Multi-channel Scattering

Use for inelastic, transfer, breakup channels (etc)
in addition to elastic.

Two channel (1=elastic, 2=reaction) make coupled channels:

[T1 + U1 − E1]ψ1(r) + V12ψ2(r) = 0

[T2 + U2 − E2]ψ2(r) + V21ψ1(r) = 0. (1)

Forward coupling:
V21ψ1(r) gives effect of channel 1 on channel 2,

Back coupling:
V12ψ2(r) gives effect of channel 2 on channel 1.

These equations can be solved as coupled channels.
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Simplified Multi-channel Scattering gives DWBA

If channel 2 is weak, we can neglect the V12ψ2(r) term: the back
effect on channel 1.

[T1 + U1 − E1]ψ1(r) = 0

[T2 + U2 − E2]ψ2(r) + V21ψ1(r) = 0. (2)

This equals the Born Approximation:

[T1 + U1 − E1]ψ1(r) = 0

ψ2(r) = −[T2 + U2 − E2]−1V21ψ1(r) (3)

So the DWBA scattering amplitude in channel 2 is

f21(θ) = − m2

2π~2
〈 k2 | V21 | ψ1 〉 (4)

DWBA is often useful for non-elastic channels.
Ian Thompson Reactions Theory II
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A Code and a Book

Coupled Channels Calculations

Free!
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A Code and a Book

Theory Book!

Cambridge University Press: http://www.cambridge.org/9780521856355
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Physics of Nuclear Reactions

I Halo Scattering: Elastic

I Halo Total Reaction Cross Section

I Transfer Reactions

I Breakup Reactions

I Halo Fusion Reactions
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Halo Scattering: Elastic

Depends on

I Folded potential from
densities

I Halo breakup effects, i.e.

I Polarisation potential
from breakup channel

Ian Thompson Reactions Theory II



Outline
Non-elastic Cross Sections

How?
Physics of Nuclear Reactions

Elastic Scattering
Inelastic Scattering
Transfer Reactions
Breakup Reactions
Fusion Reactions
Compound Nucleus Decays (after fusion)

Four- and Six-body Scattering
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Halo Total Reaction Cross Section

Depends on

I Densities and NN
scattering, as usual

I But: effects of Halo
Breakup (virtual and real)
are big!

I Use few-body Glauber,
not Optical Limit Glauber

I Do we scatter from
average positions?
Or average scattering
from positions?
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New radii are larger.
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Inelastic Scattering

Need a structure model for the couplings:
rotational or vibrational model.
Consider here the rotational model with
excitation energies

εI =
~2

2M
[I (I+1)− K (K+1)] (5)

The coupling interaction of multipole λ
depends on the derivative of the optical
potential U(r) as

V λ
fi (r) = −βλR0√

4π
U ′(r) Îi 〈IiK , λ0|If K 〉, (6)
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Example of Inelastic Scattering

α-particle scattering on 20Ne.

Choose here a rotational
model: β2 = 0.205.

Theory options:
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This is an all-order calculation.
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Transfer Interaction

From φp(r) projectile bound state (p=n+c),
to φt(r′) target bound state (t=n+c′):

[Hp − εp]φp(r) = 0 Hp = Tr + Vp(r)

[Ht − εt ]φt(r′) = 0 Ht = Tr′ + Vt(r′) (7)

The transfer interaction has two forms:

Vprior(R, r) = Vt(r′) + Uc ′c(Rc)− Ui (R)

Vpost(R′, r′) = Vp(r) + Uc ′c (Rc )− Uf (R ′) (8)

These should give the same cross sections.
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Transfer Reactions to Probe Single-Particle Structure

I Weak, so use DWBA

I One-nucleon transfers, (p,d)
shape shows L-value of orbital
magnitude gives spectroscopic
factor

I Two-neutron transfers, (p,t)
Magnitude depends on s-wave
pairing in halo
Only relative magnitudes
reliably modeled.

I But: full analysis requires
multi-step calculations
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Stripping (Breakup) Reactions: Measuring Momentum

Probing the momentum content of bound states by breakup
reactions
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Stripping Reactions: Nuclear Structure

Glauber (eikonal) theory of breakup:

E.Sauvan et al., Phys Lett B 491 (2000) 1
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Stripping Reactions: Removing a Neutron

Reaction 9Be(17C, 16Cγ)X
Measured γ from core decays helps to fix the final state

[Maddalena et al., PRC63(01)024613]
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Halo Fusion: an Unsolved Problem

In low-energy Halo Fusion (near the Coulomb barrier):
Halo neutrons should affect fusion:

I Increase fusion, from neutron attractions & neutron flow

I Decrease complete fusion, from breakup

I Increase fusion, from molecular states & resonances

So: need experiments + good theories!
Some experiments already performed with 6He and 9Be, but
theoretical interpretations are still unclear.
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Compound Nucleus Decays (after fusion)

Flux does not ‘disappear’ the nuclei fuse together, but reappears as
mixture of narrow resonances of the compound system.

I Narrow resonances ⇒ long-lived ⇒ many oscillations to decay
I Bohr hypothesis: decay independent of production method
I So decay by all possible means α:

emission of γ, n, p, α, maybe fission.
I Average the cross sections over (say) 0.1 MeV, 〈σα′α〉 to

cover many resonances
I Hauser-Feshbach theory gives the statistical branching ratios

between the channels α.

So we can calculate residual nuclear ground states after all
emissions are finished.
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Transmission coefficients for CN production

‘Transmission coefficient’ Tα(E ) = 1− |Sα(E )|2 is the probability
of CN production for scattering at energy E .

Transmission coefficients for neutrons incident on 90Zr in various
partial waves L, using a global optical potential:
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Decay paths and Branching Probabilities

I So consider all possible exit channels α′′ and normalize to total

I Hauser-Feshbach cross section α→ α′ (simple form):

〈σα′α(L;E )〉 =
π

k2
(2L+1)

TαTα′∑
α′′ Tα′′

I The same Tα are used for producing as for decaying.

I If we do not know all the α, average over a level density ρ(E )
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Decay paths starting from neutron + AX :
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This is the framework for Hauser-Feshbach calculations.
They ignore interference effects between successive steps, so are

more semi-classical than quantum.
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Result of a Hauser-Feshbach Calculation

Using the code Talys:
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Evaluated Data for Nuclear Reactions

National libraries available, such as
ENDF: Evaluated Nuclear Data File, at NNDC.
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