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Lecture plan

• Lecture 1

• Solar system abundances

• A tiny little bit of BBN

• Hydrostatic nuclear burning

• Thermonuclear reaction rates

• Lecture 2

• Supernovae

• Explosive nuclear burning

• Heavy element synthesis

• Spectroscopy and metal-poor stars
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Summary from lecture 1
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Supernovae
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SN 1987a SN 2010fe

Optical transients discovery by CRTS
SN 2007uy

CSS Optical transient (GRB candidate)



Supernova Classification

• (Spectral) Appearance

• Type I

• Subtypes: a, b, c

• Type II

• Mechanism:

• Thermonuclear

• Core-collapse

• Brightness

• “normal”

• superluminous
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Type Ia supernovae

• White dwarf in a binary system with a …

• Main-sequence star (single-degenerate scenario)

• White dwarf (double-degenerate scenario)

• Synthesize mostly iron via explosive burning

• About 2/3 of total iron is from type Ia SNe
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Core-collapse supernovae (CCSNe)

Core bounce
(max compression) Explosion

ν-emission

Stellar burning
� C, O

Weak s-process
� heavy elements

Explosive burning
� Si, S, Ca, Fe, Ni, Zn

νp-process
� Sr, Y, Zr + Mo, Ru

r-process ???
γ-process

� p-nuclides

Explosion 
mechanism still not 
fully understood



Pair-instability supernovae (PISNe)

• Also called: Pair-creation supernovae

• Very massive stars (>100 Msun)

• Oxygen-core becomes unstable via

• Remove radiation pressure � core collapses �

explosive oxygen burning reverses collapse �

explosion
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Supernovae
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Langer (2012)

CCSN

CCSN

PISN

PISNSN Ia

SN Ia

Supernovae happen 
when evolution reaches 
region of instability



Explosive nuclear burning

• Similar to hydrostatic burning, but

• Shorter timescales

• Higher temperatures

• H-burning:

• Hot CNO-cycle (pp-chains are too slow), 

where 13N(β) becomes 13N(p,γ)

• He-burning:

• N-rich isotopes 15O, 18O, 19F, 21Ne

• C- and Ne-burning:

• Simultaneously occurring
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Explosive burning

• O-burning:

• Quasi-equilibrium (regions of equilibrium, connected 

by individual reactions)

• Si-burning:

• Details depend on 

peak temperature and 

peak density:
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CCSN nucleosynthesis

Reality:
• We observe stars and SNe

• We still do not fully 
understand the explosion 
mechanism despite 60+ 
years of research

Oak Ridge
Couch / O’Connor

MPA

Basel

+ many
more!

Japan

Simulations (computationally very expensive; not fully converged yet in outcome):

Textbook:

Practical approach:
• Add energy to pre-collapse star to trigger explosion (piston, thermal bomb, neutrinos)
• But: Ignores some physics (collapse, bounce, neutrinos, NS/BH formation, etc)



Modelling of CCSN nucleosynthesis

• Piston / thermal bomb Woosley&Weaver 95, Rauscher+02

Thielemann+96, Limongi & Chieffi 06,
Umeda&Nomoto 08

• Neutrinos methods

• Light bulb

• Modified neutrino reactions

• Parameterized PNS contraction

• PUSH method

� Based on neutrino-driven mechanism

(use neutrinos to obtain explosion)

� Preserve Ye evolution 

(no modification of νe-transport)

� Nuclear EOS and PNS evolution included

Perego, Hempel, CF, Ebinger, et al 2015)

Iwakami+09, Yamamoto+13

Frohlich+06, Fischer+10

Ugliano+12, Ertl+15, Sukhbold+16



Results using the PUSH method

• Calibrated against SN 1987A

• Progenitor mass, explosion energy, Ni and Ti ejecta

17
Ebinger+ (in prep)
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Results using the PUSH method

19
Ebinger+ (in prep)

Mueller+2016

Pechja+2015

Sukhbold+2016

Comparison to other methods



Results using the PUSH method

• Calibrated against SN 1987A

• Progenitor mass, explosion energy, Ni and Ti ejecta

• Applied to models from 11 Msun to 40 Msun

• Predict some explosions and some BHs

• Nucleosynthesis predictions

• Better match to observations than piston models
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Metal-poor star HD 84937

Sneden+16

Sanjana+ (in prep)
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Metal-poor star HD 84937

Sneden+16

Sanjana+ (in prep)



Origin of elements
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Stellar burning

Big Bang

Iron

Group

Solar system abundances



Neutron-capture processes

• Sequences of (n,γ) reactions and β—decays

heavy elements are 

made by 

slow (τ
β
/τ

n
<1) 

and

fast (τ
β
/τ

n
>1)

neutron-capture events



Neutron-capture paths

Number of neutrons
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(n,γ) reactions β--decays



Neutron-capture paths

Number of neutrons

N
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N=82 closed neutron-shell

Ba

Te

Xe

s-process path

r-process path

β-decay to 
stability at the 
end



Neutron-capture processes

• Sequences of (n,g) reactions and β—decays

• Closed neutron-shells give rise to the peaks at 

Te,Xe / Ba and at Os,Pt,Au / Pb

heavy elements are 

made by 

slow (τ
β
/τ

n
<1) 

and

fast (τ
β
/τ

n
>1)

neutron-capture events



The s-process

• Secondary process

� neutron captures on pre-existing Fe-group nuclei

• Strong s-process  (up to Pb)

•

• Weak s-process (truncated at Z~60)



The strong s-process

• He-shell flashes in AGB stars
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Strong s-process

Slide from Karakas & Lugaro



The s-process

• Secondary process

� neutron captures on pre-existing Fe-group nuclei

• Strong s-process  (up to Pb)

• He-shell flashes in AGB stars

• Protons are mixed from H-shell; produce 13C

• During He-burning:13C + α � 16O + n

� strong neutron source

• Weak s-process (truncated at Z~60)

• Core burning in massive stars:

• He-burning (1-2 × 108K)

• C-burning (6-8 × 108K) p from 12C(12C,p) 23Na
α from 12C(12C,α) 20Ne



The weak s-process

U. Frischknecht (U Basel & U Keele)

� Seed nuclei and neutron sources are secondary,

neutron poisons are primary!



The r-process

Stable nuclei

iron Silver

Gold

r-process path1st peak: A~80 (N=50)
2nd peak: A~130 (N=82)
3rd peak: A~195 (N=126)

Primary process!



The r-process site

• Most important criteria for an r-process site:

• High neutron density

• Eject material

• Neutron sources:

• Neutrons in nuclei (must be liberated)

• Neutron stars

• Made through weak reactions

• Conditions:

• High entropy, alpha-rich freeze-out

• Low entropy, normal freeze-out with very low Ye
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The r-process site(s)

• Neutrino-driven wind in CCSNe

• ONeMg core collapse

• Quark-hadron phase transition

• Explosive He-burning in outer shells

• Charged-current neutrino interactions

in outer shells

• Polar jets from rotating CCSNe

• Neutron-star mergers

• BH accretion disks
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• Neutrino-driven wind in CCSNe

• ONeMg core collapse

• Quark-hadron phase transition

• Explosive He-burning in outer shells

• Charged-current neutrino interactions

in outer shells

• Polar jets from rotating CCSNe

• Neutron-star mergers

• BH accretion disks

If? Weak!

weak

No?!

???

Abundance pattern??

Promising;
initial conditions??



Neutrino-driven winds in CCSNe
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T = 10-8 GK

NSE

T = 8 - 2 GK

charged-particle reactions;
α-process

T < 3 GK

(weak) r-process
νp-process



Wind conditions for r-process

• High neutron-to-seed ratio: Yn/Yseed ~ 100

• Short expansion timescale: 10-3 to 1 second

� inhibits formation of nuclei through α-process

• High entropy: s/kB ~ 20 – 400

� many free nucleons

• Moderately low electron fraction: Ye<0.5

41

BUT: Conditions not realized in 
recent simulations

Simulations find:
τ ~ few milliseconds
s ~ 50-120 kB/nuc
Ye ~ 0.4 – 0.6

� Additional ingredients??



Magneto-rotational SNe

42

3D collapse of fast rotator with 
strong magnetic fields:

15 Msun progenitor
Shellular rotation with period of 2s at 
1000km
Magnetic field in z-direction of 5 x 1012 G

Kaeppeli, Winteler, Liebendoerfer 2014
Eichler+2014 (nucleosynthesis)

3D collapse of fast rotator with 
strong magnetic fields:

25 Msun progenitor

Magnetic field in z-direction of 1012 G

Moesta+2014



Nucleosynthesis from rot. CCSNe
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Neutron-star mergers

• 3rd peak always shifted to heavier nuclei

(trajectories too neutron-rich)
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Chemical evolution
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Magenta: data
No magnetorotational jets
Green/red: different merging time scales
Blue: higher merger rate

Wehmeyer+ (2015)

Combination of NS mergers and 
magnetorational jets



The r-process site(s)

• Neutrino-driven wind in CCSNe

• ONeMg core collapse

• Quark-hadron phase transition

• Explosive He-burning in outer shells

• Charged-current neutrino interactions

in outer shells

• Polar jets from rotating CCSNe

• Neutron-star mergers

• BH accretion disks

If? Weak!

weak

No?!

???

Abundance pattern??

Promising;
initial conditions??

Will results hold 
with improved 
simulations??



Origin of elements

47

Hydrogen

Helium

α
-e
le
m
e
n
ts

(1
2
C
, 
1
6
O
, 
…
)

Stellar burning

Big Bang

Iron

Group

Solar system abundances

r-process r-process

s-process s-process



The Enrico Fermi 
Institute, U Chicago
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The p-process (for the p-nuclei)

Now understood to be 

several processes:

• γγγγ-process:

photodisintegration of 

pre-existing heavy nuclei

• νννν-process:

(ν, ν’) or (ν,e-)

• ννννp-process:

p(ν,e+)n followed by 

(n,p)

• Suggested by Arnould (1976) and Woosley&Howard (1978)

r
r

s s

p



The γ-process

• Photodisintegrations of pre-existing heavy (s-process) 

nuclei

• In thermal bath of supernova explosions in explosive Ne/O 

burning layers with peak temperatures of 2-3 109K

50



The γ-process

• Photodisintegrations of pre-existing heavy nuclei 

(from previous s-process event)

• In thermal bath of supernova explosions in explosive Ne/O 

burning layers with peak temperatures of 2-3 109K

Rapp et al (2006)

(γ,n)

(γ,α)



The γ-process

• Predicted p-nuclei overproduction

� Underproduction of light p-nuclei
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Arnould & Goriely (2003)

Rapp et al (2006)



Origin of elements
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Trends with metallicity
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Significant scatter at low metallicities

r-process is rare in early Galaxy



The oldest observed stars

Robust
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pattern
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LEPP: Lighter Element Primary Process

• Observations of halo stars indicate two “r-

process” sites:

• Main r-process

• Stellar LEPP / weak r-process

56

Stars with high enrichment in 
heavy r-process abundances

Stars with low enrichment in 
heavy r-process abundances



LEPP: Lighter Element Primary Process

• Observations of halo stars indicate two “r-

process” sites:

• Main r-process

• Stellar LEPP / weak r-process

• Solar LEPP

• Explains underproduction of “s-only” isotopes from 

Mo to Xe

• Contributes 20-30% of solar Sr, Y, Zr

• Solar abuns = r-process + s-process + LEPP

• Stellar LEPP

• Same as solar LEPP?
57

Travaglio et al (2004): LEPP (solar LEPP)

Montes et al (2007)



The νp-Process

• proton-rich matter is ejected 

under the influence of neutrino 

interactions

• true rp-process is limited by 

slow β decays, e.g. τ(64Ge)

• Neutron source:

• Antineutrinos help bridging long 

waiting points via (n,p) 

reactions:
64Ge (p,g)

(n,p)

64Ge (n,p) 64Ga
64Ga (p,γ) 65Ge
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The νp-Process

• proton-rich matter is ejected 

under the influence of neutrino 

interactions

• true rp-process is limited by 

slow β decays, e.g. τ(64Ge)

• Neutron source:

• Antineutrinos help bridging long 

waiting points via (n,p) 

reactions:
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• With neutrinos
o Without neutrinos



Heavy element synthesis inventory

• s-process

• Secondary process; in AGB stars up to Pb or in 

massive stars as weak s-process

• γ-process

• Secondary process; underproduction of light p-nuclei

• r-process

• Primary process; probably some combination of MHD 

SNe and NS-mergers?

• ???

• νp-process

• In proton-rich neutrino winds
60



Summary

61

Stellar burning

r-process

s-process

νp-process

rp-process

p-process

Explosive burning

Astrophysical sites:
• Stellar evolution of low-mass 

and massive stars
• AGB stars (main s-process)
• core He-burning of massive 

stars (weak s-process)
• Supernovae (explosive burning)
• CC supernovae (γ-process)
• CC supernovae (νp-process)
• Jets in magn-rot. SNe (r-

process)
NS mergers (r-process)

• X-ray bursts (rp-process)


