Lecture plan

- Lecture 1
 - Solar system abundances
 - A tiny little bit of BBN
 - Hydrostatic nuclear burning
 - Thermonuclear reaction rates

- Lecture 2
 - Supernovae
 - Explosive nuclear burning
 - Heavy element synthesis
 - Spectroscopy and metal-poor stars
Summary from lecture 1
Supernovae

Supernovae are violent explosions at the end of a star's life, which can be classified into different types based on their properties and the cause of the explosion. Here are a few examples:

- **SN 1987a**: This supernova was discovered in 1987 and is known for being the first supernova to be imaged in the ultraviolet and X-ray bands.
- **SN 2010fe**: This supernova was observed in 2010 and is one of the brightest supernovae recorded.
- **SN 2007uy**: This supernova was observed in 2007 and is notable for its fast decline in brightness.

Optical transients discovery by CRTS

CSS Optical transient (GRB candidate)
Supernova Classification

- (Spectral) Appearance
 - Type I
 - Subtypes: a, b, c
 - Type II

- Mechanism:
 - Thermonuclear
 - Core-collapse

- Brightness
 - “normal”
 - superluminous
Supernova Classification

- (Spectral) Appearance
 - Type I
 - Subtypes: a, b, c
 - Type II

- Mechanism:
 - Thermonuclear
 - Core-collapse

- Brightness
 - “normal”
 - superluminous
Supernova Classification

- (Spectral) Appearance
 - Type I
 - Subtypes: a, b, c
 - Type II

- Mechanism:
 - Thermonuclear
 - Core-collapse

- Brightness
 - “normal”
 - superluminous
Supernova Classification

• (Spectral) Appearance
 • Type I
 • Subtypes: a, b, c
 • Type II

• Mechanism:
 • Thermonuclear
 • Core-collapse

• Brightness
 • “normal”
 • superluminous
Type Ia supernovae

- White dwarf in a binary system with a ...
 - Main-sequence star (single-degenerate scenario)
 - White dwarf (double-degenerate scenario)
- Synthesize mostly iron via explosive burning
 - About 2/3 of total iron is from type Ia SNe
Core-collapse supernovae (CCSNe)

Stellar burning
\[\rightarrow C, O \]
Weak s-process
\[\rightarrow \text{heavy elements} \]
Explosion mechanism still not fully understood

Explosive burning
\[\rightarrow Si, S, Ca, Fe, Ni, Zn \]
\[\nu p\text{-process} \]
\[\rightarrow Sr, Y, Zr + Mo, Ru \]
\[\gamma\text{-process} \]
\[\rightarrow p\text{-nuclides} \]
Pair-instability supernovae (PISNe)

- Also called: Pair-creation supernovae
- Very massive stars (>100 Msun)
- Oxygen-core becomes unstable via \(2\gamma \rightarrow e^+ + e^- \)
 - Remove radiation pressure \(\rightarrow \) core collapses \(\rightarrow \)
 explosive oxygen burning reverses collapse \(\rightarrow \)
 explosion
Supernovae happen when evolution reaches region of instability.

Langer (2012)
Explosive nuclear burning

- Similar to hydrostatic burning, but
 - Shorter timescales
 - Higher temperatures

- H-burning:
 - Hot CNO-cycle (pp-chains are too slow), where $^{13}\text{N}(\beta)$ becomes $^{13}\text{N}(p,\gamma)$

- He-burning:
 - N-rich isotopes ^{15}O, ^{18}O, ^{19}F, ^{21}Ne

- C- and Ne-burning:
 - Simultaneously occurring
Explosive burning

- O-burning:
 - Quasi-equilibrium (regions of equilibrium, connected by individual reactions)

- Si-burning:
 - Details depend on peak temperature and peak density:
CCSN nucleosynthesis

Simulations (computationally very expensive; not fully converged yet in outcome):

Textbook:
- Add energy to pre-collapse star to trigger explosion (piston, thermal bomb, neutrinos)
- But: Ignores some physics (collapse, bounce, neutrinos, NS/BH formation, etc)

Reality:
- We observe stars and SNe
- We still do not fully understand the explosion mechanism despite 60+ years of research

Practical approach:
Modelling of CCSN nucleosynthesis

- Piston / thermal bomb
 - Woosley&Weaver 95, Rauscher+02
 - Thielemann+96, Limongi & Chieffi 06, Umeda&Nomoto 08

- Neutrinos methods
 - Light bulb
 - Iwakami+09, Yamamoto+13
 - Modified neutrino reactions
 - Frohlich+06, Fischer+10
 - Parameterized PNS contraction
 - Ugliano+12, Ertl+15, Sukhbold+16
 - PUSH method
 - Based on neutrino-driven mechanism (use neutrinos to obtain explosion)
 - Preserve Ye evolution (no modification of ν_e-transport)
 - Nuclear EOS and PNS evolution included
Results using the PUSH method

- Calibrated against SN 1987A
- Progenitor mass, explosion energy, Ni and Ti ejecta

Ebinger+ (in prep)
Results using the PUSH method

- Calibrated against SN 1987A
 - Progenitor mass, explosion energy, Ni and Ti ejecta
- Applied to models from 11 Msun to 40 Msun
 - Predict some explosions and some BHs

Ebinger+ (in prep)
Comparison to other methods

Ebinger+ (in prep)

Pechja+2015

Sukhbold+2016

Mueller+2016
Results using the PUSH method

- Calibrated against SN 1987A
 - Progenitor mass, explosion energy, Ni and Ti ejecta

- Applied to models from 11 Msun to 40 Msun
 - Predict some explosions and some BHs

- Nucleosynthesis predictions
 - Better match to observations than piston models
Metal-poor star HD 84937

\[
\frac{X}{X_{\text{Fe}}} = \log \left(\frac{X}{X_{\text{Fe}}} \right) - \log \left(\frac{X}{X_{\text{Fe}}} \right)
\]

Sneden+16

Sanjana+ (in prep)
Metal-poor star HD 84937

\[
\left[\frac{X}{X_{\text{Fe}}} \right] = \log \left(\frac{X}{X_{\text{Fe}}} \right) - \log \left(\frac{X}{X_{\text{Fe}}} \right)
\]

Sneden+16

Sanjana+ (in prep)
Metal-poor star HD 84937

\[
\frac{X}{X_{Fe}} = \log \left(\frac{X}{X_{Fe}} \right) - \log \left(\frac{X}{X_{Fe}} \right)
\]

Sneden+16

Sanjana+ (in prep)
Metal-poor star HD 84937

\[
\frac{X}{X_{Fe}} = \log \left(\frac{X}{X_{Fe}} \right) - \log \left(\frac{X}{X_{Fe}} \right) \circ
\]

Sneden+16

Sanjana+ (in prep)
Metal-poor star HD 84937

\[
\left[\frac{X}{X_{Fe}} \right] = \log \left(\frac{X}{X_{Fe}} \right) - \log \left(\frac{X}{X_{Fe}} \right)
\]

Sneden+16

Sanjana+ (in prep)
Origin of elements

Big Bang

- Hydrogen
- Helium

Stellar burning

- Iron Group

Solar system abundances

- α-elements (^{12}C, ^{16}O, ...)

![Graph showing the distribution of elements by atomic mass and log N (solar system)]
Neutron-capture processes

Heavy elements are made by
- slow \((\tau_\beta/\tau_n < 1)\)
- fast \((\tau_\beta/\tau_n > 1)\)
neutron-capture events

- Sequences of \((n,\gamma)\) reactions and \(\beta^-\)decays

\[
\begin{align*}
A(Z, N) + n &\leftrightarrow A + 1(Z, N + 1) + \gamma \\
A(Z, N) &\rightarrow A(Z + 1, N - 1) + e^- + \bar{\nu}_e
\end{align*}
\]
Neutron-capture paths

- (n,γ) reactions
- β⁻-decays

N=82 closed neutron-shell
Neutron-capture paths

- **Number of neutrons**
- **Number of protons**

- N=82 closed neutron-shell

- Ba Te
- Xe

- s-process path

- β-decay to stability at the end

- r-process path

- N=82 closed neutron-shell
Neutron-capture processes

heavy elements are made by
slow \((\tau_{\beta}/\tau_{n} < 1)\)
and
fast \((\tau_{\beta}/\tau_{n} > 1)\)
neutron-capture events

- Sequences of \((n,g)\) reactions and \(\beta^{-}\)decays
 \[
 A(Z, N) + n \leftrightarrow A + 1(Z, N + 1) + \gamma
 \]
 \[
 A(Z, N) \rightarrow A(Z + 1, N - 1) + e^{-} + \bar{\nu}_{e}
 \]

- Closed neutron-shells give rise to the peaks at \(\text{Te, Xe} / \text{Ba}\) and at \(\text{Os, Pt, Au} / \text{Pb}\)
The s-process

- Secondary process
 → neutron captures on pre-existing Fe-group nuclei

- Strong s-process (up to Pb)

- Weak s-process (truncated at Z~60)
The strong s-process

- He-shell flashes in AGB stars
Strong s-process

Low mass AGBs
Lower temperature \(\sim 4.5 \, M_\odot \)
Larger intershell mass

Intermediate mass AGBs
Higher temperature
Smaller intershell mass

ENVELOPE

He intershell
base of convective envelope

H-burning shell
C-O CORE

\(\alpha(n,\gamma) \)
proton diffusion
convective pulse
drudge-up

\(^{13}\text{C}(\alpha,n)^{16}\text{O} \)

\(^{22}\text{Ne}(\alpha,n)^{25}\text{Mg} \)

Slide from Karakas & Lugaro
The s-process

- Secondary process
 \[\text{neutron captures on pre-existing Fe-group nuclei} \]

- Strong s-process (up to Pb)
 - He-shell flashes in AGB stars
 - Protons are mixed from H-shell; produce \(^{13}\text{C}\)
 - During He-burning: \(^{13}\text{C} + \alpha \rightarrow ^{16}\text{O} + \text{n}\)
 \[\rightarrow \text{strong neutron source} \]

- Weak s-process (truncated at \(Z\sim60\))
 - Core burning in massive stars:
 - He-burning (1-2 \(\times\) 10\(^8\)K)
 \[^{14}\text{N(\alpha,y)18F(\beta^+)18O(\alpha,y)22Ne(\alpha,n)25Mg} \]
 - C-burning (6-8 \(\times\) 10\(^8\)K)
 \[^{12}\text{C(p,y)13N(\beta^+)13C} \]
 \[^{13}\text{C(\alpha,n)16O} \]
 \[\text{p from } ^{12}\text{C(}^{12}\text{C,p)23Na} \]
 \[\alpha \text{ from } ^{12}\text{C(}^{12}\text{C,}\alpha)20\text{Ne} \]
The weak s-process

Overproduction factors of 25 M_\odot models with $Z = 10^{-5}$ ($[\text{Fe}/\text{H}] = -3.8$)

Seed nuclei and neutron sources are secondary, neutron poisons are primary!
The r-process

1st peak: $A\sim80$ ($N=50$)
2nd peak: $A\sim130$ ($N=82$)
3rd peak: $A\sim195$ ($N=126$)

Primary process!
The r-process site

• Most important criteria for an r-process site:
 • High neutron density
 • Eject material

• Neutron sources:
 • Neutrons in nuclei (must be liberated)
 • Neutron stars
 • Made through weak reactions

• Conditions:
 • High entropy, alpha-rich freeze-out
 • Low entropy, normal freeze-out with very low Ye
The r-process site(s)

- Neutrino-driven wind in CCSNe
- ONeMg core collapse
- Quark-hadron phase transition
- Explosive He-burning in outer shells
- Charged-current neutrino interactions in outer shells
- Polar jets from rotating CCSNe
- Neutron-star mergers
- BH accretion disks
The r-process site(s)

- Neutrino-driven wind in CCSNe
- ONeMg core collapse
- Quark-hadron phase transition
- Explosive He-burning in outer shells
- Charged-current neutrino interactions in outer shells
- Polar jets from rotating CCSNe
- Neutron-star mergers
- BH accretion disks

No?!
weak
If? Weak!
???
Abundance pattern??
Promising; initial conditions??
Neutrino-driven winds in CCSNe

\[T = 10^{-8} \text{ GK} \]

- NSE

\[T = 8 - 2 \text{ GK} \]

- charged-particle reactions;
- \(\alpha \)-process

\[T < 3 \text{ GK} \]

- (weak) r-process
- vp-process
Wind conditions for r-process

- High neutron-to-seed ratio: \(Y_n/Y_{seed} \sim 100 \)
- Short expansion timescale: \(10^{-3} \) to 1 second
 \(\rightarrow \) inhibits formation of nuclei through \(\alpha \)-process
- High entropy: \(s/k_B \sim 20 – 400 \)
 \(\rightarrow \) many free nucleons
- Moderately low electron fraction: \(Ye < 0.5 \)

BUT: Conditions not realized in recent simulations

Simulations find:
- \(\tau \sim \) few milliseconds
- \(s \sim 50-120 \) \(k_B/\text{nuc} \)
- \(Ye \sim 0.4 – 0.6 \)

\(\rightarrow \) Additional ingredients??
Magneto-rotational SNe

3D collapse of fast rotator with strong magnetic fields:

15 Msun progenitor
Shellular rotation with period of 2s at 1000km
Magnetic field in z-direction of $5 \times 10^{12} \ G$
Kaeppeli, Winteler, Liebendoerfer 2014
Eichler+2014 (nucleosynthesis)

3D collapse of fast rotator with strong magnetic fields:

25 Msun progenitor
Magnetic field in z-direction of $10^{12} \ G$
Moesta+2014

$\beta = \frac{P_{\text{gas}}}{P_{\text{mag}}}$
Nucleosynthesis from rot. CCSNe

- r-process peaks well reproduced
- Trough at A=140-160 due to FRDM and fission yield distribution
- A = 80-100 mainly from higher Ye
- A > 190 mainly from low Ye
- Ejected r-process material (A > 62):

\[M_{r,ej} \approx 6 \times 10^{-3} \, M_\odot \]
Neutron-star mergers

- 3rd peak always shifted to heavier nuclei (trajectories too neutron-rich)
Chemical evolution

Magenta: data
No magnetorotational jets
Green/red: different merging time scales
Blue: higher merger rate

Wehmeyer+ (2015)
The r-process site(s)

- Neutrino-driven wind in CCSNe
- ONeMg core collapse
- Quark-hadron phase transition
- Explosive He-burning in outer shells
- Charged-current neutrino interactions in outer shells
- Polar jets from rotating CCSNe
- Neutron-star mergers
- BH accretion disks

No?!
weak
If? Weak!
??
Abundance pattern??
Promising; initial conditions??
Will results hold with improved simulations??
Origin of elements

- Hydrogen
- Helium

Big Bang

Stellar burning

Solar system abundances

- Iron Group
- α-elements (12C, 16O, ...)
- r-process
- s-process
The neutron-capture processes

The neutron-capture processes involve the capture of neutrons by atomic nuclei to form elements with higher atomic numbers. These processes are categorized into s-process, r-process, and p-process based on the neutron-capture rates and the energy sources involved.

- **s-process**: Occurs in low-mass stars and involves the capture of neutrons by stable nuclei, leading to the production of elements with high atomic numbers. The lifetimes of elements produced in the s-process are typically long, with some lifetimes exceeding 10^{10} years.

- **r-process**: Occurs in high-mass stars and involves the capture of neutrons by unstable nuclei, leading to the production of elements with very high atomic numbers. The lifetimes of elements produced in the r-process are very short, with some lifetimes being less than 1 second.

- **p-process**: Occurs in neutron-rich environments and involves the capture of neutrons by unstable nuclei, leading to the production of elements with intermediate atomic numbers. The lifetimes of elements produced in the p-process are intermediate between those of the s-process and r-process.

The diagram above illustrates the neutron-capture processes for elements with atomic numbers ranging from 174 to 190, showing the movement of isotopes through the processes and the production of stable and unstable elements.
The p-process (for the p-nuclei)

Now understood to be several processes:

- **γ-process**: photodisintegration of pre-existing heavy nuclei
- **ν-process**: \((\nu, \nu')\) or \((\nu, e^-)\)
- **νp-process**: \(p(\nu, e^+)n\) followed by \((n, p)\)

Suggested by Arnould (1976) and Woosley&Howard (1978)
The γ-process

- Photodisintegrations of pre-existing heavy (s-process) nuclei
- In thermal bath of supernova explosions in explosive Ne/O burning layers with peak temperatures of $2-3 \times 10^9$ K
The γ-process

- Photodisintegrations of pre-existing heavy nuclei (from previous s-process event)
- In thermal bath of supernova explosions in explosive Ne/O burning layers with peak temperatures of $2-3 \times 10^9$ K

The γ-process

- Predicted p-nuclei overproduction

$\frac{\langle \gamma \rangle}{\langle \gamma \rangle_0}$

$\frac{\langle \gamma \rangle}{\langle \gamma \rangle_0}$

$\frac{\langle \gamma \rangle}{\langle \gamma \rangle_0}$

\rightarrow Underproduction of light p-nuclei

Arnould & Goriely (2003)
Origin of elements

Big Bang

Hydrogen

Helium

Stellar burning

Iron Group

Solar system abundances

r-process

s-process

p-nuclei

α-elements (12C, 16O, ...)

53

Hydrogen

Helium

Stellar burning

Iron Group

Solar system abundances

r-process

s-process

p-nuclei

α-elements (12C, 16O, ...)

53
Trends with metallicity

Significant scatter at low metallicities

r-process is rare in early Galaxy
The oldest observed stars

Larger scatter

Robust r-process pattern

Figure: John Cowan (2011)
LEPP: Lighter Element Primary Process

- Observations of halo stars indicate two “r-process” sites:
 - Main r-process
 - Stellar LEPP / weak r-process

![Graph showing the distribution of heavy r-process abundances in stars.](image)

Stars with high enrichment in heavy r-process abundances

Stars with low enrichment in heavy r-process abundances
LEPP: Lighter Element Primary Process

- Observations of halo stars indicate two “r-process” sites:
 - Main r-process
 - Stellar LEPP / weak r-process

- Solar LEPP
 - Explains underproduction of “s-only” isotopes from Mo to Xe
 - Contributes 20-30% of solar Sr, Y, Zr
 - Solar abuns = r-process + s-process + LEPP

- Stellar LEPP
 - Same as solar LEPP?

Travaglio et al (2004): LEPP (solar LEPP)
Montes et al (2007)
The \(\nu p \)-Process

- proton-rich matter is ejected under the influence of neutrino interactions
- true rp-process is limited by slow \(\beta \) decays, e.g. \(\tau(64\text{Ge}) \)
- Neutron source:
 \[
 \bar{\nu}_e + p \rightarrow n + e^+
 \]
- Antineutrinos help bridging long waiting points via \((n,p)\) reactions:
 \[
 \begin{align*}
 64\text{Ge} &\rightarrow (n,p)\rightarrow 64\text{Ga} \\
 64\text{Ga} &\rightarrow (p,\gamma)\rightarrow 65\text{Ge}
 \end{align*}
 \]
The νp-Process

- proton-rich matter is ejected under the influence of neutrino interactions
- true rp-process is limited by slow β decays, e.g. $\tau(64\text{Ge})$
- Neutron source:
 \[\bar{\nu}_e + p \rightarrow n + e^+ \]
- Antineutrinos help bridging long waiting points via (n,p) reactions:

 $64\text{Ge} \ (n,p) \ 64\text{Ga}$
 $64\text{Ga} \ (p,\gamma) \ 65\text{Ge}$

Heavy element synthesis inventory

- **s-process**
 - Secondary process; in AGB stars up to Pb or in massive stars as weak s-process

- **γ-process**
 - Secondary process; underproduction of light p-nuclei

- **r-process**
 - Primary process; probably some combination of MHD SNe and NS-mergers?
 - ???

- **vp-process**
 - In proton-rich neutrino winds
Summary

Astrophysical sites:

- Stellar evolution of low-mass and massive stars
- AGB stars (main s-process)
- Core He-burning of massive stars (weak s-process)
- Supernovae (explosive burning)
 - CC supernovae (γ-process)
 - CC supernovae (vp-process)
- Jets in magn-rot. SNe (r-process)
- NS mergers (r-process)
- X-ray bursts (rp-process)