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Understanding neutron-rich matter is 
important for a broad range of  
phenomena:

 Nucleosynthetic r-process
 Neutron star mergers

One laboratory to investigate the 
character of  neutron rich matter is 
the skin of  neutron-rich nuclei

Gain insight into neutron skin by investigating fusion for an isotopic chain of  neutron-rich nuclei 
(interplay of  nuclear structure and dynamics)

Motivation: To understand the character of  neutron-rich nuclear matter
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Stable 
Core

valence neutrons
The enhanced fusion of  neutron-rich nuclei may serve to 
ignite X-ray superbursts in accreting neutron stars. 
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The Reaction and its Products

47𝐾𝐾 + 28𝑆𝑆𝑆𝑆 → 75𝐴𝐴𝐴𝐴∗ → 73𝐴𝐴𝐴𝐴 + 2𝑛𝑛
→ 73𝐺𝐺𝐺𝐺 + 𝑝𝑝 + 𝑛𝑛
→ 70𝐺𝐺𝐺𝐺 + 𝛼𝛼 + 𝑛𝑛
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• Excited compound nucleus decays by emitting protons, neutrons, and particles

• The resulting heavy nucleus is known as an evaporation residue

• Emission of  these light particles impart transverse momentum on the residue, kicking them 
off  zero degrees and allowing for direct measurement of  the residues and light particles
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Low energy rare isotope beams at NSCL
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• Primary beam accelerated by two coupled cyclotrons

• Rare isotope beam (RIB) produced via projectile fragmentation and separated by A1900 spectrometer

• Beam significantly slowed down in a linear gas stopper

• Beam ionized to high N+ charge state in charge breeder

• RIB is re-accelerated to desired energy and delivered to the experimental area
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39,47K + 28Si  67,75As*
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• Elab = 2.3 – 3 MeV/A
• Average intensity ~ 104 p/s
• Reaction products distinguished by ETOF
• Energy measured in segmented annular silicon 

detectors (T1, T2) 1° ≤ θlab ≤ 7.3°
• Fusion product time-of-flight measured between 

target MCP and silicon detectors

US MCP Tgt MCP
T2

~130 cm ~75 cm

39,47K beam

T1
RIPD 1 RIPD 2

• 47K beam contaminated by 36Ar (~5%)
• Particle identification performed using ΔE-TOF
• ΔE measured in RIPD
• TOF measured between two MCP detectors



Measuring evaporation residues
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• Energy vs. time-of-flight linearized using the relation

𝐴𝐴 ∝ 𝐸𝐸𝑡𝑡2

• Mass resolution ~2.4 amu at A = 47

• Clear separation is observed between evaporation 
residues and scattered beam

• Evaporation residues from two reactions:
• K + O
• K + Si

• ERs from each reaction are better separated by their 
mass-energy correlation in 2D



Measuring evaporation residues
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• Evaporation residues identified by mass are integrated (NER)

• The number of  incident beam particles are counted with the 
two MCP timing detectors (NBeam)

• Efficiency correction for detector geometric coverage (εER) 
determined with statistical model (evapOR)

• Target thickness (t) determined using the 39K+16O data and 
α source energy loss measurements (241Am and 148Gd)

𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑁𝑁𝐸𝐸𝐸𝐸

𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡𝜀𝜀𝐸𝐸𝐸𝐸
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Fusion excitation function
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• First measurements of  39,47K + 28Si

• At all energies, the cross-section for 47K is higher than 
that for 39K

• A one-dimensional parabolic barrier penetration 
formula (Wong formula) is used to parameterize the 
cross-sections 

• The relative cross-section can be used to facilitate better 
comparison between the two systems



Fusion excitation function
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• As Ec.m. decreases and approaches the barrier, the 
cross-sections for 47K begin to drastically increase



Fusion excitation function
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• As Ec.m. decreases and approaches the barrier, the 
cross-sections for 47K begin to drastically increase

• Semi-empirical channel-coupling model code by 
Zagrebaev:
• Initial statically deformed projectile and target
• Allow projectile and target to deform on approach
• Include the influence of  neutron-transfer

• Observed enhancement can be described in the context 
of  dynamic deformation of  the projectile and target 
nuclei

http://nrv.jinr.ru/nrv/
V.I. Zagrebaev, Phys. Rev. C 64 (2001) 034606 
V.I. Zagrebaev, et al., Phys.Rev. C 65 (2002) 014607



Conclusions/Outlook
Summary

• The fusion cross-section for 39,47K + 28Si has been measured for the first time using the 
ReA3 facility at NSCL

• A significant enhancement of  the cross-section (up to a factor of  6) is observed for 47K 
relative to 39K near the barrier

• This enhancement can be understood as dynamic deformation of  the system as the 
projectile and target approach

In the future:
• Compare cross-sections with other models such as DC-TDHF and CCFULL

• 41,45K + 28Si and 36,44Ar + 28Si at NSCL ReA3 (E17002)

• 20,21O + 12C at GANIL (E739), possibly 22O (LOI)

7/28/2017Justin Vadas        Indiana University        Exotic Beam Summer School 2017        Lemont, IL 11



Acknowledgements

• Indiana University:

• Nuclear Chemistry group

• IU Mechanical Instrument Services

• IU Electronic Instrument Services

• GANIL:

• Abdou Chbihi, Dieter Ackermann

• Western Michigan University:

• Mike Famiano, Mike Bischak

• Michigan State University:

• Kyle Brown, Clementine Santamaria

• Technical staff  at NSCL/ReA3

• Antonio Villari, Sam Nash, Alain 
LaPierre

7/28/2017Justin Vadas        Indiana University        Exotic Beam Summer School 2017        Lemont, IL 12



Additional Material
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X-ray superbursts
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• An X-ray superburst, which occurs in the outer crust of  an accreting neutron star, releases more 
energy in a few hours than the sun does in a decade

• Fusion of  light and mid-mass neutron-rich nuclei has been proposed as being responsible for 
triggering X-ray superbursts

• Measurement of  an isotopic chain provides information on how structure and dynamics evolve 
with increasing neutron number

• 39,47K + 28Si allows for exploring the effect of  a large span in neutron number on fusion



Challenges experienced with ReA3

• Timing structure of  the beam

• Beam leaves the charge breeder in macrobursts every 500 ms (2 Hz)

• The ions are bunched into the first ~100 ms of  each macroburst

• Instantaneous rate experienced by detectors: ~5x higher than the 
average rate 

• Contamination in RIBs

• Particle identification is required on an event-by-event basis

• Need detector with good energy resolution and high rate capability
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Rare Ion Purity Detector (RIPD)
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J. Vadas, et al., NIMA 837 (2016) 28

A: Window plate
B: Anode foil ring
C: PCB for charge

sensitive amplifier
D: Detector body
E: Window plate

• Axial field design with central anode minimizes 
charge collection time

• Aluminized windows serve as cathodes (0.5 µm)

• Utilize CF4 as detector gas based upon its high 
electron drift velocity

• Integrated fast charge sensitive amplifier

• Energy resolution ~8% above 5 MeV

• Resolution ~10% at an instantaneous rate of  
1×105 ions/s



39,47K + 28Si  67,75As*
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• E x B fields transport electrons from secondary 
emission foil to MCP

• E field produced by biasing array of  ring plates
• B field produced by NdFeB permanent magnets
• Timing resolution ~300 ps

Beam

B
E

4”

deSouza et al., Nucl. Instr. and Meth. A632, 133 (2011)

• Annular single crystal Si(IP) detectors
• Segmented to provide angular information 

and reduce detector capacitance
• Timing resolution ~450 ps
• Energy resolution <1%

Bowman et al., Nucl. Inst. and Meth. 148, 503 (1978) 
Steinbach et al., Nucl. Inst. and Meth. A 743, 5 (2014)



Determining the target thickness
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• Extracted 
𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑡𝑡16𝑂𝑂

for 39K + 16O

• Calculated 𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 from empirical channel coupling model
• Minimized χ2 in calculating t for 16O
• 𝑡𝑡16𝑂𝑂 → 𝑡𝑡𝑆𝑆𝑆𝑆𝑂𝑂2
• 𝑡𝑡16𝑂𝑂= 97 µg/cm2; 𝑡𝑡𝑆𝑆𝑆𝑆𝑂𝑂2≈ 800 nm

Estimating the amount of  oxidation:

• Measured energy loss of  α particles from 148Gd and 241Am 
sources

• Using SRIM and known 𝑡𝑡𝑆𝑆𝑆𝑆𝑂𝑂2 , determined 𝑡𝑡28𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
• Total thickness = 327 µg/cm2 28Si

Determining the amount of  28Si:

28Si enriched target provided by M. Loriggiola (Legnaro National Laboratory) 



Fusion excitation function
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• Static deformation results in a too-shallow excitation 
function for both systems

• Dynamic deformation has the same shape as the data, but 
is systematically higher for all energies for both systems

• Inclusion of  neutron-transfer channels only influences the 
cross-sections at below-barrier energies for 47K
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