Measuring the fusion cross-section of 39,47K + 28Si at near-barrier energies

Justin Vadas, V. Singh, B. Wiggins, J. Huston, S. Hudan, R.T. de Souza; Indiana University Bloomington

A. Chbihi, D. Ackermann; GANIL

M. Famiano; Western Michigan University

K. Brown; Michigan State University

DOE under Grant No. DE-FG02-88ER-40404

NSF under Grant No. 1342962
Motivation: To understand the character of neutron-rich nuclear matter

Understanding neutron-rich matter is important for a broad range of phenomena:

- Nucleosynthetic r-process
- Neutron star mergers

One laboratory to investigate the character of neutron rich matter is the skin of neutron-rich nuclei

The enhanced fusion of neutron-rich nuclei may serve to ignite X-ray superbursts in accreting neutron stars.

Gain insight into neutron skin by investigating fusion for an isotopic chain of neutron-rich nuclei (interplay of nuclear structure and dynamics)
The Reaction and its Products

\[^{47}K + ^{28}Si \rightarrow ^{75}As^* \rightarrow ^{73}As + 2n \]
\[\rightarrow ^{73}Ge + p + n \]
\[\rightarrow ^{70}Ga + \alpha + n \]

- Excited compound nucleus decays by emitting protons, neutrons, and particles
- The resulting heavy nucleus is known as an evaporation residue
- Emission of these light particles impart transverse momentum on the residue, kicking them off zero degrees and allowing for direct measurement of the residues and light particles

\[E = \frac{1}{2}mv^2 \]
\[m \propto Et^2 \]
Low energy rare isotope beams at NSCL

- Primary beam accelerated by two coupled cyclotrons
- Rare isotope beam (RIB) produced via projectile fragmentation and separated by A1900 spectrometer
- Beam significantly slowed down in a linear gas stopper
- Beam ionized to high N+ charge state in charge breeder
- RIB is re-accelerated to desired energy and delivered to the experimental area
\[39,47^K + 28^Si \rightarrow 67,75^As^* \]

- \(E_{\text{lab}} = 2.3 - 3 \text{ MeV/A} \)
- Average intensity \(\sim 10^4 \text{ p/s} \)
- Reaction products distinguished by ETOF
- Energy measured in segmented annular silicon detectors (T1, T2) \(1^\circ \leq \theta_{\text{lab}} \leq 7.3^\circ \)
- Fusion product time-of-flight measured between target MCP and silicon detectors

- \(^{47}K^{17+} \) beam contaminated by \(^{36}Ar (~5\%) \)
- Particle identification performed using \(\Delta E\)-TOF
- \(\Delta E \) measured in RIPD
- TOF measured between two MCP detectors
Measuring evaporation residues

- Energy vs. time-of-flight linearized using the relation
 $$A \propto E t^2$$

- Mass resolution ~ 2.4 amu at $A = 47$

- Clear separation is observed between evaporation residues and scattered beam

- Evaporation residues from two reactions:
 - $K + O$
 - $K + Si$

- ERs from each reaction are better separated by their mass-energy correlation in 2D
Measuring evaporation residues

- Evaporation residues identified by mass are integrated (N_{ER}).
- The number of incident beam particles are counted with the two MCP timing detectors (N_{Beam}).
- Efficiency correction for detector geometric coverage (ϵ_{ER}) determined with statistical model (evapOR).
- Target thickness (t) determined using the $^{39}K + ^{16}O$ data and α source energy loss measurements (^{241}Am and ^{148}Gd).

\[
\sigma_{fusion} = \frac{N_{ER}}{N_{Beam} t \epsilon_{ER}}
\]
Fusion excitation function

- First measurements of $^{39,47}\text{K} + ^{28}\text{Si}$

- At all energies, the cross-section for ^{47}K is higher than that for ^{39}K

- A one-dimensional parabolic barrier penetration formula (Wong formula) is used to parameterize the cross-sections

$$\sigma_{\text{fusion}} = \frac{R_c^2}{2E_{cm}} \hbar \omega \left\{ 1 + \exp \left[\frac{2\pi}{\hbar \omega} (E_{cm} - V_c) \right] \right\}$$

- The relative cross-section can be used to facilitate better comparison between the two systems
As Ecm decreases and approaches the barrier, the cross-sections for 47K begin to drastically increase.
Fusion excitation function

• As Ec.m. decreases and approaches the barrier, the cross-sections for 47K begin to drastically increase

• Semi-empirical channel-coupling model code by Zagrebaev:
 • Initial statically deformed projectile and target
 • Allow projectile and target to deform on approach
 • Include the influence of neutron-transfer

• Observed enhancement can be described in the context of dynamic deformation of the projectile and target nuclei

http://nrv.jinr.ru/nrv/
Conclusions/Outlook

Summary

• The fusion cross-section for 39,47K + 28Si has been measured for the first time using the ReA3 facility at NSCL

• A significant enhancement of the cross-section (up to a factor of 6) is observed for 47K relative to 39K near the barrier

• This enhancement can be understood as dynamic deformation of the system as the projectile and target approach

In the future:

• Compare cross-sections with other models such as DC-TDHF and CCFULL

• 41,45K + 28Si and 36,44Ar + 28Si at NSCL ReA3 (E17002)

• 20,21O + 12C at GANIL (E739), possibly 22O (LOI)
Acknowledgements

• Indiana University:
 • Nuclear Chemistry group
 • IU Mechanical Instrument Services
 • IU Electronic Instrument Services
• GANIL:
 • Abdou Chbihi, Dieter Ackermann
• Western Michigan University:
 • Mike Famiano, Mike Bischak
• Michigan State University:
 • Kyle Brown, Clementine Santamaria
 • Technical staff at NSCL/ReA3
 • Antonio Villari, Sam Nash, Alain LaPierre
Additional Material
An X-ray superburst, which occurs in the outer crust of an accreting neutron star, releases more energy in a few hours than the sun does in a decade.

Fusion of light and mid-mass neutron-rich nuclei has been proposed as being responsible for triggering X-ray superbursts.

Measurement of an isotopic chain provides information on how structure and dynamics evolve with increasing neutron number.

$^{39,47}K + ^{28}Si$ allows for exploring the effect of a large span in neutron number on fusion.
Challenges experienced with ReA3

• Timing structure of the beam
 • Beam leaves the charge breeder in macrobursts every 500 ms (2 Hz)
 • The ions are bunched into the first ~100 ms of each macroburst
 • Instantaneous rate experienced by detectors: ~5x higher than the average rate

• Contamination in RIBs
 • Particle identification is required on an event-by-event basis
 • Need detector with good energy resolution and high rate capability
Rare Ion Purity Detector (RIPD)

- Axial field design with central anode minimizes charge collection time
- Aluminized windows serve as cathodes (0.5 µm)
- Utilize CF$_4$ as detector gas based upon its high electron drift velocity
- Integrated fast charge sensitive amplifier
- Energy resolution ~8% above 5 MeV
- Resolution ~10% at an instantaneous rate of 1×10^5 ions/s

J. Vadas, et al., NIMA 837 (2016) 28
$^{39,47}\text{K} + ^{28}\text{Si} \rightarrow ^{67,75}\text{As}^*$

- $^{39,47}\text{K} + ^{28}\text{Si} \rightarrow ^{67,75}\text{As}^*$

- E x B fields transport electrons from secondary emission foil to MCP
- E field produced by biasing array of ring plates
- B field produced by NdFeB permanent magnets
- Timing resolution \sim300 ps

- Annular single crystal Si(IP) detectors
- Segmented to provide angular information and reduce detector capacitance
- Timing resolution \sim450 ps
- Energy resolution $<1\%$

Bowman et al., Nucl. Inst. and Meth. 148, 503 (1978)
Steinbach et al., Nucl. Inst. and Meth. A 743, 5 (2014)

deSouza et al., Nucl. Instr. and Meth. A632, 133 (2011)
Determining the target thickness

\(^{28}\text{Si} \) enriched target provided by M. Loriggiola (Legnaro National Laboratory)

Estimating the amount of oxidation:
- Extracted \(\frac{\sigma_{\text{fusion}}}{t_{16O}} \) for \(^{39}\text{K} + ^{16}\text{O} \)
- Calculated \(\sigma_{\text{fusion}} \) from empirical channel coupling model
- Minimized \(\chi^2 \) in calculating \(t \) for \(^{16}\text{O} \)
- \(t_{16O} \to t_{\text{SiO}_2} \)
- \(t_{16O} = 97 \mu\text{g/cm}^2; t_{\text{SiO}_2} \approx 800 \text{ nm} \)

Determining the amount of \(^{28}\text{Si} \):
- Measured energy loss of \(\alpha \) particles from \(^{148}\text{Gd} \) and \(^{241}\text{Am} \) sources
- Using SRIM and known \(t_{\text{SiO}_2} \), determined \(t_{28\text{Si}_{\text{pure}}} \)
- Total thickness = 327 \(\mu\text{g/cm}^2 \) \(^{28}\text{Si} \)
Fusion excitation function

- Static deformation results in a too-shallow excitation function for both systems
- Dynamic deformation has the same shape as the data, but is systematically higher for all energies for both systems
- Inclusion of neutron-transfer channels only influences the cross-sections at below-barrier energies for 47K