

Steven D. Pain

Oak Ridge National Laboratory

• GODDESS

ATLAS User Meeting, May 2014

GODDESS installation

Flowerpot spun to match the BGO _____ profile

- Mount ORRUBA detectors inside Gammasphere
- Thin-walled chamber (minimize absorption/scattering of gammas)
- Minimize detector-preamplifier distance (<2 feet)
- Maintain possibility of coupling with the FMA
- Fit ~700 preamplifiers within space occupied by 17-deg ring of GS
- Maintain space for 0-degree detector (IC)

Preamps mounted in space between flowerpot and FMA quad

GODDESS – target effects

Gammasphere performance for light-ion transfer reactions

10 A MeV	¹³⁸ Xe(d,p)	¹³⁸ Xe(d,t)
Recoil direction	~0.5 deg (0.05 deg)	~ 1 deg (~0.1 deg)
Recoil energy (target thickness)	~3% (500 µg CD ₂)	~3% (500 µg CD ₂)
Recoil energy (reaction)	0.01%	0.01%
Intrinsic resolution of Ge detector	2 keV	2 keV
Measured angle of gamma ray	5.5 deg	5.5 deg

GODDESS capabilities

Search for singleparticle/hole states

Measurement of SF/tracking fragmentation of SP states (structure, DSD n-capture)

Surrogate for stat. n capture

Lifetime measurements (DSAM)

	52	¹³⁰ Te	¹³¹ Te	¹³² Te	¹³³ Te	¹³⁴ Te	¹³⁵ Te	¹³⁶ Te	¹³⁷ Te	¹³⁸ Te	¹³⁹ Te
	51	¹²⁹ Sb	¹³⁰ Sb	¹³¹ Sb	¹³² Sb	¹³³ Sb	¹³⁴ Sb	¹³⁵ Sb	¹³⁶ Sb	¹³⁷ Sb	¹³⁸ Sb
Z	50	¹²⁸ Sn	¹²⁹ Sn	¹³⁰ Sn	¹³¹ Sn	¹³² Sn	¹³³ Sn	¹³⁴ Sn	¹³⁵ Sn	¹³⁶ Sn	¹³⁷ Sn
	49	¹²⁷ In	¹²⁸ In	¹²⁹ In	¹³⁰ In	¹³¹ In	¹³² ln	¹³³ In	¹³⁴ In	¹³⁵ In	¹³⁶ In
	48	¹²⁶ Cd	¹²⁷ Cd	¹²⁸ Cd	¹²⁹ Cd	¹³⁰ Cd	¹³¹ Cd	¹³² Cd	¹³³ Cd	¹³⁴ Cd	¹³⁵ Cd
		78	79	80	81	82	83	84	85	86	87
						I	N				

Light ion transfer reactions (d,p) (d,t) (d,³He) (p,t) etc

Heavy-ion transfer reactions (⁹Be,⁸Be) (¹³C,¹²C) (⁷Li,⁶He) (¹⁹F,¹⁸O)

Inelastic scattering

Coulex

Experiments with GODDESS

²⁵²Cf fission fragment ATLAS beams & ORRUBA + Gammasphere

Example $(d,p\gamma)$ measurements with CARIBU beams

Example - track the fragmentation of SP energies along the Xe chain

Measurement of particle and hole states at same time

Factor of ~2 below GS in efficiency

Beam	E_{Beam}	I_{Beam}	Target	Days	Total protons	Total protons (SF=0.3)	Total <i>p</i> - γ (SF=0.3)
	(MeV)	(pps)	$(\mu { m g/cm^2})$		$(f_{7/2}, p_{3/2}, p_{1/2}, f_{5/2})$	$(f_{7/2}, p_{3/2}, p_{1/2}, f_{5/2})$	$(f_{7/2}, p_{3/2}, p_{1/2}, f_{5/2})$
¹³⁸ Xe	1380	1.5×10^4	400	10	5920, 4170, 1970, 5600	1973, 1390, 656, 1867	197, 139, 65, 186
¹⁴⁰ Xe	1400	$1.0 imes 10^4$	400	14	5530, 3906, 1834, 5222	1843, 1302, 611, 1740	184, 130, 61, 174
¹³⁴ Te	1340	$9.9 imes 10^3$	1000	7	6846, 4830, 2275, 6468	2282, 1610, 758, 2156	228, 161, 75, 215

GODDESS Experiments – neutron transfer

Tracking neutron single-particle and single-hole states

Fragmentation of spectroscopic strength

	52	¹³⁰ Te	¹³¹ Te	¹³² Te	¹³³ Te	¹³⁴ Te	¹³⁵ Te	¹³⁶ Te	¹³⁷ Te	¹³⁸ Te	¹³⁹ Te
	51	¹²⁹ Sb	¹³⁰ Sb	¹³¹ Sb	¹³² Sb	¹³³ Sb	¹³⁴ Sb	¹³⁵ Sb	¹³⁶ Sb	¹³⁷ Sb	¹³⁸ Sb
Z	50	¹²⁸ Sn	¹²⁹ Sn	¹³⁰ Sn	¹³¹ Sn	¹³² Sn	¹³³ Sn	¹³⁴ Sn	¹³⁵ Sn	¹³⁶ Sn	¹³⁷ Sn
	49	¹²⁷ In	¹²⁸ In	¹²⁹ In	¹³⁰ In	¹³¹ In	¹³² ln	¹³³ In	¹³⁴ In	¹³⁵ In	¹³⁶ In
	48	¹²⁶ Cd	¹²⁷ Cd	¹²⁸ Cd	¹²⁹ Cd	¹³⁰ Cd	¹³¹ Cd	¹³² Cd	¹³³ Cd	¹³⁴ Cd	¹³⁵ Cd
		78	79	80	81	82	83	84	85	86	87
	Ν										

Location of 1/2+ state in 133Sb 134Sb(d,t) 3e3 pps

SP spec factors in ¹³⁵Sb ¹³⁴Sb(d,p) 3e3 pps

Find negative parity single-particle states in ¹³⁷Te [¹³⁶Te(d,p) 4e3 pps]

Location of positive parity SP states in ¹³⁵Te [¹³⁶Te(d,t) SF of positive parity proton hole states in ¹³³Te [¹³⁴Te(d,t)

¹³²Sn(d,t)¹³¹Sn Riccardo Orlandi (JAEA, Tokai)

GODDESS Experiments – proton pickup

Tracking proton single-hole states

Fragmentation of spectroscopic strength

	52	¹³⁰ Te	¹³¹ Te	¹³² Te	¹³³ Te	¹³⁴ Te	¹³⁵ Te	¹³⁶ Te	¹³⁷ Te	¹³⁸ Te	¹³⁹ Te
	51	¹²⁹ Sb	¹³⁰ Sb	¹³¹ Sb	¹³² Sb	¹³³ Sb	¹³⁴ Sb	¹³⁵ Sb	¹³⁶ Sb	¹³⁷ Sb	¹³⁸ Sb
Z	50	¹²⁸ Sn	¹²⁹ Sn	¹³⁰ Sn	¹³¹ Sn	¹³² Sn	¹³³ Sn	¹³⁴ Sn	¹³⁵ Sn	¹³⁶ Sn	¹³⁷ Sn
	49	¹²⁷ In	¹²⁸ In	¹²⁹ In	¹³⁰ In	¹³¹ In	¹³² In	¹³³ In	¹³⁴ In	¹³⁵ In	¹³⁶ In
	48	¹²⁶ Cd	¹²⁷ Cd	¹²⁸ Cd	¹²⁹ Cd	¹³⁰ Cd	¹³¹ Cd	¹³² Cd	¹³³ Cd	¹³⁴ Cd	¹³⁵ Cd
		78	79	80	81	82	83	84	85	86	87
		Ν									

E.g. location of negative-parity proton hole states in: ¹³³Sb [¹³⁴Te(d,³

¹³³Sb [¹³⁴Te(d,³He) 1e4 pps]

¹³¹Sb [¹³²Te(d,³He) 3e3 pps]

¹³⁷I [¹³⁸Xe(d,³He) 1.5e4 pps]

¹³⁹I [¹⁴⁰Xe(d,³He) 1e4 pps]

GODDESS Experiments – proton stripping

Tracking proton single-hole states

SF

In addition, $(^{7}Li,t)$ $(^{7}Li,\alpha)$ etc

(7Li,6He) reaction for proton transfer

E.g. location of negative-parity proton hole states in: ¹³⁷I [¹³⁶Xe(⁷Li,⁶He) stable]

¹³⁹I [¹³⁸Xe(⁷Li,⁶He) 1.5e4 pps]

```
<sup>141</sup>I [<sup>140</sup>Xe(<sup>7</sup>Li,<sup>6</sup>He) 1e4 pps]
<sup>131</sup>Sb [<sup>130</sup>Sn(<sup>7</sup>Li,<sup>6</sup>He) 1.5e3 pps]
<sup>133</sup>Sb [<sup>132</sup>Sn(<sup>7</sup>Li,<sup>6</sup>He) ]
```


GODDESS

GODDESS Acknowledgements

Steven Hardy - cable crusher

Student Postdoc

Thanks also to the help from Argonne – Darek Seweryniak, Mike Carpenter, Shaofei Zhu and Kim Lister....

Andrew Ratkiewicz – not entirely convinced by the pineapple-eating dinosaurs at the creation museum

Callum Shand testing his test stand

Travis Baugher – Simulating GODDESS

Sean Burcher and Ian Marsh assembling GODDESS for the first time

GODDESS

Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies

GODDESS Performance with trapezoidal filters

Data taken with GRETINA-style digitizers

~1.2 mm resolution

GODDESS Ionization Chamber

- Re-entrant
- Tilted-grid wire electrodes
 [K.Y. Chae *et al.*, *NIM A* **715C**, 6 (2014)]
- >2 x 10⁵ pps rate (previous ORNL IC)
- Acceptance of 4.5 deg +

• 2-part design to enable assembly in place (FMA quad interference)

Beam time approved by the ATLAS PAC

Coupling the ORRUBA and Gammasphere arrays: a request for equipment development time (S.D. Pain *et al*)

Developing the $(d,p\gamma)$ reaction as a surrogate for (n,γ) in inverse kinematics: ⁹⁵Mo $(d,p\gamma)$ with Gammasphere (J.A. Cizewski *et al*)

Measurements of (d,pg) on neutron-rich Xe and Te with CARIBU beams (S.D. Pain *et al*)

Study of the Near-Threshold Levels in ¹⁹Ne and the ¹⁸F(p,α)¹⁵O Rate in Novae (D.W. Bardayan *et al*)

stable beam for equipment development

⁹⁵Mo beam for (d,pγ) surrogate development

¹³⁴Te CARIBU beam for (d,pγ) measurement

³He beam for ¹⁹F(³He,tγ)¹⁹Ne measurement

GODDESS status

- Powerful array for measuring multiple reactions (simultaneously!)
- Hardware constructed, vacuum tested and installed and operated with GS
- ~ 30 keV energy resolution (sX3) (>2 times better than standard ORRUBA!)
- Analog position resolution matched with trapezoidal filter (1.2 mm @ 5.8 MeV)
- Improvements to position extraction being investigated
- Endcap detectors designed and ordered
- IC under construction
- Preamp box modifications for cooling
- 4 slots of beam time approved

GODDESS Acknowledgements

Steven Hardy - cable crusher

Student Postdoc

Thanks also to the help from Argonne – Darek Seweryniak, Mike Carpenter, Shaofei Zhu and Kim Lister....

Andrew Ratkiewicz – not entirely convinced by the pineapple-eating dinosaurs at the creation museum

Callum Shand testing his test stand

Travis Baugher – Simulating GODDESS

Sean Burcher and Ian Marsh assembling GODDESS for the first time

Summary

- ²⁶AI highly studied astronomical signal
- Improved knowledge of destruction (hence production) rate for massive stars through (d,p) measurement
- GODDESS a powerful system for measuring multiple reactions (optimized for charged particles and gammas)
- Hardware constructed, vacuum tested and installed and operated with GS
- Digital instrumentation tests ~30 keV energy resolution (>2 times better than standard ORRUBA)
- Improvements to position extraction being investigated (Sarah Lonsdale)
- Endcap detectors designed and ordered
- IC under construction
- 4 slots of beam time approved

Keep on the physics...

Collaborators

D.W. Bardayan¹, **I. Marsh**, K.A. Chipps, M.S. Smith Oak Ridge National Laboratory [1] *currently Notre Dame*

T. Baugher, S. Burcher, J.A. Cizewski, S. Hardy, S.J. Lonsdale, A. Ratkiewicz, C. Shand Rutgers University

K.L. Jones, W.A. Peters University of Tennessee

R.L. Kozub Tennessee Tech. University

J.C. Blackmon, L. Afanasieva Louisiana State University

M. Carpenter, D. Seweryniak, S. Zhu Argonne National University

CENTER OF EXCELLENCE FOR RADIOACTIVE ION BEAM STUDIES FOR STEWARDSHIP SCIENCE

