From whence did ATLAS arise?

(*the quarter century: ~1960-85*)
Once upon a time, there was an Argonne tandem (started ~1960)

Here is a typical schedule from the 60-s.

<table>
<thead>
<tr>
<th>Group</th>
<th>Participants</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Meyer, Segel, Lee, Haana, Weinman</td>
<td>gamma rays</td>
</tr>
<tr>
<td>II</td>
<td>Muizenga, et al.</td>
<td>fission</td>
</tr>
<tr>
<td>III</td>
<td>Lee, Schiffer, Braid, Zeldman</td>
<td>(d, particle)</td>
</tr>
<tr>
<td>IV</td>
<td>Schiffer, Lee, Meyer, Atlas, Weinman, Moore</td>
<td>(p, particle)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Group</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 15 - May 18</td>
<td>I</td>
<td>East</td>
</tr>
<tr>
<td>May 25 - May 29</td>
<td>III</td>
<td>West</td>
</tr>
<tr>
<td>May 31 - June 5</td>
<td>IV</td>
<td>West</td>
</tr>
<tr>
<td>June 6 - June 7</td>
<td>I</td>
<td>East</td>
</tr>
<tr>
<td>June 8 - June 11</td>
<td>II</td>
<td>East</td>
</tr>
<tr>
<td>June 12 - June 13</td>
<td>III</td>
<td>West</td>
</tr>
<tr>
<td>June 14 - June 15</td>
<td>I</td>
<td>East</td>
</tr>
<tr>
<td>June 16 - June 18</td>
<td>III</td>
<td>West</td>
</tr>
<tr>
<td>June 19 - June 21</td>
<td>I</td>
<td>East</td>
</tr>
</tbody>
</table>
We even had an outside user program:

9. UNIVERSITY USE OF THE 12-MEV ARGONNE TANDEM VAN DE GRAAFF

J. P. Schiffer and L. L. Lee, Jr.

Since the fall of 1963, qualified university scientists have been invited to come to the Argonne National Laboratory to use the 12-MeV tandem accelerator and the associated experimental facilities. Ten experiments, accepted by a committee representing the universities and Argonne, have been completed or are currently in progress. These, with their starting dates, are:

1. **Multiple Coulomb Excitation and the Reorientation Effect**
 R. P. Scharenberg (Case Institute of Technology), December 1963.

2. **Studies of Energy Levels in Light Nuclei with the Magnetic Spectrograph**
 C. P. Browne (Notre Dame University), September 1963.

3. **Alpha-Gamma Correlation Studies of the Reaction C\(^{12} \) (O\(^{16} \), a)Mg\(^{24a} \)**

4. **Magnetic Spectrograph Studies of the Reactions (He\(^3 \), a) and (He\(^3 \), d)**
 W. P. Alford, L. M. Bluu, D. Cline, and J. J. Schwartz
 (University of Rochester), May 1964.

5. **Study of Reaction Cross Sections with Alpha Particles**
 L. Haskin (University of Wisconsin), December 1964.

6. **Short Nuclear Lifetimes by Doppler-Shift Techniques**
 R. D. Bent and P. P. Singh (Indiana University), November 1964.

7. **Investigation of Ca\(^{49} \) Isobaric-Analog States in Sc\(^{49} \)**
 K. W. Jones (Brookhaven National Laboratory), September 1964.

8. **(d,p) Reactions on Au and Cd**
 C. K. Bockelman, P. D. Barnes, and K. J. Wetzel (Yale University), July 1964.
We had one of the first computer-based (ASI 2100) data acquisition systems (8192 words of memory, 4096 for a data array, 3111 for the program):
The research program was very productive for about a decade, focusing on the systematic exploration of nuclear structure and reactions with light ions:

- Dipole giant resonance studies, its dissolution into “intermediate structure” and quadrupole admixtures.
- Beginnings of gamma spectroscopy and lifetime measurements.
- Proton strength functions.
- Systematic exploration of direct reactions and optical models - collaboration with the Oak Ridge group (Satchler et al) to establish reliability of DWBA.
- Studies of single-particle states.
- Residual NN interaction, from transfer data near doubly magic nuclei.
- J-dependence in direct reactions
- Studies of fission systematics
- Single-particle and pairing excitations in actinides
Meanwhile various upgrades were going on:

The tandem was exchanged for a larger (FN) model and converted to SF_6 gas system.

Ray Herb started his company (NEC); we converted to his technology (oil-free vacuum system, charging chains, etc.)

But we also tried to get funding for a higher-energy tandem and with a post-accelerator for heavy-ions, the latter driven partly by the interest in the Chemistry Division in heavy element research. There were several versions of proposals in the later 1960s.
We wanted higher energies, and a large TU tandem looked very promising.

A recent memo from Lowell Bollinger has asked for your help in preparing the scientific justification for the proposed TU-injected cyclotron. Enclosed is a list of topics that have been accumulated together with names of staff members who (mostly) have agreed to work on these topics. AUA Universities which may be called on for assistance are also given. Each section might start with a statement of present accomplishments, emphasizing AUA and ANL accomplishments where appropriate. Figures and tables should be used if they seem called for. This would then be followed by discussion of what type of research one would do with the proposed facility, the TU tandem by itself as well as the cyclotron. Emphasis should be put on categories for which this facility would be unique. Whereas we are not proposing to incorporate some major experimental items such as a magnetic spectrograph, an on-line computer, a polarized source or a time-of-flight system in the initial proposal, experiments requiring such facilities should not be excluded. Generally, proposed experiments should be put into theoretical perspective, pointing out how the experiments would contribute to our understanding.
We persuaded Ray Herb to bid on a large tandem (equivalent to TU, but vertical) and negotiated for a while.

National Electrostatics Corp., Graber Road, Box 117
Middleton, Wisconsin 53562, Telephone 608/836-6091, Cable: NATELCO

March 18, 1971

Dr. Paul Mooring
Argonne National Laboratory
9700 Cass Avenue
Argonne, Illinois 60439

Dear Dr. Mooring:

We have carefully reviewed our proposal of September 16, 1970 for a Pelletron Model 20UD Column and we find that the prices quoted can remain unchanged. If inflationary trends continue a compensating price rise may be necessary within about six months.
Rolf Siemssen, then a staff member in the Physics Division, had come back from a trip to Germany in 1969 with news about a new type of linac based on a helical resonator (Klein at Frankfurt) that seemed ideal for heavy-ion acceleration.

Warren Ramler was the engineer in charge of the cyclotron in the Chemistry Division, and decided to pursue it as a superconducting structure.

A test cavity was designed and built by Ralph Benaroya and tested in 1971, and its performance was surprisingly good.

Lowell Bollinger stepped down as Division Director in 1972 to systematically address the task of developing the technology into a viable accelerator.
Some people were apprehensive about too much emphasis on heavy ions:

May 9, 1972
TO: L. M. Bollinger
FROM: J. P. Schiffer

I would like to make two points to you in writing regarding the accelerator proposal. Both of them express my latent fears about pressing the LINAC concept too hard.

A. Our principal scientific interest in Physics is in the tandem. We have not done an adequate job on any of the administration, Duffield and Nevitt as well as McDaniell and Kolstadt, in persuading them that this is the most important part of the research. To my mind this is a bad mistake, because inevitably we get the reaction that we should wait and see what comes out of the Berkeley SUPERHILAC. I would guess that this will be two or three years, and if there are no indications for superheavies there will be no money for a new machine. If there are some tentative, inconclusive indications the AEC will want to wait and see. It seems to me that we are in a very vulnerable position by having it fixed in the minds of all the decision-makers that our principal aim is an accelerator which can get superheavies, a “me too” justification which is very easily punctured administratively as well as scientifically.

B. If we be successful in demonstrating that the superconducting LINAC can be built (as we probably will be) and funding becomes probable, there is an excellent chance, to my mind, that we would be forced into building an all LINAC machine. This would make more sense because

Our field is not immune to fashions, just as other human activities,
Heavy ions were in --- light-ion physics was considered passé.
April 10, 1972

NEWSLETTER
ON THE ARGONNE PROPOSAL FOR A HEAVY-ION ACCELERATOR

In 1969 Argonne National Laboratory proposed the construction of a major user-controlled accelerator facility for use in both heavy-ion research and intermediate-energy physics. Since then there have been a series of developments that have changed both the scientific and technological perspectives. The purpose of this note is to acquaint the community of interested nuclear physicists and chemists with the current thinking at Argonne on this subject.

There is a widespread and growing conviction that heavy-ion projectiles have great potential for investigations in several fields. The experimental evidence that qualitatively new features of nuclear structure are likely to emerge from such studies has been steadily accumulating. The impact on fields such as atomic and solid-state physics is also likely to be substantial.

In the meantime a small group at Argonne was studying the possibility of using a superconducting linac instead of a cyclotron. A helical cavity seemed attractive for heavy ions, especially in the superconducting mode. However, the prospects for a successful superconducting linac seemed quite bleak until late 1971, when a way was found to stabilize the surfaces of superconducting cavities.

This development (described below) leads us now to propose that the next large heavy-ion facility should consist of a 20-MV Pelletron tandem coupled to a superconducting helical linac.
We came up with a very attractive tandem-linac proposal.
In these pre-NSAC days, a committee was appointed through the NRC (Bromley was in charge) and Feshbach was the chair.

Feshbach’s committee was very skeptical about a superconducting linac (partly because of the experience at Stanford and ‘experts’ who were negative) and Argonne lost out.

Lowell Bollinger wrote me about the aftermath.

ARGONNE NATIONAL LABORATORY

Dr. J. P. Schiffer
Physik Department E12
Technische Universität München
8046 Garching
W. Germany

Dear John:

You asked for reports about anything that I might learn about the deliberations of the Panel. When I returned home Tuesday night, I became increasingly disturbed about the possible influence of Tombrello's statement about the new spiral accelerating structure. As a result, we have made some inquiries, calculations, and model tests. It turns out that Tombrello's statement was very misleading, as might have been expected. The work at Cal Tech is being carried out by Shephard and Dick (the same two men who first demonstrated the usefulness of the variable reactance for vibration control), and Tombrello apparently is not involved in the work at all. Indeed, this is the work that he was condemning so vigorously some 18 months ago.
DOE did agree to continue technical developments and we did manage to get some money to develop the sc linac technology. Lowell decided that the split ring at Caltech (Shepard et al.) looked more promising, Shepard came to Argonne and we switched to resonators of his design.

Bit by bit we received additional moneys in small installments (not a ‘project’. We built more and more resonators and cryostats - this became the booster.

By ~1980 we had considerable success, and proposed ATLAS. With the help of Florida State (Congressman Fuqua) we also acquired more political clout and our proposal went through NSAC successfully.
The scientific plan for ATLAS was described in response to some (sympathetic) Congressional questions.
And equipment was built to make use of the new capabilities.