

Light fusion-evaporation reactions with Gretina + FMA

Calem R. Hoffman Argonne National Laboratory

Physics motivation

- Understand correlations driving intruder configurations around N ~ 20
 - ³⁰Mg: A. N. Deacon *et al.*, PRC **82**, 034305 (2010)
 - ³⁴Si: S. Paschalis *et al.*, J. Phys. Conf Ser. **312**, 092050 (2011)
- Exotic excitation modes in neutron-rich nuclei
 - ¹⁶C: M. Wiedeking *et al.*, PRL **100**, 152501 (2008)
- Detailed tests of the p-sd shell model interactions and competition between pairing and quadrupole strengths
 - ¹⁸N: M. Wiedeking *et al.*, PRC **77**, 054305 (2008)
- Onset of deformation in neutron-rich fp-shell nuclei and stringent tests of fp-g shell model interactions
 - ⁵⁹Cr: S. J. Freeman *et al.*, PRC **69**, 064301 (2004)
 - ⁶⁰Cr: S. Zhu et al., PRC **74**, 064315 (2006)

Physics motivation

- Successful in surrounding nuclei through recoil- or particle- γ fusion evaporation measurements
 - 2p: ³⁰Mg, ¹⁶C, ³⁴Si, ¹⁸N, ^{59,60}Cr, etc...

Gretina Workshop 2013

Characteristics Fusion evaporation reactions in light nuclei

- Exotic nuclei reside in weak channels
 - 1p, 2p, 2p2n, etc...
 - ~100 ub out of ~1 b
 - Tag particles (microball, Si detector) or recoils (FMA)
- Low multiplicity events
 - Sn or Sp nearby
- High energy gamma-rays
 - First excited states in even-even nuclei typically ~1.5 2 MeV
 - Gamma rays with > 3 4 MeV
- Low beam energies (< 10 MeV/u)</p>
 - Doppler correction can become important for high energy peaks
 - Also help in overall sensitivity

03/01/13

Advantages of Gretina + FMA for fusion evaporation reaction with light nuclei

Advantages of Gretina + FMA for fusion evaporation reaction with light nuclei

- Efficiency for high energy γ -rays through tracking
 - With tracking implimented high energy efficiency of Gretina equals Gammasphere @ ~3 MeV
 - Small reduction in absolute efficiency at 1.3 MeV (~7% to ~9%) is compensated for by FMA recoil acceptance gain
 - Still hurt by lower γ - γ efficiency relative to (digital) gammasphere, but not as drastic for high energy γ rays.
- Doppler reconstruction
 - Gain in sensitivity, especially for high-energy γ -rays (~few keV)
 - Know recoil angle from FMA combined with gamma-ray position
 - Important particularly for light nuclei
- Lifetime measurements possible
- Polarization

03/01/13

Thank You

Cons / Break-evens of Gretina + FMA vs. DGS + FMA

- Angular correlations
 - No need for continuous angle determination in angular correlations
- Multiplicity
 - Detection of high-fold events, if present, may be hindered
- Throughput
 - If beam current is NOT limited by FMA focal plane, DGS can handle larger throughput, hence, possibly a lower trigger multiplicity

03/01/13

8

New physics

- New targets, new opportunities
 - States in 26 Ne via -2p from 14 C + 14 C, or 18 O + 10 Be

A. Lepailleur et al., PRL 110, 082502 (2013)