Discrete gamma-ray spectroscopy of neutron-rich nuclei with „incomplete fusion” reactions induced by radioactive beams on a 7Li target

Bogdan Fornal

Institute of Nuclear Physics, Polish Academy of Sciences
Krakow, Poland

GRETINA Workshop
1 - 2 March 2013, Argonne National Lab., USA
In the collaboration

IFJ PAN Krakow – Argonne -

Purdue University
University of Maryland
INFN Laboratori Nazionali di Legnaro
University of Padova
ANU Canberra
Univ. of Surrey
NSCL MSU

we have carried out (for more than 20 years)
the experimental program
aimed at discrete gamma-ray spectroscopy of **YRAST** structures
in neutron-rich nuclei

by using γ–coincidence technique with deep-inelastic heavy-ion reactions
Anticipated problems in deep-inelastic reaction product studies with low-intensity radioactive beams

- **low cross-section for population of individual products** – of the order of a few mb
- **accumulation of radioactivity** in case of thick-target measurements
- **low efficiency of the magnetic spectrometers**, for thin-target experiments which require product identification
We have proposed another method for gamma-ray spectroscopic studies of low-lying structures in nuclei lying close to the projectile nucleus.

The method relies on the **triton transfer process** induced by radioactive beams on a 7Li target.

$$\frac{AX}{Z} + ^7\text{Li} \rightarrow \frac{A+3-x}{Z+1}Y + \alpha + xn$$

for example:

$$^{133}\text{Sn} + ^7\text{Li} \rightarrow ^{134}\text{Sb} + \alpha + 2n$$
Advantages of the proposed method:

The very inverse kinematics guarantees that the product nuclei travel downstream in a very small recoil cone, thus Doppler correction does not require recoil detection.

Reaction channel of interest will be uniquely associated with the emission of an α particle. The emitted alpha particles may be used as event tags.
Our REX-ISOLDE experiment
(November 2012)

Spectroscopy of n-rich \(^{98-100}\text{Sr}\) nuclei with \(^7\text{Li}(^{98}\text{Rb},\alpha+xn)\) reaction at ~3MeV/u

Collaboration: IFJ PAN Kraków, Univ. of Milan, SLCJ Warsaw, GANIL, LNL Legnaro, Univ. of Padova, K.U.Leuven, Université Libre de Bruxelles, CSNSM Orsay, Univ. of Köln, TU Darmstadt, TU Munchen, LPSC Grenoble, Argonne Nat. Lab., IFIN-HH Bucharest, IRNE-BAS Sofia, ISOLDE CERN.

\[^{98}\text{Rb} + ^7\text{Li} \rightarrow ^{101-x}\text{Sr}+\alpha+xn \]
DWBA calculations for transfer processes in the $^{98}\text{Rb} + ^{7}\text{Li}$ reaction

<table>
<thead>
<tr>
<th>Process</th>
<th>Cross section [mb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>triton transfer</td>
<td>~ 50</td>
</tr>
<tr>
<td>α transfer</td>
<td><1</td>
</tr>
<tr>
<td>breakup</td>
<td>~ 30</td>
</tr>
<tr>
<td>fusion</td>
<td>~ 300</td>
</tr>
</tbody>
</table>
Experiment @ISOLDE: MINIBALL + T-REX

$^{98}\text{Sr} \ (2.84 \text{ MeV/u}) + ^7\text{LiF} \ (1.5 \text{ mg/cm}^2)$

MINIBALL specifications:
- Granularity: $8 \times 3 \times 6 = 144$ segments
- Efficiency: $\varepsilon_{ph} \sim 7\%$ at $E_\gamma = 1.3 \text{ MeV}$
- Localization of 1.3 MeV γ-ray: 1 cm

T-REX specifications:
- CD: DE-E : $35 + 1000 \mu\text{m}$
- Barrel: DE-E $140 + 1000 \mu\text{m}$
$I_{\text{BEAM}} (^{98}\text{Ru}) \approx 10^5 \text{ pps}$

Counting rate:

$\sim 0.03 \text{ ev/s for } \alpha-\gamma$

(10 k in 4 days)
charged particle array, e.g. ORRUBA, Phoswich Wall

\[A \times Z \rightarrow \text{charged particle array}, \text{e.g. ORRUBA, Phoswich Wall} \]
THE NEW COLLABORATION

B. Fornal, B. Szpak, P. Bednarczyk, N. Cieplicka, W. Królas, A. Maj
Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

S. Leoni, G. Benzoni, N. Blasi, S. Bottoni, A. Bracco, F. Camera, F. Crespi, B. Million, A. Morales, O. Wieland
Department of Physics, University of Milan and INFN, Milan, Italy

R. Janssens, M. Carpenter, S. Zhu et al.,
Argonne National Laboratory, USA

K. Rusek
Heavy Ion Laboratory, University of Warsaw, Poland

.................................