

Gretina Workshop Argonne National Laboratory, March 1st -2nd

Shape dynamics in the A=100 mass region: Collectivity at neutron number N=54

Michael Albers

Argonne National Laboratory, Argonne, USA

Enhanced octupole collectivity in Zr isotopes

 $^{94}_{40}$ Zr⁵⁴, $^{96}_{40}$ Zr⁵⁶ exhibit enhanced B(E3) values [^{1,2}] compared to $^{92}_{40}$ Zr⁵² [³] which is inconsistent with simple harmonic vibrations[⁴]

$$B(E3)_{HM} = C \cdot Z^2 \cdot E^{\vee} A^{1/3} \quad \begin{array}{c} C = 3.2(5) \\ V = -0.68(14) \end{array}$$

This phenomenon was discussed as coherent superposition of proton ($p_{3/2} \rightarrow g_{9/2}$) and neutron ($d_{5/2} \rightarrow h_{11/2}$) particle-hole exc.

Low excitation energy of the 3_{1}^{-} state in $\frac{90}{36}$ Kr⁵⁴ [⁵] (in fact the lowest-lying 3⁻ state in this mass region) indicating enhanced octupole collectivity in this nucleus

Experiment GS1462 (P2) at ATLAS was approved to measure B(E3) transition strengths in ⁹⁰Kr using

- Gammasphere
- CHICO2 (forward shell)
- ⁹⁰Kr beam provided by the new CARIBU source
- ¹⁹⁶Pt target (2mg/cm²)
- Extraction of matrix elements using GOSIA(2)[6]

```
[1]: Y. Toh et al., AIP Conf. Proc. 1090, 189 (2009)a.r.t.
```

[2]: H. Mach et al., Phys. Rev. C 42, 811(R) (1990)

- [3]: A.S. Obeid et al., J. Phys. Conf. Series 205, 012040 (2010)
- [4]: D.J. Horen et al., Phys. Rev. C 48, 2131(R) (1993) a.r.t.
- [5]: T. Rzaca-Urban et al., Eur. Phy. J A9, 165 (2000)
- [6]: T. Czosnyka, D. Cline, and C.Y. Wu. Bull. Am. Phys. Soc., 28:745, 1983.
 - A. Winther and J. de Boer, Coulomb Excitation, (Academic, New York, 1965)

Enhanced octupole collectivity in ⁹⁰Kr Experiment GS1462

- Gammasphere for γ-ray detection
- CHICO2 (only forward shell)
- 1400 pps ⁹⁰Kr beam @ 405 MeV (~88% of Coulomb barrier)
- CARIBU: 340 mCi
- ¹⁹⁶Pt target (2mg/cm²)
- matrix elements calculated using Rachel and Gosia

Transition	E_{γ}	Estimated B(EL)		Estimated
in ⁹⁰ Kr	[keV]	[W.u.]		count rate
$2^{+}_{1} \rightarrow 0^{+}_{1}$	707	E2	(10)	244
$2^+_2 \rightarrow 2^+_1$	655	E2	(15)	6.7
$4^{+}_{1} \rightarrow 2^{+}_{1}$	1057	E2	(15)	6.6
$3^{-}_{1} \rightarrow 0^{+}_{1}$	1508	E3	(60)	
$3^{-}_{1} \rightarrow 2^{+}_{1}$	801	E1	(0.00123)	14.6
Transition	E_{γ}	Known B(EL)		Estimated
in ¹⁹⁶ Pt	[keV]	[W.u.]		count rate
$2^{+}_{1} \rightarrow 0^{+}_{1}$	356	E2	40.6(2)	740
$2^+_2 \rightarrow 2^+_1$	333	E2	57.7(8.8)	62
$4^+_1 \rightarrow 2^+_1$	521	E2	60.0(9)	82

Enhanced octupole collectivity in ⁹⁰Kr Experiment GS1462

 GRETINA → similar γ-ray detection efficiency improved peak-to-total ratio improved Doppler correction

• CARIBU: 340 mCi → stronger source will (hopefully) arrive in September 2013

 \rightarrow increase of the beam intensity (x1-3)

Transition	E_{γ}	Estimated B(EL)		Estimated
in ⁹⁰ Kr	[keV]	[W.u.]		count rate
2 ⁺ ₁ →0 ⁺ ₁	707	E2	(10)	244
$2^{+}_{2} \rightarrow 2^{+}_{1}$	655	E2	(15)	6.7
$4^{+}_{1} \rightarrow 2^{+}_{1}$	1057	E2	(15)	6.6
3 ⁻ ₁ →0 ⁺ ₁	1508	E3	(60)	
$3^{-}_{1} \rightarrow 2^{+}_{1}$	801	E1	(0.00123)	14.6
Transition	E_{γ}	Known B(EL)		Estimated
in ¹⁹⁶ Pt	[keV]	[W.u.]		count rate
2 ⁺ ₁ →0 ⁺ ₁	356	E2	40.6(2)	740
$2^{+}_{2} \rightarrow 2^{+}_{1}$	333	E2	57.7(8.8)	62
$4^{+}_{1} \rightarrow 2^{+}_{1}$	521	E2	60.0(9)	82

High-lying 2⁺₁ state in ⁸⁸Se?

- [¹]: Spontaneous fission of ²⁵²Cf
- γ rays detected with Gammasphere
- Assignment of γ transitions by gating on transitions in the respective partner nuclei
- 886 keV γ ray was assigned to the $2^+_1 \rightarrow 0^+_1$ transition in ⁸⁸Se
- Explanation: 0⁺ mixing of a spherical ground state and deformed 0⁺₂ state leading to a repulsion between both states [¹]

- But: spherical gs in ⁸⁸Se would imply a strong subshell closure in ⁹⁰Se (N=56), which is incompatible with QRPA calculations and recent results on β decay half lifes [²⁻⁵]
 - [1]: E.F. Jones et al., Phys. Rev. C73, 017301 (2006)
 [2]: M. Quinn et al., Phys. Rev. C85, 035807 (2012)
 [3]: P. Moeller et al., At. Data Nucl. Data Tables 59, 185 (1995)
 [4]: P. Moeller et al., At. Data Nucl. Data Tables 66, 131 (1997)
 [5]: P. Moeller et al., Phys. Rev. C67, 0558-2 (2003)
 [6] S. Hilaire and M. Girod. Eur. Phys. J. A, 33:237, 2007

High-lying 2⁺₁ state in ⁸⁸Se?

Possible experiment:

• ⁸⁸Se beam provided by CARIBU (340mCi)

- E=384 MeV
- I=130 pps
- ¹⁹⁶Pt target (2mg/cm²)

• matrix elements calculated using Rachel and Gosia

Transition	Ε _γ	Estimated B(EL)		Estimated Count rate
in ⁸⁸ Se	[keV]	[W.u.]		per day
2 ⁺ ₁ →0 ⁺ ₁	886	E2	(10)	27
Transition	Ε _γ	Known B(EL)		Estimated
in ¹⁹⁶ Pt	[keV]	[W.u.]		count rate
$2^{+}_{1} \rightarrow 0^{+}_{1}$	356	E2	40.6(2)	96
$2^{+}_{2} \rightarrow 2^{+}_{1}$	333	E2	57.7(8.8)	8
$4^{+}_{1} \rightarrow 2^{+}_{1}$	521	E2	60.0(9)	11

High-lying 2⁺₁ state in ⁸⁸Se?

Possible experiment:

• ⁸⁸Se beam provided by CARIBU (340mCi)

- E=384 MeV
- I=130 pps
- ¹⁹⁶Pt target (2mg/cm²)

• matrix elements calculated using Rachel and Gosia

Transition	Ε _γ	Estimated B(EL)		Estimated Count rate
in ⁸⁸ Se	[keV]	[W.u.]		per day
2 ⁺ ₁ →0 ⁺ ₁	886	E2	(10)	27
2 ⁺ ₁ →0 ⁺ ₁	~700	E2	(20)	50
$4^+_1 \rightarrow 2^+_1$	~750	E2	(40)	5
$3^{-}_{1} \rightarrow 0^{+}_{1}$	~1500	E3	(60)	
$3^{-}_{1} \rightarrow 2^{+}_{1}$	~800	E1	(0.001)	1.5
Transition	E_{γ}	Known B(EL)		Estimated
in ¹⁹⁶ Pt	[keV]	[W.u.]		count rate
2 ⁺ ₁ →0 ⁺ ₁	356	E2	40.6(2)	96
$2^{+}_{2} \rightarrow 2^{+}_{1}$	333	E2	57.7(8.8)	8
$4^{+}_{1} \rightarrow 2^{+}_{1}$	521	E2	60.0(9)	11

Summary

- Coulomb excitation is a powerful tool for studying low-energy nuclear structure in exotic radioactive nuclei using CARIBU beams
- The high efficiency and high peak-to-total ratio of GRETINA will allow a high precision measurement of deexciting γ rays
- CHICO2 is suitable for a high-resolution measurement of scattered beam-like and target-like particles
- Employing the coupled-channels Coulomb excitation computer code GOSIA will allow the model-independent extraction of transitional and diagonal matrix elements from the experimental data
- The combination of the new experimental setup at ATLAS with powerful analysis tools will allow the study of collectivity in exotic nuclei, in particular octupole collectivity in ⁹⁰Kr and quadrupole collectivity in ⁸⁸Se.

Acknowledgements

Collaborators:

R.V.F. Janssens, M. Alcorta, S.J. Almaraz-Calderon, M.P. Carpenter,C.J. Chiara, C.R. Hoffman, F.G. Kondev, T. Lauritsen, O. Nusair,G. Savard, D. Seweryniak, S. Zhu

D. Cline, A. Hayes

A. Chyzh, E. Kwan, C.Y. Wu

THOULEAR STRUCTURE LABORATO

V. Werner, C. Bernards, F. Naqvi

Thank you for your attention!

Determination of matrix elements: GOSIA(2)

GOSIA*:

Varying the projectile matrix elements; based on those matrix elements theoretical γ-ray yields are calculated and compared to the experimental ones.

 χ^2 test qualifies the calculations

Lowest χ^2 yields the matrix elements

GOSIA1: Normalization on known matrix element (i.e., $B(E2;2_1^+ \rightarrow 0_1^+)$ is known)

GOSIA2: Normalization on target transition

Rachel: Graphical User Interface (A. Hayes et al.)

[*]: T. Czosnyka, D. Cline, and C.Y. Wu. Bull. Am. Phys. Soc., 28:745, 1983. A. Winther and J. de Boer, Coulomb Excitation, (Academic, New York, 1965)

Quadrupole collectivity in neutron-rich Kr isotopes

