Nuclear Structure Experiment: Lifetimes, g Factors and Cross-Sections

Overview Lecture 1:

- Short Intro Structural Evolution and the Role of Lifetimes
- The nano-second regime Fast Electronics Scintillation Timing
 - Basic Principle; Examples from recent experiments
 - Future Applications
- The pico-second regime Recoil Distance Doppler Shift Method
 - Plunger Device
 - Coincidence Analysis Technique
 - Example Application: Centrifugal Stretching

Yale University, WNSL

"Köln West"

"Yale East"

Some Questions in Nuclear Structure Physics

(non-complete!)

Understanding multi-nucleon interactions!

- Proton-Neutron interaction responsible for shifts of single-particle energies
- Disappearance and Appearance of shell closures
- Limits or nuclear existence
- Emergence and evolution of collectivity: mixing of many single-particle wave functions
- Phase transitions (of deformation)
- Generation of Elements (-> Nucl. Astro.)

Classic Example: Shell Changes

T. Otsuka, D. Abe / Progress in Particle and Nuclear Physics 59 (2007) 425-431

(Collective) Nuclear Phases

F. Iachello, Phys. Rev. Lett. 85, 3580 (2000); 87, 052502

Shape Invariants

$$\mathbf{q_2} = \quad \quad \langle \mathbf{0_1^+} | (\mathbf{Q} \cdot \mathbf{Q}) | \mathbf{0_1^+} \rangle \quad = \quad \mathop{\scriptscriptstyle \sum}_{j} \mathbf{B}(\mathbf{E2}; \mathbf{0_1^+} \to \mathbf{2_j^+})$$

$$\mathbf{q_3} = \sqrt{\frac{35}{2}} \hspace{0.1in} |\langle \mathbf{0_1^+}|[\mathbf{QQQ}]^{(0)}|\mathbf{0_1^+}\rangle|$$

$$\mathbf{q_4} = \qquad \langle \mathbf{0_1^+} | (\mathbf{Q} \cdot \mathbf{Q}) \ (\mathbf{Q} \cdot \mathbf{Q}) | \mathbf{0_1^+} \rangle$$

$$\mathbf{q_5} = \sqrt{\frac{35}{2}} \ |\langle \mathbf{0_1^+}| (\mathbf{Q} \cdot \mathbf{Q}) \ [\mathbf{QQQ}]^{(0)} | \mathbf{0_1^+} \rangle|$$

$${f q}_6 = ~ {35 \over 2} ~ \langle {f 0}_1^+ | [{f Q} {f Q} {f Q}]^{(0)} ~ [{f Q} {f Q} {f Q}]^{(0)} | {f 0}_1^+
angle$$

$$\mathbf{K_n} = \frac{\mathbf{q_n}}{\mathbf{q_2^{n/2}}}$$
 for $n \in \{3, 4, 5, 6\}$

for
$$n \in \{3, 4, 5, 6\}$$

Dimensionless

Invariant = invariant under symm. Trafos (e.g. rotation)

q₂ gives Quadrupole Deformation

$$\mathbf{q_2} = \left(\frac{3\mathbf{Z} \cdot \mathbf{R}^2}{4\pi}\right)^2 \langle \beta^2 \rangle \equiv \left(\frac{3\mathbf{Z} \cdot \mathbf{R}^2}{4\pi}\right)^2 \beta_{\text{eff}}^2$$

$$\mathbf{K_3} = \frac{\langle \beta^3 \cos 3\gamma \rangle}{\langle \beta^2 \rangle^{3/2}} \equiv \cos 3\gamma_{\text{eff}}$$

$$\mathbf{K_4} = \frac{\langle \beta^4 \rangle}{\langle \beta^2 \rangle^2}$$

$$\mathbf{K_5} = \frac{\langle \beta^5 \cos 3\gamma \rangle}{\langle \beta^2 \rangle^{5/2}}$$

$$\mathbf{K_6} = \frac{\langle \beta^6 \cos^2 3\gamma \rangle}{\langle \beta^2 \rangle^3}$$

$$\sigma_{\beta} = \frac{\langle \beta^6 \cos^2 3\gamma \rangle}{\langle \beta^2 \rangle^2}$$

$$\sigma_{\gamma} = \frac{\langle \beta^6 \cos^2 3\gamma \rangle}{\langle \beta^2 \rangle^2}$$

Fluctuations:

$$\sigma_{\beta} = \frac{\langle \beta^{4} \rangle - \langle \beta^{2} \rangle^{2}}{\langle \beta^{2} \rangle^{2}} = \mathbf{K_{4}} - \mathbf{1}$$

$$\sigma_{\gamma} = \frac{\langle \beta^{6} \cos^{2} 3\gamma \rangle - \langle \beta^{3} \cos 3\gamma \rangle^{2}}{\langle \beta^{2} \rangle^{3}} = \mathbf{K_{6}} - \mathbf{K_{3}}^{2}$$

$$\mathbf{q_2}(\mathbf{0_2^+}) - \mathbf{q_2}(\mathbf{0_1^+}) \ , \ \mathbf{N} = \mathbf{30}$$

$$\mathbf{q_2}(\mathbf{0_2^+}) - \mathbf{q_2}(\mathbf{0_1^+}) \ , \ \mathbf{N} = \mathbf{30}$$

$$\mathbf{q_2(0_2^+)} - \mathbf{q_2(0_1^+)} \ , \ \mathbf{N} = \mathbf{30}$$

$$\mathbf{q_2(0_2^+)} - \mathbf{q_2(0_1^+)} \ , \ \mathbf{N} = \mathbf{30}$$

B(E2)'s needed for q₂

Typically, only few B(E2) transitions are sizeable -> truncate sum at 2_3^+

$$\mathbf{q_2} = \qquad \langle \mathbf{0_1^+} | (\mathbf{Q} \cdot \mathbf{Q}) | \mathbf{0_1^+} \rangle \ = \ \underset{j}{\scriptscriptstyle \Sigma} \mathbf{B}(\mathbf{E2}; \mathbf{0_1^+} \to \mathbf{2_j^+})$$

i.e. Evolution of Structure,

Potential

Evolution of Nuclear Structure

Evolution of Nuclear Structure

Orders of Magnitude

$$B(E2;2_1^+\to 0_1^+)\propto I/(E_{\gamma}^5\tau)$$

$$\tau \propto I/(E_{\gamma}^{5} B(E2; 2_{1}^{+} \rightarrow 0_{1}^{+}))$$

 $E_{\gamma} \sim 100 - 1000s$ keV => min. 5 orders of magnitude B(E2) \sim few - 100s W.u. => another 2 orders of magnitude

2₁ lifetimes alone vary over ~7 orders of magnitude!

(Isomers, p-n non-symmetric states etc. add even more)

We need appropriate experimental methods for every ~2-3 orders of magnitude. (That is, different methods for different regions or/and physics cases!)

So, there is a lot of different lifetimes to measure, now a few examples how to do it:

ns - regime

(the "easiest" one)

Fast Timing Method

Fast Electronics Scintillation Timing (FEST)

Straight forward, with or without β -gate,

$$B(E2) \propto \frac{1}{\tau}$$

$$t_2 - t_1 \sim \exp(\lambda = 1/\tau)$$

Typical Tape Transport System

Moving Tape Collector

Array of LaBr₃ Scintillators:

Here: 3 x 1.5"x1.5" cylindrical

Supplied by University of Cologne

Time resolution comparable to BaF₂

LaBr₃ ...but superior (min. 3%) energy resolution

3 detectors allow for 6 permutations

In this scheme (taken from WNSL) we create the nuclei in-beam. Alternative: direct implantation of radioactive nuclei on the tape (e.g., CARIBU + X-array)

MTC at Yale (retired)

Moving Tape Collector

In this scheme (taken from WNSL) we create the nuclear Alternative: direct implantation of radioactive nuclear

Extract Halflife -> T-Diff. Spectra

Background Correction

Why? Background has a "lifetime" - for example it can be from Compton-Background from higher-lying transitions.

Divide energy gates into peak and background (A+B)

$$B_1 \approx B_2^*$$

do not Bg gate on Compton's!

-> only gate on the right!

Old (BaF₂) Scintillator Resolution

peaks overlap,

background?

vs. New (LaBr₃) Resolution

Background Correction

Why? Background has a "lifetime" - for example it can be from Compton-Background from higher-lying transitions.

Divide energy gates into peak and background (A+B)

$$B_1 \approx B_2^*$$

do not Bg gate on Compton's!

-> only gate on the right!

Background Correction

Why? Background has a "lifetime" - for example it can be from Compton-Background from higher-lying transitions.

Divide energy gates into peak and background (A+B)

$$B_1 \approx B_2^*$$
 do not Bg gate on Compton's!

-> only gate on the right!

Deconvolution T-Diff. Spectra

Examples: 174W, 168Hf

¹⁷⁴W 2₁⁺ (Nathan Cooper et. al.)

$$\tau = 1.339(8) \text{ns}$$

$$\tau_{lit} = 1.64(10)$$
ns

f 2₁⁺ (Marco Bonett-Matiz et. al.)

$$\tau = 1.237(10)$$
ns

$$\tau_{lit} = 1.28(6)$$
ns

Learn sth. new from Systematics

=> Things seem a bit more complicated than anyone expected

¹⁷⁶W: J.-M. Regis et al. NIM A 606 (2009)
 ¹⁷²W, ¹⁷⁸W: M. Rudigier et al. Nucl. Phys. A 847 (2010)

More Details on Fast Timing

I only showed the basic principles, and the simplest possible measurements. Everything else is derived from this, for example centroid shift method:

If the exp. slope is too small, only measure shift of TD-centroid. Suggested literature:

J.-M. Regis, Nucl. Instr. Meth. A 622, 83 (2010)

Beta-decay is very clean – if this is not the case, e.g. for high-lying isomers, beam cocktails, etc.:

Add high-resolution HPGe's for a clean gate, and/or use additional triggers: (particle-ID, beta-/alpha-decay, ...)

Example for HPGe - cleaned Data Wale

For example, at NIPNE (Bucharest) 8 HPGe + 11 LaBr, setup

¹⁸⁶W (⁷Li,αp) ¹⁸⁸W

HPGe requirement set on (any) Γ-rays from ¹⁸⁸W to seperate out this weak reaction channel; then look at LaBr₃ time-difference.

Large Clover Ge detector array (YRAST-Ball?) at the NSCL / FRIB decay station, combined with LaBr₃ array

Compact configuration

Fast timing on CARIBU isotopes with X-array (Clovers) + LaBr, 's Fast timing at ILL (Grenoble) after n-capture (Exogam + LaBr,'s) Fast timing at RIKEN-RIBF (EURICA + LaBr, 's)

... idea always the same: high-efficiency HPGe + LaBr,

At some point, clocks are not fast enough!

ps - regime

(Doppler Shifts for direct Lifetime Measurements)

(g-)Plunger Experiments

Recoil Distance Doppler Shift (RDDS) method $-\Delta d$ -> pico-second regime

Plunger: Recoil Distance Method

Yale Plunger

Cologne-Type Plunger Device

Calibrate the Foil Distance

(against a built in micrometer)

Put voltage (pulse) on one foil, read pulse height from the other -> Capacitance measurement!

Gives a good idea of offset (minimum foil distance), more important: relative distances can easily be measured!

Differential Decay Curve Method (typically used for most plunger experiments)

In general, the decay scheme is complicated:

Differential Decay Curve Method

general decay law: $\dot{n}_i = -\lambda_i n_i(t)$

$$\dot{n}_i = -\lambda_i n_i(t)$$

 $n_i(t)$ number of nuclei in state i at time t

 λ_i decay constant for state i

 b_{fi} decay branching from state f to i

$$rac{d}{dt}n_i(t) = -\lambda_i(t)n_i + \sum_f \lambda_f n_f(t)b_{fi}$$
 decay feeding

 $N_i(t)$ number of nuclei that decayed out of state i unitl time t that is proportional to the γ -ray intensity!

$$\tau_i(t) = \frac{-N_i(t) + \sum_f b_{fi} N_f(t)}{\frac{d}{dt} N_i(t)}$$

Problem: feeders are in general not completely observed => false measurement

Differential Decay Curve Method in Coincidence Experimens

For any coincidence between gammas X and Y:

$${Y,X} = {Y_S,X_S} + {Y_S,X_U} + {Y_U,X_S} + {Y_U,X_U}$$

 $\{Y,X\}=\{Y_S,X_S\}+\{Y_S,X_U\}+\{Y_U,X_S\}+\{Y_U,X_U\}$ B $\{Y_U,X_S\}=0 \quad \text{if transition X is preceding transition Y}$ (for example X=B, Y=A)

Use this with previous equation gives (check as homework, or get the papers by Petkov, Dewald, von Brentano, ...) gives:

$$\tau(t_k) = \frac{\{C_S, A_U\}(t_k) - \alpha\{C_S, B_U\}(t_k)}{\frac{d}{dt}\{C_S, A_S\}(t_k)}$$

$$\alpha = \frac{\{C, A\}}{\{C, B\}} = \frac{\{C_S, A\}}{\{C_S, B\}} = \frac{\{C_S, A_U\} + \{C_S, A_S\}}{\{C_S, B_U\} + \{C_S, B_S\}}$$

This is a bit complicated, and is for the *general* case. Simplify further: Gate only and directly on the shifted component of B!!

Differential Decay Curve Method in Coincidence Experimens

$$\tau(t_k) = \frac{\{C_S, A_U\}(t_k) - \alpha\{C_S, B_U\}(t_k)}{\frac{d}{dt}\{C_S, A_S\}(t_k)}$$

$$\alpha = \frac{\{C, A\}}{\{C, B\}} = \frac{\{C_S, A\}}{\{C_S, B\}} = \frac{\{C_S, A_U\} + \{C_S, A_S\}}{\{C_S, B_U\} + \{C_S, B_S\}}$$

Gate on B_s only: no side-feeding included!

$$\tau(t_k) = \frac{\{B_S, A_U\}(t_k)}{\frac{d}{dt}\{B_S, A_S\}(t_k)}$$

Gate on Doppler-shifted direct feeder;
-> measure unshifted and shifted
components of transition of interest (A)

Even better: it is a differential !! (in the end absolute distance does not count, but changes in distance, which we can measure)

Example: 170 Hf, $\tau(4_1^+)$, gate on 6-

>4

Centrifugal Stretching in 170 Hf

Deformation of the nucleus does not remain constant when it spins up!

Deformation from B(E2)'s

with transition quadrupole moments:

$$Q_T(I) = \sqrt{\frac{16\pi}{5}} \frac{B(E2)}{\langle I, 0, 2, 0 | I - 2, 0 \rangle}$$

Confined Beta-Soft Model

N. Pietralla and O.M. Gorbachenko, Phys. Rev. C 70, 011304(R) (2004).