

John

On Fifty Remarkable Years of Research at Argonne

their students. Among colleagues, Schiffer had a reputation as a world-class scientist, albeit a tad blunt, with a habit of calling people fools to their face. But Schiffer was not the

Checking a setup in GAMMASPHERE !

$$\theta_{12} = \cos^{-1} \frac{j_1(j_1+1) + j_2(j_2+1) - J(J+1)}{\left[2j_1j_2(j_1+1)(j_2+1)\right]^{1/2}}$$

Rotational-like (Shears) bands in near-spherical nuclei

SD Band in ¹⁵²Dy

M1 Band in ¹⁹⁹Pb

Angular momentum generated by the recoupling of the protons and neutrons components (shears)

B(M1), proportional to $\mu_{\perp}^2 \Rightarrow$ should decrease with I

Effective P₂ Interaction ?

Effective P₂ interaction can give rise to the rotational-like spectrum **Particle-particle case will correspond to Anti-magnetic rotation**

⇒Although the main ingredients and the general properties of the shears bands are understood, the regularity of these bands is still an important theoretical question from a microscopic point of view.

Inspired by the RIA Theory Blue Book and the recent RIA brochure ..

Transfer Reactions and Nuclear Structure: The Road Ahead A.O. Macchiavelli Lawrence Berkeley National Laboratory

Many Thanks to Rod Clark, Paul Falllon, I.Yang Lee, David Radford and Alan Wuosmaa

Nuclear Physics, The Core of Matter, the Fuel of Stars Argonne National Laboratory, IL, September 21-22, 2006

Outline

Short introduction

One-nucleon transfer reactions

Single-particle degrees of freedom Spin-orbit splitting

Ab initio calculations

Two-nucleon transfer reactions

Correlations

NP pairing

Pairing phase transition

- Heavy-ion transfer reactions
- Summary and conclusions

A central theme of study in nuclear structure has been the understanding of the elementary modes of excitation of the atomic nucleus, and their evolution with A (size), I (rotational frequency), (N-Z) (Isospin) and E* (Temperature)

Transfer reactions have played a major role in this endeavor, particularly in the characterization of the single particle degrees of freedom and their correlations.

With the development of exotic beams and new instruments to handle the "reverse kinematics" nature of these reactions, there has been a *renaissance* of transfer reaction studies.

On Angular Distributions from (d, p) and (d, n)Nuclear Reactions

S. T. BUTLER* Department of Mathematical Physics, University of Birmingham, Birmingham, England October 30, 1950

FIG. 1. Theoretical angular distributions for (d, p) and (d, n) reactions for different angular momentum transfers to the initial nucleus.

Angular distribution of the outgoing particles reflect the transferred angular momentum ⇒ I-value

Spectroscopic factors. Overlap between initial and final state ⇒Test wave functions

Ideal tool to study the singleparticle degree of freedom. Complementary to other processes that probe collective aspects. One of the important goals in the development of exotic beams is to study the evolution of the nuclear shell structure with neutron excess.

In fact, it is already known that in light nuclei the magic numbers are not as "robust" as originally conceived.

Of particular interest here is the spin-orbit force.

Is the Nuclear Spin-Orbit Interaction Changing with Neutron Excess?

J. P. Schiffer,¹ S. J. Freeman,^{1,2} J. A. Caggiano,³ C. Deibel,³ A. Heinz,³ C.-L. Jiang,¹ R. Lewis,³ A. Parikh,³ P. D. Parker,³ K. E. Rehm,¹ S. Sinha,¹ and J. S. Thomas⁴

¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA ²University of Manchester, Manchester M13 9PL, United Kingdom ³Yale University, New Haven, Connecticut 06520, USA ⁴Rutgers University, Piscataway, New Jersey 08854, USA (Received 17 December 2003; published 20 April 2004)

$$\delta E \approx \hbar \omega_0 - 4.5 V_{ls} \neq A^{2/3}$$

Use (α,t) reaction to populate high-l orbitals

TABLE I. Cross sections (mb/sr) at 6° for the lowest $7/2^+$ and $11/2^-$ states, their ratios, and spectroscopic factors. The uncertainties in the cross sections are estimated at 10% and those in the ratio, at about 5%). The accuracy of the relative spectroscopic factors are estimated at 5%.

Target	7/2+	11/2-	Ratio	$C^2 S_{7/2}$	$C^2S_{11/2}$
112Sn	14.6	21.4	1.47	0.99	0.84
114Sn	19.6	27.3	1.39	1.10	0.93
116Sn	19.7	30.9	1.57	0.95	0.97
118Sn	20.4	33.5	1.64	0.88	0.99
120Sn	27.9	39.4	1.41	1.13	1.12
122Sn	24.6	35.5	1.45	0.98	1.00
124Sn	24.7	39.2	1.59	1.00	1.12

QUENCHING OF THE 2p1/2-2p3/2 PROTON SPIN-ORBIT SPLITTING IN THE Sr-Zr REGION

P. FEDERMAN¹

Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 74132, USA

S. PITTEL²

Bartol Research Foundation of the Franklin Institute, University of Delaware, Newark, DE 19716, USA

and

A. ETCHEGOYEN

Departamento de Física, Comision Nacional de Energia Atomica, Av. del Libertador 8250, 1429 Buenos Aires, Argentina

95
$$\gamma$$
 $\Delta \epsilon (N = 56) - \Delta \epsilon (N = 50)$ ^{89 γ}
= 6 { $\vec{V}_{p_{1/2} - d_{5/2}}^{n-p} - \vec{V}_{p_{3/2} - p_{5/2}}^{n-p}$ },

PRL 97, 092501 (2006)

week ending 1 SEPTEMBER 2006

Reduction of the Spin-Orbit Splittings at the N = 28 Shell Closure

L. Gaudefroy,^{1,2} O. Sorlin,^{2,1} D. Beaumel,¹ Y. Blumenfeld,¹ Z. Dombrádi,³ S. Fortier,¹ S. Franchoo,¹ M. Gélin,² J. Gibelin,¹ S. Grévy,² F. Hammache,¹ F. Ibrahim,¹ K. W. Kemper,⁴ K.-L. Kratz,^{5,6} S. M. Lukyanov,⁷ C. Monrozeau,¹ L. Nalpas,⁸ F. Nowacki,⁹ A. N. Ostrowski,^{5,6} T. Otsuka,¹⁰ Yu.-E. Penionzhkevich,⁷ J. Piekarewicz,⁴ E. C. Pollacco,⁸ P. Roussel-Chomaz,² E. Rich,¹ J. A. Scarpaci,¹ M. G. St. Laurent,² D. Sohler,¹¹ M. Stanoiu,¹² T. Suzuki,¹³ E. Tryggestad,¹ and D. Verney¹ ¹*IPN, IN2P3-CNRS,F- 91406 Orsay Cedex, France* ²*GANIL, BP 55027, F-14076 Caen Cedex 5, France* ³*Institute of Nuclear Research, H-4001 Debrecen, Pf. 51, Hungary* ⁴*Department of Physics, Florida State University, Tallahassee, Florida 32306, USA* ⁵*Institut für Kernchemie, Universität Mainz, D-55128 Mainz, Germany* ⁶*HGF Virtual Institute for Nuclear Structure and Astrophysics (VISTARS), D-55128 Mainz, Germany* ⁷*FLNR/JINR, 141980 Dubna, Moscow Region, Russia* ⁸*CEA-Saclay, DAPNIA-SPhN, F-91191 Gif sur Yvette Cedex, France* ⁹*IReS, Université Louis Pasteur, BP 28, F-67037 Strasbourg Cedex, France* ⁹*IReS, Université Louis Pasteur, BP 28, F-67037 Strasbourg Cedex, France* ¹⁰*Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan* ¹¹*Institute of Nuclear Research, H-4001 Debrecen, POB 51, Hungary* ¹²*GSI, D-64291, Darmstadt, Germany* ¹³*Department of Physics, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan*

⁴⁶Ar(d,p)⁴⁷Ar reaction at SPIRAL and MUST detector array

In recent years substantial progress has been made in the development of *Ab Initio* theories of light nuclei.

The Quantum Monte Carlo method has been very successful in reproducing BE and excitation spectra of light nuclei starting with the basic NN force and 3-body force.

PHYSICAL REVIEW LETTERS

Neutron Spectroscopic Factors in ⁹Li from ²H(⁸Li, p)⁹Li

A. H. Wuosmaa,¹ K. E. Rehm,² J. P. Greene,² D. J. Henderson,² R. V. F. Janssens,² C. L. Jiang,² L. Jisonna,³ E. F. Moore,² R. C. Pardo,² M. Paul,⁴ D. Peterson,² Steven C. Pieper,² G. Savard,² J. P. Schiffer,² R. E. Segel,³ S. Sinha,² X. Tang,² and R. B. Wiringa²

¹Physics Department, Western Michigan University, Kalamazoo, Michigan 49008-5252, USA

²Physics Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne Illinois 60439, USA

³Physics Department, Northwestern University, Evanston, Illinois 60208, USA

⁴Hebrew University, Jerusalem, Israel 91904

Segmented proton detectors

 $\begin{array}{l} 500 \mu m / 1000 \mu m \text{ silicon } E \Delta E \\ telescope \end{array}$

(d,p) Angular Distributions - narrow states

²H(⁸Li,*p*)⁹Li DWBA calculations: **Red**, **blue** curves: QMC predictions with different OMP, no extra normalization 2 H(6 He,*p*) 7 He_{g.s.} DWBA calculations QMC calculations. **Blue**: no normalization **violet**- QMC X 0.69.

Optical-model parameters from Schiffer et al, PRC 164

Shell structure near ¹³²Sn:

Neutron levels in ¹³³Sn via the ¹³²Sn(d,p)

Successful "proof of principle" experiment with ¹²⁴Sn

PHYSICAL REVIEW C 70, 067602 (2004)

Study of the ${}^{124}Sn(d,p)$ reaction in inverse kinematics close to the Coulomb barrier

K. L. Jones,¹ R. L. Kozub,² C. Baktash,³ D. W. Bardayan,³ J. C. Blackmon,³ W. N. Catford,⁴ J. A. Cizewski,¹ R. P. Fitzgerald,⁵ M. S. Johnson,⁶ R. J. Livesay,⁷ Z. Ma,⁸ C. D. Nesaraja,² D. Shapira,³ M. S. Smith,³ J. S. Thomas,¹ and D. W. Visser⁵
¹Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA
²Physics Department, Tennessee Technological University, Cookeville, Tennessee 38505, USA
³Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
⁴Physics Department, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
⁵Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
⁶Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831, USA
⁷Colorado School of Mines, Golden, Colorado 80401, USA
⁸Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

THE experiment with an improved detector array should be running, as we speak, at HRIBF

PAIRING IN NUCLEI

Possible Analogy between the Excitation Spectra of Nuclei and Those of the Superconducting Metallic State

A. BOHR, B. R. MOTTELSON, AND D. PINES*

Institute for Theoretical Physics, University of Copenhagen, Copenhagen, Denmark, and Nordisk Institut for Teoretisk Atomfysik, Copenhagen, Denmark

(Received January 7, 1958)

The evidence for an energy gap in the intrinsic excitation spectrum of nuclei is reviewed. A possible analogy between this effect and the energy gap observed in the electronic excitation of a superconducting metal is suggested.

- Gap in the excitation spectra of even-A nuclei
- Odd-even mass differences
- Rotational moments of inertia

Relevance to other finite Fermion systems such as ³He clusters, Fermi-gas condensates, quantum dots, metal clusters,

Two-nucleon Transfer Reactions

Generalized densities a+a+, aa represent the pair field and in close analogy to the collective excitations corresponding to the ordinary density, they can give rise to collective modes.

Two particle transfer reactions like (t,p) or (p,t), where 2 neutrons are deposited or picked up at the same point in space provide an specific tool to probe the amplitude of this collective motion. The transition operator (f|a+a+|i) will be proportional to the pair density of the nucleus.

2.G Nuclear Physics 33 (1962) 685-692; C North- Not to be reproduced by photoprint or microfilm witho	Holland Publishing Co., Amsterdam 11 written permission from the publisher	
NOTE ON THE TWO-NUCLEON STR SHIRO YOSHIDA † Radiation Laboratory, University of Pittsburgh, Pi	PPING REACTION Itsburgh, Pennsylvania 11	
Received 9 F-1 1985 Abstract: The magnitude of the two-nucleon s interaction model. The calculation also is a types of reaction a collective enhancement o	Proceedings Int. Symp. on nuclear structure	ر». د
PRITAUS KEPUK	PAIR CORRELATIONS AND DOUBLE TRANSFER REACTIONS A. BOHR THE NIELS BOHR INSTITUTE, UNIVERSITY OF COPENHAGEN. COPENHAGEN, DENMARK	I
Ľ	SOVECTOR PAIRING VIBRATIONS	
Comision State University of New You NOR	D.R. BES Nacional de Energie Atomica, Buenos Airer, Argentina and k at Stony Brook, Physics Department, Stony Brook, New York 11794, USA and DITA, Biegdamsoej 17, DK-2100 Copenhagen Ø, Denmark	
The Nicis Bohr Inst State University of New Y	and R.A. BROGLIA itale, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark and ath of Stars Bank Barley Denmark Stern Barley International Stars	
The Niels Bohr In	and Ole HANSEN and O. NATHAN winne, University of Copenhagen, DK-2100 Copenhagen Ø. Denmark	

Neutron Proton Pairing

NP Pairing

N=Z nuclei, unique systems to study *np* correlations As you move out of N=Z *nn* and *pp* pairs are favored

Role of isoscalar (T=0) and isovector (T=1) pairing Large spatial overlap of n and p Pairing vibrations (normal system) Pairing rotations (superfluid system)

Does isoscalar pairing give rise to collective modes?

```
What is (are) the "smoking-gun(s)"?
Binding energy differences
Ground states of odd-odd self-conjugate nuclei
Rotational properties: moments of inertia, alignments
Two-particle transfer cross-sections
```

(3He,p) Transfer Reactions

Measure the np transfer cross section to T=1 and T=0 states

Both absolute $\sigma(T=0)$ and $\sigma(T=1)$ and relative $\sigma(T=0) / \sigma(T=1)$ tell us about the character and strength of the correlations

R.Chasman - ANL

Deuteron Transfer in N = Z Nuclei

P. Van Isacker,1 D.D. Warner,2 and A. Frank3

¹Grand Accélérateur National d'Ions Lounds, B.P. 55027, F-14076 Caen Cedex 5, France ²CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom ³Instituto de Ciencias Nucleares, UNAM, Apdo. Postal 70-543, 04510 México, D.F. Mexico (Received 14 September 2004; published 29 April 2005)

TABLE I. Predicted deuteron-transfer intensities C_T^2 between even-even (EE) and odd-odd (OO) N = Z nuclei in the SU(4) (b/a = 0) and $U_T(3) \otimes U_S(3)$ $(|b/a| \gg 1)$ limits.

Reaction	$C_{T=0}^{2}$	$C_{T=1}^{2}$
$EE \rightarrow OO_{T=0}$ $EE \rightarrow OO_{T=1}$	$\frac{1}{2}(N_{b} + 6)$ 0	$0 = \frac{1}{2}(N_b + 6)$
$EE \rightarrow OO_{T=0}$ $EE \rightarrow OO_{T=1}$	$\frac{N_{b}}{0} + 3$	0 3
$EE \rightarrow OO_{T=0}$	3	0 N. + 3
	Reaction $EE \rightarrow OO_{T=0}$ $EE \rightarrow OO_{T=1}$ $EE \rightarrow OO_{T=0}$ $EE \rightarrow OO_{T=1}$ $EE \rightarrow OO_{T=0}$ $EE \rightarrow OO_{T=0}$ $EE \rightarrow OO_{T=0}$	Reaction $C_{T=0}^2$ $EE \rightarrow OO_{T=0}$ $\frac{1}{2}(N_b + 6)$ $EE \rightarrow OO_{T=1}$ 0 $EE \rightarrow OO_{T=0}$ $N_b + 3$ $EE \rightarrow OO_{T=1}$ 0 $EE \rightarrow OO_{T=0}$ 3 $EE \rightarrow OO_{T=0}$ 3 $EE \rightarrow OO_{T=0}$ 0

Systematic of (³He,p) and (t,p) reactions in stable N=Z nuclei

Single-particle estimate ~ (spin)x(³He)x(LS -> jj)

Study of the ⁵⁶Ni(d,p)⁵⁷Ni Reaction and the Astrophysical ⁵⁶Ni (p,γ) ⁵⁷Cu Reaction Rate

K. E. Rehm,¹ F. Borasi,¹ C. L. Jiang,¹ D. Ackermann,¹ I. Ahmad,¹ B. A. Brown,² F. Brumwell,¹ C. N. Davids,¹ P. Decrock,¹ S. M. Fischer,¹ J. Görres,³ J. Greene,¹ G. Hackmann,¹ B. Harss,¹ D. Henderson,¹ W. Henning,¹ R. V. F. Janssens,¹ G. McMichael,¹ V. Nanal,¹ D. Nisius,¹ J. Nolen,¹ R. C. Pardo,¹ M. Paul,⁴ P. Reiter,¹ J. P. Schiffer,¹ D. Seweryniak,¹ R. E. Segel,⁵ M. Wiescher,³ and A. H. Wuosmaa¹ ¹Argonne National Laboratory, Argonne, Illinois 60439 ²Michigan State University, East Lansing, Michigan 48824 ³University of Notre Dame, South Bend, Indiana 46556 ⁴Hebrew University, Jerusalem, Israel

⁵Northwestern University, Evanston, Illinois 60208

Proof of principle

A.O.Macchiavelli¹, E.Rehm², P.Fallon¹, M.Cromaz¹, I.Ahmad¹, C.N.Davis², J.Greene², R.V.F.Janssens², C.L.Jiang², E.F.Moore², R.Pardo², D.Seweryniak², J.P.Schiffer², A.Wuosmaa³, J.Cizewski³,

¹ Lawrence Berkeley National Laboratory ²Argonne National Laboratory ³Western Michigan University ³ Rutgers University

Proof of principle

Inverse kinematics -Successful test experiment with stable beams

Looking ahead ...

Improved resolution for (d,p)

Pairing Phase Transition

Pair-Vibrational Structures

(Nobel Lecture, Ben R. Mottelson, 1975 "Elementary Modes of Excitation in the Nucleus")

- Near closed shell nuclei (like ²⁰⁸Pb) no static deformation of pair field.
- Corresponds to the "normal" nuclear limit.
- Fluctuations give rise to a vibrational-like excitation spectrum.
- Enhanced pair-addition and pair-removal cross-sections seen in (t,p) and (p,t) reactions (indicated by arrows).
- Large anharmonicities in spectrum must be accounted for.

Pair-Rotational Structures

(R. A. Broglia, J. Terasaki, and N. Giovanardi, Phys. Rep. 335 (2000) 1)

- Many like-nucleon pairs outside a closed-shell configuration (e.g. ¹¹⁶Sn) gives rise to a static deformation of the pair field.
- Corresponds to the "superconducting" limit.
- Rotational-like (parabolic dashed line) spectrum formed by sequence of ground states of even-N neighbors.
- Angular variable in rotational motion is gauge angle, ϕ .

Critical-Point Descriptions of Shape Transitions

F. Iachello, Phys. Rev. Lett. 85 (2000) 3580, Phys. Rev. Lett. 87 (2001) 052502.

PRL 96, 032501 (2006)

PHYSICAL REVIEW LETTERS

week ending 27 JANUARY 2006

Critical-Point Description of the Transition from Vibrational to Rotational Regimes in the Pairing Phase

R. M. Clark,¹ A. O. Macchiavelli,¹ L. Fortunato,² and R. Krücken³

¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ²Dipartimento di Fisica Galileo Galilei, INFN, Sezione di Padova, Padova, Italy ³Physik Department E12, Technische Universität München, Garching, Germany

The Collective Pairing Hamiltonian

D.R. Bès, R.A. Broglia, R.P.J. Perazzo, K. Kumar, Nucl. Phys. A 143 (1970) 1.

$$-\frac{\hbar^2}{2B}\frac{\partial^2\psi}{\partial\alpha^2} - \frac{\hbar^2}{2B\alpha}\frac{\partial\psi}{\partial\alpha} + \left(\frac{\hbar^2M^2}{8B\alpha} + V(\alpha) - E\right)\psi = 0$$

 α is the deformation of the pair field (can be related to the gap parameter, Δ). *B* is a mass parameter. $M=(A-A_0)$ (number of particles, A, relative to reference, A_0). $V(\alpha)$ is the potential. **Analogy between Shapes and Pairing**

The Reduced Energy Spectrum

Normalizing energies of excited states to that of the first excited state:

ξ=1 sequence of states correspond empirically to the sequence formed by the 0⁺ ground-states of neighboring even-even nuclei along isotopic or isotonic chain.
ξ=1 sequence of states follows behavior between the linear dependence of a harmonic vibrator and the parabolic dependence of a deformed rotor, as expected.
ξ>1 correspond to excited 0⁺ states formed from pair excitations.

Comparison with Data

Empirical neutron pairing energy defined as: $E_{pair} = [\varepsilon(A) - \varepsilon(A_0)] - C \cdot (A - A_0)$

 $\varepsilon(A) - \varepsilon(A_0)$ is difference in mass excess between isotope of mass A and reference nucleus of mass A₀ (G. Audi et al., Nucl. Phys. A 729 (2003) 337)

Only a few nucleons outside of the closed shell are required for a static pair deformation ("superconductivity") and pair rotational sequences develop.

A comment on anharmonicities

From Bohr & Mottelson Vol. II pag. 646

$$E \sim n \hbar \omega_0 + \frac{1}{2} V_{--} n(n-1)$$

$$V_{--} \sim 700 keV$$

Our simple estimate is

$$V_{--} \sim (2.31 - 2)\hbar\omega_0 \sim 800 keV$$

A simple microscopic model: Two j-shells

1

$$H = \frac{1}{2}D(N_2 - N_1) - G\Omega(A_1^+ + A_2^+)(A_1 + A_2)$$

$$x = 2\Omega G/D$$

A simple microscopic model: Two j-shells

Transition probabilities

Transition Probabilities

The transition matrix elements are related to <u>two-nucleon transfer</u> <u>probabilities:</u>

$$\left\langle \psi_{\xi',M'} \left| \hat{O} \right| \psi_{\xi,M} \right\rangle = \int \psi_{\xi',M'}^* \hat{O} \psi_{\xi,M} d\tau$$

where, the volume element is:

$$d\tau = 2B\alpha \cdot d\alpha \cdot d\phi$$

and the pair-transfer operator is: $\hat{O} = \alpha_{\pm 2} = \alpha e^{\pm 2i\phi}$

One then finds:

$$\left\langle \psi_{\xi',M'} \left| \hat{O} \right| \psi_{\xi,M} \right\rangle \propto \int_{0}^{\alpha_{w}} \psi_{\xi',M'}^{*} \alpha^{2} \psi_{\xi,M} d\alpha$$

The integrals can be solved numerically.

Heavy Ion Transfer

A Few Words on Heavy Ion Transfer Reactions

Multiple nucleon transfer

C.L.Jiang et al. PRC57(1998)

Δ M/M, Δ L/L and Δ E/E << 1

Large Sommerfeld parameter η >>1 allows for a semi-classical description. \Rightarrow Classical trajectory and tunneling

ENTRANCE EXIT

Population of high angular momentum and high excitation energy states

\Rightarrow population mechanism, followed by γ -ray spectroscopy

Fig. 3. Proposed level scheme for 237 U. The energies of the transitions are given in keV. Bands *c* and *d* are the octupole bands under discussion in the present Letter.

One neutron pickup reaction, ²⁰⁷Pb+²³⁸U in GAMMASPHERE to study octupole correlations in actinides **Spin-orbit splitting again**

N = 83 level energy systematics

¹³C(¹³⁶Xe,¹²C)¹³⁷Xe 560 MeV

GRETINA: 1π array

Transfer reactions with re-accelerated RIBS and stable beams

 238 U + 170 Er 5.7 MeV/u GS + CHICO 3 $\cdot 10^9$ p/s (0.5 pna), 0.5 mg/cm² 3 days, $\gamma - \gamma - \gamma$

C.Y. Wu et al., PRC 70, 014313 (2004)

Simulation ¹⁷⁰Er + ²³⁸U 5.7 MeV/u

Conclusions

Transfer Reactions have provided a wealth of information that has shaped our current understanding of the structure of atomic nuclei. They will continue to provide a unique tool as we embark in our experimental study of very-neutron (proton) rich nuclei.

Existing and planned exotic beam facilities worldwide and new detector systems with increased sensitivity and resolving power not only will allow us to answer some burning questions we have today, but most likely will open up a window to new and unexpected phenomena.

As so eloquently expressed in the title of the conference, the nucleus and its structure are of paramount importance to many aspects of physics.

I believe the road ahead looks inviting!

