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Preamble

The construction of the Interacting Boson Model, upon which the dynamic 
symmetries and quantum phase transitions discussed here are based, was 
strongly influenced by a paper of John, to whom I am very grateful. 

N. Antaraman and J.P. Schiffer, Experimental study of the effective nucleon-nucleon interaction,
Phys. Lett. 37B, 229 (1971)

p-n quadrupole-
quadrupole interaction

n-n and p-p pairing and 
quadrupole pairing



A. DYNAMIC SYMMETRIES AND SUPERSYMMETRIES
Quantal systems: Spectral properties
The spectroscopic problem:
Given a spectrum, understand its properties:
Classification scheme

Important tool in developing a classification 
scheme: Dynamic symmetry.
Dynamic symmetries (symmetries of the 
interactions): Situations in which the 
Hamiltonian operator of a physical system 
can be written in terms of invariant (Casimir) 
operators of a symmetry algebra, called 
Spectrum generating algebra.
All properties given in terms of quantum 
numbers.

In the last 80 years, dynamic symmetries and spectrum generating algebras have 
provided classification schemes for several physical systems, and promise to provide 
schemes for others. 
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Dynamic symmetries were implicitly introduced by Pauli (1926) to classify the 
spectrum of the non-relativistic hydrogen atom.

Pauli argument: 
Hamiltonian of a particle in a Coulomb field
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H can be rewritten in terms of A2+L2 (Casimir
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Dynamic symmetries attained prominence in physics with the introduction of flavor
symmetry SUf(3) to classify hadron spectra (Gell-Mann, 1962; Ne’eman, 1962)

Gell-Mann argument:
Generalize Heisenberg isospin to (3) (2) (1) (2) (1)f I Y I YSU SU U SO U⊃ ⊗ ⊃ ⊗
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Write down the mass operator in terms 
of Casimir operators
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Dynamic symmetries and spectrum generating algebras are particularly useful for 
complex systems, where a direct calculation of spectral properties is very difficult or 
not possible at all. For example, the configuration valence space in 154Sm has 
dimension 346,132,052,934,889 for J=2. And even if we were able to do the 
calculation, what is the meaning of a wave function with 1014 components?

Two areas of physics where they have been very useful are nuclear physics and 
molecular physics.

In nuclear physics, dynamic symmetries have been used to classify both single-
particle motion (Elliott, 1958) and collective motion (Iachello, 1974; Arima and 
Iachello, 1975).

In molecular physics, they have been used to classify both rotational-
vibrational motion (Iachello, 1980; Iachello and Levine, 1981) and electronic 
motion (Frank, Lemus and Iachello, 1986)

Only dynamic symmetries of the collective motion in nuclei will be discussed here.

Nuclei: F.Iachello and A.Arima, The Interacting Boson Model, Cambridge University Press (1985)
F. Iachello and P. van Isacker, The Interacting Boson Fermion Model, Cambridge University Press (1991)
I. Talmi, Simple Models of Complex Nuclei, Harwood (1993)

Molecules: F. Iachello and R.D Levine, Algebraic Theory of Molecules, Oxford University Press (1995)
MathFrame: F. Iachello, Lie Algebras and Applications, Springer-Verlag, Berlin (2006)



Dynamic symmetries in nuclei

Dynamic symmetries in even-even nuclei have been extensively investigated 
within the framework of the Interacting Boson Model with spectrum generating
algebra U(6)

This is a model in terms of correlated s- and d-pairs of nucleons treated as bosons 

S (J=0) pairing fl s-boson

D (J=2) pairing fl d-boson



Dynamic symmetries of the Interacting Boson Model

(I) Spherical

(II) Deformed with axial symmetry

(III) Deformed gamma-unstable 

U(5) SO(5) SO(3) SO(2)

SU(3) SO(3) SO(2)

SO(6) SO(5) SO(3) SO(2)
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All three types of symmetries 
have been found:

110Cd 7N = 1976

Symmetry I: U(5)

156Gd 12N =
1977

Symmetry II: SU(3)

196Pt 6N =

Symmetry III: SO(6)
1978



An important question is the energy scale at which the dynamic symmetry is 
broken and regularities in spectra disappear. It has been found that the 
regularity extends to much higher excitation energies than originally thought, 
both for rotational and for vibrational motion.

112Cd N=8

Symmetry I: U(5)

M.Deleze, 
S.Drissi, J.Jolie
et al., Nucl. 
Phys. A554, 1 
(1993)



In odd-even nuclei at least one particle is unpaired and in even-even nuclei, at 
some excitation energy ~2D, pairs break, and the system becomes a mixed
system of bosons and fermions. 
To describe these situations new symmetry concepts have been introduced in 
physics, called Bose-Fermi symmetry and supersymmetry.
The concepts were introduced initially for applications to particle physics 
(Volkov and Akulov, 1974; Wess and Zumino, 1974)
Dynamic supersymmetries and spectrum generating superalgebras were 
introduced in nuclear physics in 1980 (Iachello, 1980; Balantekin, Bars and 
Iachello, 1981)
They provide classification schemes for odd-even nuclei (Bose-Fermi
symmetries) and for the combined set of even-even, even-odd, odd-even nuclei 
and odd-odd nuclei (supersymmetries).  



Dynamic supersymmetries in nuclei have been investigated  within the framework of the 
Interacting Boson-Fermion Model with spectrum generating superalgebra U(6/Ω)

(2 1)i
i

jΩ = +∑

S-boson

D-boson

j-fermion

A model in terms of correlated pairs treated as bosons and unpaired fermions



Dynamic supersymmetries of the Interacting Boson-Fermion Model
Several classes can occur, depending on the symmetry of the bosons and 
their associated fermionic partners. Two classes have been extensively 
investigated: (i) j=3/2, U(6/4) and (ii) j=1/2,3/2,5/2, U(6/12). Some 
examples have been found.

190Os-191Ir

Supersymmetry III1: U(6/4)
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The Interacting Boson Model, the Interacting Boson-Fermion Model, the 
Interacting Boson Fermion-Fermion Model provide a classification scheme for 
Even-Even, Even-Odd and Odd-Odd Nuclei, of which the dynamic symmetries
and supersymmetries are the cornerstones. Together with the Shell Model, they 
provide a comprehensive classification scheme for all nuclei.

Interacting Boson Model

Shell Model

Underlying picture
courtesy of 
W. Nazarewicz

Ab initio



Symmetry classification of nuclei

From R.F. Casten and D.H. Feng, Physics Today 37, 26 (1984)



A global parametrization has been given recently by McCutchan, Zamfir and Casten, 2004, 
by making use of a simple three-parameter Hamiltonian (Casten and Warner, 1983) 
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E.A. McCutchan, 
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R.F. Casten, Phys. 
Rev. C69, 064306 
(2004)

Overall agreement
with experiment 
5% or better



Protons and Neutrons: Dynamic F-spin symmetries
In a more elaborate description one distinguishes between proton and neutron pairs, and 
introduces a two-valued variable, called F-spin. (Arima, Otsuka, Iachello and Talmi, 1977)
Framework for even-even nuclei: Proton-neutron Interacting Boson Model Uπ(6) ≈Uν(6)

In this model new types of collective modes appear, for 
example, angular oscillations of  proton versus neutron 
deformations, the so-called scissor modes. 

Also, new dynamic symmetries appear

(I) Spherical(6)Uπν

(3)SUπν

(6) (6)U Uπ ν⊗

(II) Axially deformed

(III) Gamma-unstable deformed(6)SOπν

* (3)SUπν
(IV) Triaxially deformed



Framework for even-even, even-odd, odd-even and odd-odd nuclei: The Proton-
Neutron Interacting Boson-Fermion Model with superalgebra Uπ(6/Ω)≈Uν(6/Ω)

Dynamic supersymmetries of the Interacting Boson-Fermion Model-2

An example has been recently discovered Uπ(6/4)≈Uν(6/12)

196Au

A.Metz, J.Jolie, G.Graw,
et al., Phys. Rev.
Lett. 83, 1542 (1999) 

The most complex example of symmetry found so far! (5 bosons+2 fermions)



B. QUANTUM PHASE TRANSITIONS

Thermodynamic phase transitions were discussed in the 19th Century. 
A general theory was given by Landau in the 1930’s.

Quantum phase transitions are the same as thermodynamic phase transitions 
but with control parameter equal to a coupling constant, g, rather than the 
temperature, T.

1 2(1 )H g H gH= − +

Associated with phase transitions there are order parameters. For quantum 
phase transitions, the order parameter is the expectation value of some suitably 
chosen operator, ‚OÚ. Quantum phase transitions occur at zero-temperature and 
hence are often called ground state phase transitions.

An early example is the Ising (1925) model in a transverse field

x z z
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∑ ∑Hamiltonian

Order parameter: magnetization M
1
2cg g= =This model has a second order quantum phase transition at



Quantum phase transitions in nuclei
Several types of quantum phase transitions can occur in nuclei, some at or around 
nuclear matter density and some at much larger densities 

Phase diagram of nuclear matter in the r-T plane
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Only phase transitions at nuclear matter density, shape phase transitions, will be 
discussed here.
A general theory was developed by Gilmore, 1978, and applied to nuclei by 
Dieperink, Scholten and Iachello, 1980 and Feng, Gilmore and Deans, 1982 

Phase diagram of nuclei in the Interacting Boson Model

III:SO(6)

2nd order

Spherical phase

Deformed phase

I:U(5) II:SU(3)

1st order
Coexistence region

1 2 2 3 3H H g H g H= + +

U(5)     SU(3)     SO(6)



Examples of both second and first order transitions in nuclei have been found

2nd order transitions Ba-Xe U(5)-SO(6)  
1st order transitions Sm-Gd U(5)-SU(3)    

Critical value

1978

E
g
∂
∂

Order 
parameter

2nd order

Control parameter

Critical value

2nd order 1st order

Control parameter

1st order

Coexistence region



Critical symmetry
Dynamic symmetries provide spectral signatures for the analysis of experimental 
data for pure phases, g=0 or 1. 
Are there spectral signatures of critical behavior?
An intriguing (and surprising) recent results: Contrary to expectations, the 
structure of physical systems at the critical point of a second order transition  and 
along the critical line of a first order transition is simple.

It has been suggested that the simple features arise from 
special properties of the potential at the critical point [in 
Landau theory, for 2nd order transitions,  V(β)=β4]

An approximation to a flat potential is a square-
well. 

V(β)

β



A new concept has been introduced, called critical symmetry, related to 
scale invariance in non-relativistic systems. (Conformal invariance in 
quantum field theory) (2nd order transitions, Iachello, 2000; 1st order 
transitions, Iachello, 2001).
Critical symmetries are best studied within the framework of the Geometric 
Collective Model (Bohr, 1952; Bohr and Mottelson, 1953), in particular by 
analyzing solutions of the Bohr Hamiltonian. 

Critical symmetries in the Geometric Collective Model

E(5)
L. Wilets and M. Jean, 
Phys. Rev. 102, 788 
(1956)

U(5)

[X(5)]

[Approximate solution]



In critical symmetries, the energy eigenvalues are given in terms of zeros of 
Bessel functions (a novel class of dynamic symmetries) and the symmetry 
applies to a bounded domain. 
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F.Iachello, Phys. Rev. Lett. 85, 3580 (2000) 

Square well in β, g-unstable

[X(5)] Square-well in β and g

F.Iachello, Phys. Rev. Lett. 87, 052502 (2001)



Examples have been found

R.F. Casten and 
N.V. Zamfir, 
Phys. Rev Lett. 
87, 052503 (2001)

R.F. Casten and 
N.V. Zamfir, 
Phys. Rev. Lett. 
85, 3584 (2000)

152Sm

134Ba



Also here a question is the energy at which simple analytic descriptions break down.
It appears to be much higher than originally thought. An example is 156Dy, which sits 
close to the critical value of the 1st order U(5)-SU(3) transition. 

J     Exp       [X(5)]   Rotor

24   45.91    49.53     100.00
22   40.43    42.85     84.33
20 35.25    36.61    70.00 
18   30.31    30.80     57.00
16   25.56    25.43     45.00
14   20.35    20.51     35.00
12   16.58    16.04     26.00
10   12.51    12.03     18.33
8     8.82       8.48      12.0
6     5.59       5.43      7.00
4     2.93       2.90      3.33
2     1            1           1

E(J)/E(2)

The collective motion appears to be very stable, no matter whether vibrational, rotational 
or critical!

156Dy
SO(6)

U(5) SU(3)

E(5)

[X(5)]

Finite N limit

X(5) break-down

Pair breaking

N=12



Very recently, the concept of critical symmetry has been extended to critical Bose-Fermi 
symmetry and supersymmetry (Iachello, 2005). This extension allows one to study odd-
even nuclei at the critical point of a phase transition.

E(5/4)

F. Iachello, Phys. Rev. 
Lett. 95, 052503 (2005)

Search for critical Bose-Fermi symmetries has already started (135Ba)

M.S. Fetea, R. Cakirli, R.F. Casten et al., Phys. Rev. C73, 051301(R) (2006)



The future
Several facilities are being built which will provide a vast pool of new 
nuclei: REX-ISOLDE@CERN, ISAC2@TRIUMF, RIB@RIKEN, 
SPIRAL2@GANIL, FAIR@GSI  

2

3

4

1

1 Light neutron-rich nuclei
2 Heavy neutron-rich nuclei
3 Heavy proton-rich nuclei
4 Super-heavy nuclei



Questions that can be answered with the new data:
Is the classification scheme provided so far sufficient to describe all data or do 
we need to extend it?
If the extension is not needed, are there other examples of the known dynamic 
symmetries, supersymmetries and critical symmetries?
If the extension is needed what are its symmetries? 

A particularly interesting region to study the symmetries discussed here is 2

From Spiral2
Scientific Objectives
Courtesy of Gilles 
de France



Conclusions
Despite their complexity, nuclei display simple properties. 
The concepts of dynamic symmetry and dynamic supersymmetry provide an 
important tool to study simplicity in complex bosonic systems, fermionic systems and 
their mixtures. They give benchmarks for comparison with experiments.
The concepts of spectrum generating algebra and superalgebra provide maps for 
navigating into unknown regions. A classification scheme (map) for the collective 
motion in nuclei has been given.

Geometric (or 
Differential) 
sheet

Algebraic 
sheet

Dedicated to Eugene Wigner and Giulio Racah who pioneered the symmetry approach 

With best wishes to John Schiffer for many more productive years of research ! and 
many thanks for his support of the symmetry approach to physics.



Addendum 1
A separate (theoretical) question is:
Can we derive the simplicity observed in nuclei from ab initio calculations?
The logic scheme for this derivation is in place

Quarks and gluons (QCD) Investigated in the 1980’s with 
no concrete result. New results 
with Lattice QCD?

Free nucleon-nucleon interaction Extensively investigated in the 1960’s 
with negative results. New results with 
effective field theories?

Nucleon-nucleon interaction in the medium
Effective interaction in the shell model Extensively investigated in 1980’s with 

some results. New results with 
Montecarlo shell model? 

Interaction between correlated pairs (bosonization)
Effective interaction in the Interacting Boson Model

How well can be implement this scheme?



Derivation of the Interacting Boson Model from the Shell Model

T. Otsuka, A. Arima and F.Iachello, 
Nucl. Phys. A309, 1 (1978)



Addendum 2

Classification scheme of nuclei in the Interacting Boson Model-2
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