

Physics opportunities with AIRIS beams

Kathrin Wimmer

Central Michigan University and NSCL - Michigan State University

May 15 2014

ATLAS User Workshop

Kathrin Wimmer

CMU AIRIS rates

- intense beams one or two nucleons away from stability
- significant increase in intensity compared to present status
- heavier beams available
- radioactive beams to Gammasphere, GRETINA, FMA and more
- physics opportunities for single-particle structure and reaction experiments:
 - single- and two-nucleon transfer reactions
 - inelastic scattering (p,p')
- challenges:
 - high level densities
- on the other hand
 - well-known level structure (in many cases)

CMU Requirements

Required experimental conditions for single-particle transfer experiments with radioactive beams

- beam intensity around 10⁵ pps
- beam purity not so important, unless
 - total rate becomes to high
 - normalization relies on elastic scattering
 - high level density and overlapping recoil energy ranges
- small beam spot
- required energy resolution for recoils depends on level density
- detection of coincident γ radiation

CMU Q-value matching

- low Q-value preferred to populate low-lying states in (d,p) reactions
- HELIOS, silicon and γ -ray detector array, active target
- Q-value for (⁹Be,2 α) higher by \approx 0.6 MeV

CMU Heavy ion induced transfer reactions

- alternative targets are useful to study higher *L* orbitals (⁹Be, 2α) and (¹³C, ¹²C) reactions
- **\blacksquare** particle trigger, γ -ray detection essential
- interpretation of angular distributions difficult
- relative cross section to $j = l + \frac{1}{2}$ and $j = l \frac{1}{2}$ orbitals depends on target choice

■ ⁹Be ground state $1p_{3/2}$ $\rightarrow \sigma$ larger for $j = l - \frac{1}{2}$ orbitals ■ ¹³C ground state $1p_{1/2}$ $\rightarrow \sigma$ larger for $j = l + \frac{1}{2}$ orbitals

CMU Two-neutron transfer reactions

Tritium loaded titanium foil targets

K. Wimmer et al., Phys. Rev. Lett. 105 252501 (2010)

- four experiments performed at REX-ISOLDE so far
- Iow level density, particle detection can be sufficient
- alternative: (¹⁰Be, 2 α) reactions

CMU Proton-rich side

- proton transfer reactions for nuclear astrophysics
- (³He,d) reactions to study (p, γ)

CMU **DSAM** lifetime measurements

- lifetime of single-particle states
- (p, γ) resonances for nuclear astrophysics

- ³He or d implanted Au targets
- accesible lifetime ranges: 10 fs - 1 ps

$CMU \qquad From N = 20 to N = 28$

Between the exotic N = 20 nuclei (Ne,Na,Mg) and the break down of the N = 28 shell closure in ⁴²Si the location of the $v f_{7/2}$ and $v p_{3/2}$ orbitals is influencing the properties of nuclei

- study single-particle properties in Si and S
- little is known about the odd Si and S isotopes

$CMU \qquad From N = 20 to N = 28$

Possible experiments:

- Systematic study of single-particle orbitals at *N* = 21,23 in Si and S
- (d,p) and (p,d) transfer reactions to locate single-particle/hole strength
- heavy ion induced transfer for the L = 3 neutron $f_{7/2}$ orbital
- two-nucleon transfer reactions, $t(^{32}Si,p)$ at N = 20

CMU N = 28 - 34 and three-body forces

- difficult region for ISOL facilities
- three-body forces are essential to describe the *N* = 28 shell gap single-particle transfer with K and Sc at *Z* = 19,21
- sub-shell closures at N = 32,34
 (d,p) and (t,p) reactions with Ca, Ti, and Cr

CMU Nuclear astrophysics

■ s-process branching in the long lived ⁵⁹Fe, ⁶⁰Fe, ⁶⁰Co

- calculated production of ⁶⁰Fe in heavy stars varies by orders of magnitude
 T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75 (2000) 1
- at high neutron densities, neutron capture on ⁵⁹Fe ($t_{1/2} = 44.5$ d) relevant
- ⁶⁰Fe (n, γ) measured directly ($t_{1/2} = 2 \text{ My}$) E. Uberseder et al., Phys. Rev. Lett. **102** 151101 (2009)

sufficient rates to study these branchings with AIRIS

Kathrin Wimmer

CMU Nuclear astrophysics

■ s-process branching in the long lived ⁵⁹Fe, ⁶⁰Fe, ⁶⁰Co

- calculated production of ⁶⁰Fe in heavy stars varies by orders of magnitude
 T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75 (2000) 1
- at high neutron densities, neutron capture on ⁵⁹Fe ($t_{1/2} = 44.5$ d) relevant
- ⁶⁰Fe (n, γ) measured directly ($t_{1/2} = 2 \text{ My}$) E. Uberseder et al., Phys. Rev. Lett. **102** 151101 (2009)

sufficient rates to study these branchings with AIRIS

Kathrin Wimmer

- AIRIS offers significantly increased beam intensities
- beams that are not available at ISOL facilities
- unique possibilities for transfer reaction experiments (d,p), (t,p) and heavy ion induced transfer reactions
- (³He,d) proton transfer for nuclear astrophysics
- new experimental techniques to investigate single-particle properties