

HELIOS: The Helical Orbit Spectrometer at ATLAS

Outline:

- Motivation for studying light-ion reactions in inverse kinematics
- The HELIOS Spectrometer concept
- The Argonne implementation of HELIOS
- Commissioning experiment
- Planned upgrades
- Helios elsewhere

Motivation for studying light-ion reactions in inverse kinematics

Nuclear structure with re-accelerated beams

Inverse kinematics - wide applications

Precision studies of nuclei in regions where no targets exist Stable isotopes Normal kinematics **Inverse kinematics** Radioactive Beams (FRIB)

Before

After

>1000/sec

The solution

HELIOS

Logo by Peter Müller

Principle of operation

Measured quantitiesFlight time:TTosition:ZEnergy:E

Derived quantities		
Part. ID:	m/q	
Energy:	E _{cm}	
Angle:	$\theta_{\sf cm}$	

Particle

р ³Не²⁺

 \textbf{d}, α

t

B=2T

T_{cyc} (ns)

34.2

51.4

68.5 102.7

		HE
	-	

$$\frac{\mathbf{m}}{\mathbf{q}} = \frac{\mathbf{e}B}{2\pi} \times \mathbf{T}_{\text{flight}}$$

$$\mathbf{E}_{\text{cm}} = \mathbf{E}_{\text{lab}} + \frac{1}{2} \mathbf{m} \mathbf{V}_{\text{cm}}^2 - \frac{\mathbf{V}_{\text{cm}} \mathbf{q} \mathbf{e}B}{2\pi} \mathbf{Z}$$

$$\boldsymbol{\theta}_{\text{cm}} = \arccos\left(\frac{1}{2\pi} \frac{\mathbf{q} \mathbf{e}B \mathbf{Z} - 2\pi \mathbf{m} \mathbf{V}_{\text{cm}}}{\sqrt{2\mathbf{m} \mathbf{E}_{\text{lab}}} + \mathbf{m}^2 \mathbf{V}_{\text{cm}}^2 - \mathbf{m} \mathbf{V}_{\text{cm}} \mathbf{q} \mathbf{e}B \mathbf{Z}/\pi}\right)$$

LIOS

HELIOS kinematics

May 21, 2010

9

Measure Θ or z (in magnetic field)?

B.B.Back, Argonne National Laboratory

Kinematics for the reaction d(²⁸Si,p)²⁹Si

Q=0 transfer reactions on ³He or T target

The Argonne implementation of HELIOS

The Siemens Magnet

MRI Scanner in Tübingen, Monday, Nov 6, 2006

Ernst Rehm

Two days later

Arrival at ANL on the coldest day of the year

but filled with liquid Helium

December 8, 2006

Solenoid \rightarrow Spectrometer

July 2008, Installed - ready to go

Prototype Si-detector array

Assembled prototype array

The d(²⁸Si,p)²⁹Si comissioning experiment

Commissioning experiment: ²⁸Si(d,p)

We're not the first to measure this

Energy vs. position - it works as expected

Energy vs. position - it works as expected

d(²⁸Si,p)²⁹Si , 6 MeV/A ²⁸Si on 84 μ g/cm² CD₂ target, B= 1.915 T

First HELIOS spectra

- PPAC+Bragg Recoil detector (Manchester University)
- Gas target to allow for (³He,p), (³He,d), (³He, α) reactions etc.
- Full efficiency backward array (2 cm wide Si wafers)
- Forward Si detector array
- Etc.
- Etc.

Manchester recoil detector

27

Cryogenic Gas target for ³He and ⁴He (Brad DiGiovine)

New efficient Si detector array

Flexible design

Upstream configuration Hexagonal w. 12 modules ~60 cm long

> Downstream configuration Hexagonal w. 6 modules Decagonal w. 10 modules ~60 cm long

Radioactive beams at ATLAS and elsewhere

HELIOS-like spectrometers elsewhere

- HELIOS spectrometer at Spiral-2 (2013/14)
 - Proposal presented at Spiral-2 week, January 28, 2010
 - DOE funding proposal accepted
 - Recently put on hold by DOE

- HELIOS spectrometer at FRIB
 - Proposal presented at FRIB Instrumentation Workshop, February 20, 2010
 - Well received by FRIB Science Advisory Committee
 - No funding yet collaboration in process of forming.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Experiments Committee for experiments with HIE-ISOLDE

A HELIcal Orbit Spectrometer (HELIOS) for HIE-ISOLDE

S.J. Freeman¹, A. Andreyev², B.B. Back³, V. Bildstein⁴, P.A. Butler⁵, W.N. Catford⁶, J. Cederkall⁷,
R. Chapman², D. Di Julio⁷, M. Huyse⁸, D. Jenkins⁹, B.P. Kay³, T.Kröll¹⁰, R.Krücken⁴, D. Müncher⁴,
N. Nowak⁴, R. Raabe⁸, J.P.Schiffer³, J.S. Thomas¹, P. Van Duppen⁸, R. Wadsworth⁹, N. Warr¹¹,
K. Wimmer⁴ and A.H.Wuosmaa¹²

¹ University of Manchester, UK; ² University of the West of Scotland, ³Argonne National Laboratory, USA; ⁴ Technischen Universität München, Germany; ⁵University of Liverpool, UK; ⁶ University of Surrey, UK; ⁷ Lund University, Sweden, ⁸Katholieke Universiteit Leuven, Belgium, ⁹University of York, UK; ¹⁰Technischen Universität Darmstadt, Germany; ¹¹ Universität zu Köln, Germany; and ¹²Western Michigan University, USA

Spokesperson: Sean.Freeman@manchester.ac.uk

Abstract
The potential for a HELIcal Orbit Spectrometer at ISOLDE is discussed.

HELIOS Collaboration

N.Antler¹, B B.Back¹, S.Baker¹, J.Clark¹, C. Deibel¹, .J.DiGiovine¹, S.J.Freeman³, N.J.Goodman², Z.Grelewicz¹, S.Heimsath¹, C.Hoffman¹, B.Kay¹, H.Y.Lee¹, C.J.Lister¹, S. T. Marley^{1,2}, P.Mueller¹, R.Pardo¹, K.E.Rehm¹, A.Rogers¹, J.Rohrer¹, J.P.Schiffer¹, D. Shetty², J. Snyder², M.Syrion¹, J.C.Lighthall^{1,2}, A.Vann¹, J.R.Winkelbauer^{1,2}, A.Woodard¹, A.H.Wuosmaa²

¹Argonne National Laboratory ²Western Michigan University ³University of Manchester

The (partial) HELIOS Collaboration, August 2009

