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Universal Truths

 Spectrum of hadrons (ground, excited and exotic states), and hadron elastic and 
transition form factors provide unique information about long-range interaction 
between light-quarks and distribution of hadron's characterising properties 
amongst its QCD constituents.
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Universal Truths

 Spectrum of hadrons (ground, excited and exotic states), and hadron elastic and 
transition form factors provide unique information about long-range interaction 
between light-quarks and distribution of hadron's characterising properties 
amongst its QCD constituents.

 Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating 
mechanism for visible matter in the Universe. 

Higgs mechanism is irrelevant to light-quarks.

 Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating 
mechanism for visible matter in the Universe. 

Covariance requires existence of quark orbital angular momentum in 
hadron's rest-frame wave function.

 Confinement is expressed through a violation of reflection positivity; and can 
almost be read-off from a plot of a states’ dressed-propagator.  It is intimately 
connected with DCSB.
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Universal Truths

 Challenge: understand relationship between parton properties on the light-front 
and rest frame structure of hadrons. 
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 One problem: DCSB - an established keystone of low-energy QCD and the origin 
of constituent-quark masses - has not yet been realised in the light-front 
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and rest frame structure of hadrons. 

 One problem: DCSB - an established keystone of low-energy QCD and the origin 
of constituent-quark masses - has not yet been realised in the light-front 
formulation.

 Resolution
– Whereas it might sometimes be convenient in computational truncation 

schemes to imagine otherwise, “condensates” do not exist as spacetime-
independent mass-scales that fill all spacetime. 
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schemes to imagine otherwise, “condensates” do not exist as spacetime-
independent mass-scales that fill all spacetime. 
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in their Bethe-Salpeter or 
light-front wavefunctions. 

– No qualitative difference 
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In-Hadron Condensates

 B

 Resolution
– Whereas it might sometimes be convenient in computational truncation 

schemes to imagine otherwise, “condensates” do not exist as spacetime-
independent mass-scales that fill all spacetime. 

– So-called vacuum condensates can be understood as a property of hadrons 
themselves, which is expressed, for example, 
in their Bethe-Salpeter or 
light-front wavefunctions. 

– Conjecture: Light-Front DCSB obtained via 
coherent contribution from countable infinity of 
higher Fock-state components in LF-wavefunction.

Craig Roberts, Physics Division, Argonne National Laboratory
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In-Hadron Condensates

“EMPTY space may really be empty. Though quantum theory suggests that a 
vacuum should be fizzing with particle activity, it turns out that this paradoxical 
picture of nothingness may not be needed. A calmer view of the vacuum would 
also help resolve a nagging inconsistency with dark energy, the elusive force 
thought to be speeding up the expansion of the universe.”

 Cosmological Constant: 

– Putting QCD condensates back into hadrons reduces the mismatch 
between experiment and theory by a factor of 1045

– Possibly by far more, if technicolour-like theories are the correct  
paradigm for extending the Standard Model

Craig Roberts, Physics Division, Argonne National Laboratory
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“Void that is truly empty 
solves dark energy puzzle”
Rachel Courtland, New Scientist 1st Sept. 2010



Charting the interaction 
between light-quarks

 Confinement can be related to the analytic properties of QCD's 
Schwinger functions.
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Charting the interaction 
between light-quarks

 Confinement can be related to the analytic properties of QCD's 
Schwinger functions.

 Question of light-quark confinement can be translated into the 
challenge of charting the infrared behavior 
of QCD's universal β-function
– This function may depend on the scheme chosen to renormalise the 

quantum field theory but it is unique within a given scheme.

Of course, the behaviour of the β-function on the perturbative
domain is well known.

 This is a well-posed problem whose solution is an elemental goal 
of modern hadron physics.

Craig Roberts, Physics Division, Argonne National Laboratory
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Charting the interaction 
between light-quarks

 Through QCD's Dyson-Schwinger equations (DSEs) the pointwise
behaviour of the β-function determines pattern of chiral
symmetry breaking.
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Charting the interaction 
between light-quarks

 Through QCD's Dyson-Schwinger equations (DSEs) the pointwise
behaviour of the β-function determines pattern of chiral
symmetry breaking.

 DSEs connect β-function to experimental observables.  Hence, 
comparison between computations and observations of
o Hadron mass spectrum

o Elastic and transition form factors

can be used to chart β-function’s long-range behaviour.

 Extant studies of mesons show that the properties of hadron
excited states are a great deal more sensitive to the long-range 
behaviour of the β-function than those of the ground states.

Craig Roberts, Physics Division, Argonne National Laboratory
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Charting the interaction 
between light-quarks

 Through QCD's Dyson-Schwinger equations (DSEs) the pointwise
behaviour of the β-function determines pattern of chiral
symmetry breaking.

 DSEs connect β-function to experimental observables.  Hence, 
comparison between computations and observations can be used 
to chart β-function’s long-range behaviour.

 To realise this goal, a nonperturbative symmetry-preserving DSE 
truncation is necessary:
o Steady quantitative progress is being made with a scheme that is 

systematically improvable (Bender, Roberts, von Smekal – nucl-th/9602012)

Craig Roberts, Physics Division, Argonne National Laboratory
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Charting the interaction 
between light-quarks

 Through QCD's Dyson-Schwinger equations (DSEs) the pointwise
behaviour of the β-function determines pattern of chiral
symmetry breaking.

 DSEs connect β-function to experimental observables.  Hence, 
comparison between computations and observations can be used 
to chart β-function’s long-range behaviour.

 To realise this goal, a nonperturbative symmetry-preserving DSE 
truncation is necessary:
o On the other hand, at significant qualitative advances are possible with 

symmetry-preserving kernel Ansätze that express important additional 
nonperturbative effects – M(p2) – difficult/impossible to capture in any finite 
sum of contributions.  

Craig Roberts, Physics Division, Argonne National Laboratory
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Can’t walk beyond the rainbow, but must leap!



Frontiers of Nuclear Science:
Theoretical Advances

In QCD a quark's effective mass 
depends on its momentum. The 
function describing this can be 
calculated and is depicted here.  
Numerical simulations of lattice QCD
(data, at two different bare masses) 
have confirmed model predictions 
(solid curves) that the vast bulk of the 
constituent mass of a light quark 
comes from a cloud of gluons that are 
dragged along by the quark as it 
propagates. In this way, a quark that 
appears to be absolutely massless at 
high energies (m =0, red curve) 
acquires a large constituent mass at 
low energies.

Craig Roberts, Physics Division, Argonne National Laboratory
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Hint of lattice-QCD support
for DSE prediction of violation 
of reflection positivity
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In QCD a quark's effective mass 
depends on its momentum. The 
function describing this can be 
calculated and is depicted here.  
Numerical simulations of lattice QCD
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(solid curves) that the vast bulk of the 
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Jlab 12GeV: Scanned by 2<Q2<9 GeV2

elastic & transition form factors.



Gap Equation
General Form
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Gap Equation
General Form

 Dμν(k) – dressed-gluon propagator

 Γν(q,p) – dressed-quark-gluon vertex
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Gap Equation
General Form

 Dμν(k) – dressed-gluon propagator

 Γν(q,p) – dressed-quark-gluon vertex

 Suppose one has in hand – from anywhere – the exact 
form of the dressed-quark-gluon vertex 

What is the associated symmetry-
preserving Bethe-Salpeter kernel?!

Craig Roberts, Physics Division, Argonne National Laboratory
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Bethe-Salpeter Equation
Bound-State DSE

 K(q,k;P) – fully amputated, two-particle irreducible, 

quark-antiquark scattering kernel

 Textbook material.

 Compact.  Visually appealing.  Correct

Craig Roberts, Physics Division, Argonne National Laboratory
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Bethe-Salpeter Equation
Bound-State DSE

 K(q,k;P) – fully amputated, two-particle irreducible, 

quark-antiquark scattering kernel

 Textbook material.

 Compact.  Visually appealing.  Correct

Blocked progress for more than 60 years.

Craig Roberts, Physics Division, Argonne National Laboratory
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Bethe-Salpeter Equation
General Form

 Equivalent exact bound-state equation but in this form 

K(q,k;P) → Λ(q,k;P)

which is completely determined by dressed-quark self-energy

 Enables derivation of a Ward-Takahashi identity for Λ(q,k;P)

Craig Roberts, Physics Division, Argonne National Laboratory
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Ward-Takahashi Identity
Bethe-Salpeter Kernel

 Now, for first time, it’s possible to formulate an Ansatz for 

Bethe-Salpeter kernel given any form for the dressed-quark-
gluon vertex by using this identity

Craig Roberts, Physics Division, Argonne National Laboratory
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Ward-Takahashi Identity
Bethe-Salpeter Kernel

 Now, for first time, it’s possible to formulate an Ansatz for 

Bethe-Salpeter kernel given any form for the dressed-quark-
gluon vertex by using this identity

 This enables the identification and elucidation of a wide range 
of novel consequences of DCSB

Craig Roberts, Physics Division, Argonne National Laboratory
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Lei Chang and C.D. Roberts
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Phys. Rev. Lett. 103 (2009) 081601
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Dressed-quark anomalous
magnetic moments

 Schwinger’s result for QED: 

Craig Roberts, Physics Division, Argonne National Laboratory
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Dressed-quark anomalous
magnetic moments

 Schwinger’s result for QED: 

 pQCD: two diagrams
o (a) is QED-like

o (b) is only possible in QCD – involves 3-gluon vertex

 Analyse (a) and (b)
o (b) vanishes identically: the 3-gluon vertex does not contribute 

to a quark’s anomalous chromomag. moment at leading-order
o (a) Produces a finite result: “ – ⅙ αs/2π ” 

~ (– ⅙) QED-result

Craig Roberts, Physics Division, Argonne National Laboratory
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Dressed-quark anomalous
magnetic moments

 Schwinger’s result for QED: 

 pQCD: two diagrams
o (a) is QED-like

o (b) is only possible in QCD – involves 3-gluon vertex

 Analyse (a) and (b)
o (b) vanishes identically: the 3-gluon vertex does not contribute 

to a quark’s anomalous chromomag. moment at leading-order
o (a) Produces a finite result: “ – ⅙ αs/2π ” 

~ (– ⅙) QED-result

 But, in QED and QCD, the anomalous chromo- and electro-
magnetic moments vanish identically in the chiral limit!
Craig Roberts, Physics Division, Argonne National Laboratory
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Dressed-quark anomalous
magnetic moments

 Interaction term that describes magnetic-moment coupling to 
gauge field
o Straightforward to show that it mixes left ↔ right

o Thus, explicitly violates chiral symmetry

Craig Roberts, Physics Division, Argonne National Laboratory
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Dressed-quark anomalous
magnetic moments

 Interaction term that describes magnetic-moment coupling to 
gauge field
o Straightforward to show that it mixes left ↔ right

o Thus, explicitly violates chiral symmetry

 Follows that in fermion’s e.m. current

γµF1 does cannot mix with σμνqνF2

No Gordon Identity
o Hence massless fermions cannot not possess a measurable 

chromo- or electro-magnetic moment

Craig Roberts, Physics Division, Argonne National Laboratory
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Dressed-quark anomalous
magnetic moments

 Interaction term that describes magnetic-moment coupling to 
gauge field
o Straightforward to show that it mixes left ↔ right

o Thus, explicitly violates chiral symmetry

 Follows that in fermion’s e.m. current

γµF1 does cannot mix with σμνqνF2

No Gordon Identity
o Hence massless fermions cannot not possess a measurable 

chromo- or electro-magnetic moment

 But what if the chiral symmetry is dynamically 
broken, strongly, as it is in QCD?
Craig Roberts, Physics Division, Argonne National Laboratory
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Dressed-quark anomalous
magnetic moments

 Three strongly-dressed and essentially-

nonperturbative contributions to dressed-quark-gluon vertex:

Craig Roberts, Physics Division, Argonne National Laboratory
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•Appearance driven by STI
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Ball-Chiu term
•Vanishes if no DCSB
•Appearance driven by STI

Anom. chrom. mag. mom.
contribution to vertex
•Similar properties to BC term
•Strength commensurate with lattice-QCD

Skullerud, Bowman, Kizilersu et al.
hep-ph/0303176
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magnetic moments

 Three strongly-dressed and essentially-

nonperturbative contributions to dressed-quark-gluon vertex:

Craig Roberts, Physics Division, Argonne National Laboratory

45

DCSB

Ball-Chiu term
•Vanishes if no DCSB
•Appearance driven by STI

Anom. chrom. mag. mom.
contribution to vertex
•Similar properties to BC term
•Strength commensurate with lattice-QCD

Skullerud, Bowman, Kizilersu et al.
hep-ph/0303176

Role and importance is
Novel discovery
•Essential to recover pQCD
•Constructive interference with Γ5

Lei Chang, Yu-Xin Liu and Craig D. Roberts
arXiv:1009.3458 [nucl-th]



Dressed-quark anomalous
magnetic moments

Craig Roberts, Physics Division, Argonne National Laboratory
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Formulated and solved general
Bethe-Salpeter equation 
Obtained dressed

electromagnetic vertex 
Confined quarks 

don’t have a mass-shell
oCan’t unambiguously define

magnetic moments
oBut can define

magnetic moment distribution

Lei Chang, Yu-Xin Liu and Craig D. Roberts
arXiv:1009.3458 [nucl-th]



Dressed-quark anomalous
magnetic moments
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Formulated and solved general
Bethe-Salpeter equation 
Obtained dressed

electromagnetic vertex 
Confined quarks 

don’t have a mass-shell
oCan’t unambiguously define

magnetic moments
oBut can define

magnetic moment distribution

Lei Chang, Yu-Xin Liu and Craig D. Roberts
arXiv:1009.3458 [nucl-th]

ME κACM κAEM

Full vertex 0.44 -0.22 0.45

Rainbow-ladder 0.35 0 0.048

AEM is opposite in sign but of 
roughly equal magnitude as ACM

o Potentially important for 
transition form factors, etc.

o Muon g-2 ?



Dressed Vertex 
& Meson Spectrum

 Splitting known experimentally for more than 35 years

 Hitherto, no explanation

Craig Roberts, Physics Division, Argonne National Laboratory

48

Experiment Rainbow-
ladder

One-loop 
corrected

Ball-Chiu Full vertex

a1 1230

ρ 770

Mass splitting 455



Dressed Vertex 
& Meson Spectrum

 Splitting known experimentally for more than 35 years

 Hitherto, no explanation

 Systematic symmetry-preserving, Poincaré-covariant DSE 
truncation scheme of nucl-th/9602012.
o Never better than ∼ ⅟₄ of splitting

 Constructing kernel skeleton-diagram-by-diagram, 

DCSB cannot be faithfully expressed: 

Full impact of M(p2) cannot be realised!Craig Roberts, Physics Division, Argonne National Laboratory
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Experiment Rainbow-
ladder

One-loop 
corrected

Ball-Chiu Full vertex

a1 1230 759 885

ρ 770 644 764

Mass splitting 455 115 121



Dressed Vertex 
& Meson Spectrum

 Fully consistent treatment of Ball-Chiu vertex
o Retain λ3 – term but ignore Γ4 & Γ5

o Some effects of DCSB built into vertex & Bethe-Salpeter kernel
 Big impact on σ – π complex

 But, clearly, not the complete answer.

Craig Roberts, Physics Division, Argonne National Laboratory
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ρ 770 644 764 924
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Dressed Vertex 
& Meson Spectrum

 Fully consistent treatment of Ball-Chiu vertex
o Retain λ3 – term but ignore Γ4 & Γ5

o Some effects of DCSB built into vertex & Bethe-Salpeter kernel
 Big impact on σ – π complex

 But, clearly, not the complete answer.

 Fully-consistent treatment of complete vertex Ansatz

Craig Roberts, Physics Division, Argonne National Laboratory
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One-loop 
corrected

Ball-Chiu Full vertex

a1 1230 759 885 1066 1230

ρ 770 644 764 924 745

Mass splitting 455 115 121 142 485



Dressed Vertex 
& Meson Spectrum

 Fully-consistent treatment of complete vertex Ansatz

 Subtle interplay between competing effects, which can only 
now be explicated

 Promise of first reliable prediction of light-quark hadron
spectrum, including the so-called hybrid and exotic states.

Craig Roberts, Physics Division, Argonne National Laboratory
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Experiment Rainbow-
ladder

One-loop 
corrected

Ball-Chiu Full vertex

a1 1230 759 885 1066 1230

ρ 770 644 764 924 745

Mass splitting 455 115 121 142 485



Pion’s Golderberger
-Treiman relation

Craig Roberts, Physics Division, Argonne National Laboratory
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Maris, Roberts and Tandy
nucl-th/9707003

 Pion’s Bethe-Salpeter amplitude

 Dressed-quark propagator



Pion’s Golderberger
-Treiman relation

Craig Roberts, Physics Division, Argonne National Laboratory
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Maris, Roberts and Tandy
nucl-th/9707003

 Pion’s Bethe-Salpeter amplitude

 Dressed-quark propagator

 Axial-vector Ward-Takahashi identity entails

Exact in
Chiral QCD



Pion’s Golderberger
-Treiman relation

Craig Roberts, Physics Division, Argonne National Laboratory
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Maris, Roberts and Tandy
nucl-th/9707003

 Pion’s Bethe-Salpeter amplitude

 Dressed-quark propagator

 Axial-vector Ward-Takahashi identity entails

Pseudovector components
necessarily nonzero. 

Cannot be ignored!

Exact in
Chiral QCD



Pion’s GT relation
Implications for observables?

Craig Roberts, Physics Division, Argonne National Laboratory

56

Maris and Roberts
nucl-th/9804062



Pion’s GT relation
Implications for observables?

Craig Roberts, Physics Division, Argonne National Laboratory
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Maris and Roberts
nucl-th/9804062

Pseudovector components
dominate in ultraviolet:

(Q/2)2 = 2 GeV2

pQCD point for M(p2)

→ pQCD at Q2 = 8GeV2



Pion’s GT relation
Implications for observables?

Craig Roberts, Physics Division, Argonne National Laboratory
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Maris and Roberts
nucl-th/9804062

Pseudovector components
dominate in ultraviolet:

(Q/2)2 = 2 GeV2

pQCD point for M(p2)

→ pQCD at Q2 = 8GeV2



Pion’s GT relation

Craig Roberts, Physics Division, Argonne National Laboratory
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Guttierez, Bashir, Cloët, Roberts
arXiv:1002.1968 [nucl-th]

 Pion’s Bethe-Salpeter amplitude

 Dressed-quark propagator



Pion’s GT relation
Contact interaction

Craig Roberts, Physics Division, Argonne National Laboratory
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Guttierez, Bashir, Cloët, Roberts
arXiv:1002.1968 [nucl-th]

 Pion’s Bethe-Salpeter amplitude

 Dressed-quark propagator

 Bethe-Salpeter amplitude can’t 
depend on relative momentum; propagator can’t be 
momentum-dependent

1           MQ



Pion’s GT relation
Contact interaction

Craig Roberts, Physics Division, Argonne National Laboratory
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Guttierez, Bashir, Cloët, Roberts
arXiv:1002.1968 [nucl-th]

 Pion’s Bethe-Salpeter amplitude

 Dressed-quark propagator

 Bethe-Salpeter amplitude can’t 
depend on relative momentum; propagator can’t be 
momentum-dependent

 Solved gap and Bethe-Salpeter equations
P2=0: MQ=0.4GeV, Eπ=0.098, Fπ=0.5MQ
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Guttierez, Bashir, Cloët, Roberts
arXiv:1002.1968 [nucl-th]

 Pion’s Bethe-Salpeter amplitude

 Dressed-quark propagator

 Bethe-Salpeter amplitude can’t 
depend on relative momentum; propagator can’t be 
momentum-dependent

 Solved gap and Bethe-Salpeter equations
P2=0: MQ=0.4GeV, Eπ=0.098, Fπ=0.5MQ

1           MQ

Nonzero and 
significant
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Guttierez, Bashir, Cloët, Roberts
arXiv:1002.1968 [nucl-th]

 Pion’s Bethe-Salpeter amplitude

 Dressed-quark propagator

Asymptotic form of Fπ(Q2)
Eπ

2(P)→ Fπ
em(Q2) = MQ

2/Q2

1           MQ

For 20+ years it was imagined 
that contact-interaction produced 
a result that’s indistinguishable 
From pQCD counting rule
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Guttierez, Bashir, Cloët, Roberts
arXiv:1002.1968 [nucl-th]

 Pion’s Bethe-Salpeter amplitude

 Dressed-quark propagator

Asymptotic form of Fπ(Q2)
Eπ

2(P)→ Fπ
em(Q2) = MQ

2/Q2

Eπ(P) Fπ(P) – cross-term 

→ Fπ
em(Q2) = (Q2/MQ

2) * [Eπ(P)/Fπ(P)] * Eπ
2(P)-term = CONSTANT!

1           MQ

For 20+ years it was imagined 
that contact-interaction produced 
a result that’s indistinguishable 
From pQCD counting rule
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Guttierez, Bashir, Cloët, Roberts
arXiv:1002.1968 [nucl-th]

 QCD-based DSE prediction: D(x-y) =

produces M(p2)~1/p2

 cf. contact-interaction: 

produces M(p2)=constant
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Guttierez, Bashir, Cloët, Roberts
arXiv:1002.1968 [nucl-th]

 QCD-based DSE prediction: D(x-y) =

produces M(p2)~1/p2

 cf. contact-interaction: 

produces M(p2)=constant

)( 2

1

yx

)(~)( 4 yxyxD  

 Single mass parameter 
in both studies

 Same predictions for 
Q2=0 observables

 Disagreement >20% 
for Q2>MQ

2
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H.L.L. Roberts, C.D. Roberts, Bashir, Guttierez, Tandy
arXiv:1009.0067 [nucl-th]

 QCD-based DSE prediction: D(x-y) =

produces M(p2)~1/p2

 cf. contact-interaction: 

produces M(p2)=constant
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H.L.L. Roberts, C.D. Roberts, Bashir, Guttierez, Tandy
arXiv:1009.0067 [nucl-th]

 QCD-based DSE prediction: D(x-y) =

produces M(p2)~1/p2

 cf. contact-interaction: 

produces M(p2)=constant

)( 2

1

yx

)(~)( 4 yxyxD  

pQCD
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H.L.L. Roberts, C.D. Roberts, Bashir, Guttierez, Tandy
arXiv:1009.0067 [nucl-th]

 QCD-based DSE prediction: D(x-y) =

produces M(p2)~1/p2

 cf. contact-interaction: 

produces M(p2)=constant

)( 2

1

yx

)(~)( 4 yxyxD  

 No fully-self-consistent
treatment of the pion can 
reproduce the BaBar data.
 All produce monotonically-

increasing concave functions.

 BaBar data not a true measure
of γ* γ → π0

 Likely source of error is 
misidentification of π0 π0

events where 2nd π0 isn’t seen.

pQCD
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 M(p2) – effects have enormous impact on meson properties.

Must be included in description and prediction of baryon 
properties.
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 M(p2) – effects have enormous impact on meson properties.

Must be included in description and prediction of baryon 
properties.

 M(p2) is essentially a quantum field theoretical effect. In quantum 
field theory 
Meson appears as pole in four-point quark-antiquark Green function 

→ Bethe-Salpeter Equation

 Nucleon appears as a pole in a six-point quark Green function

→ Faddeev Equation.
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 M(p2) – effects have enormous impact on meson properties.

Must be included in description and prediction of baryon 
properties.

 M(p2) is essentially a quantum field theoretical effect. In quantum 
field theory 
Meson appears as pole in four-point quark-antiquark Green function 

→ Bethe-Salpeter Equation

 Nucleon appears as a pole in a six-point quark Green function

→ Faddeev Equation.

 Poincaré covariant Faddeev equation sums all possible exchanges 
and interactions that can take place between three dressed-quarks

 Tractable equation is founded on observation that an interaction 
which describes colour-singlet mesons also generates nonpointlike
quark-quark (diquark) correlations in the colour-antitriplet channel

R.T. Cahill et al.,
Austral. J. Phys. 42 (1989) 129-145
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 Linear, Homogeneous Matrix equation

R.T. Cahill et al.,
Austral. J. Phys. 42 (1989) 129-145

diquark

quark
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 Linear, Homogeneous Matrix equation
Yields wave function (Poincaré Covariant Faddeev Amplitude) 

that describes quark-diquark relative motion within the nucleon

R.T. Cahill et al.,
Austral. J. Phys. 42 (1989) 129-145

diquark

quark

quark exchange
ensures Pauli statistics
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 Linear, Homogeneous Matrix equation
Yields wave function (Poincaré Covariant Faddeev Amplitude) 

that describes quark-diquark relative motion within the nucleon

 Scalar and Axial-Vector Diquarks . . . 
Both have “correct” parity and “right” masses

 In Nucleon’s Rest Frame Amplitude has 

s−, p− & d−wave correlations

R.T. Cahill et al.,
Austral. J. Phys. 42 (1989) 129-145

diquark

quark

quark exchange
ensures Pauli statistics
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 Mesons & Diquarks

H.L.L. Roberts, L. Chang and C.D. Roberts
arXiv:1007.4318 [nucl-th]
H.L.L. Roberts, L. Chang, I.C. Cloët and C.D. Roberts
arXiv:1007.3566 [nucl-th]

m0+ m1+ m0- m1- mπ mρ mσ ma1

0.72 1.01 1.17 1.31 0.14 0.80 1.06 1.23



Spectrum of some known 
u- & d-quark baryons

Craig Roberts, Physics Division, Argonne National Laboratory

78

 Mesons & Diquarks
Cahill, Roberts, Praschifka: Phys.Rev. D36 (1987) 2804

Proof of mass ordering: diquark-mJ+ > meson-mJ-

H.L.L. Roberts, L. Chang and C.D. Roberts
arXiv:1007.4318 [nucl-th]
H.L.L. Roberts, L. Chang, I.C. Cloët and C.D. Roberts
arXiv:1007.3566 [nucl-th]
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Proof of mass ordering: diquark-mJ+ > meson-mJ-

H.L.L. Roberts, L. Chang and C.D. Roberts
arXiv:1007.4318 [nucl-th]
H.L.L. Roberts, L. Chang, I.C. Cloët and C.D. Roberts
arXiv:1007.3566 [nucl-th]

m0+ m1+ m0- m1- mπ mρ mσ ma1

0.72 1.01 1.17 1.31 0.14 0.80 1.06 1.23

 Baryons: ground-states and 1st radial exciations
mN mN* mN(⅟₂) mN*(⅟₂-) mΔ mΔ* mΔ(3⁄₂-) mΔ*(3⁄₂-)

DSE 1.05 1.73 1.86 2.09 1.33 1.85 1.98 2.16

EBAC 1.76 1.80 1.39 1.98
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 Mesons & Diquarks
Cahill, Roberts, Praschifka: Phys.Rev. D36 (1987) 2804

Proof of mass ordering: diquark-mJ+ > meson-mJ-

H.L.L. Roberts, L. Chang and C.D. Roberts
arXiv:1007.4318 [nucl-th]
H.L.L. Roberts, L. Chang, I.C. Cloët and C.D. Roberts
arXiv:1007.3566 [nucl-th]

m0+ m1+ m0- m1- mπ mρ mσ ma1

0.72 1.01 1.17 1.31 0.14 0.80 1.06 1.23

 Baryons: ground-states and 1st radial exciations
mN mN* mN(⅟₂) mN*(⅟₂-) mΔ mΔ* mΔ(3⁄₂-) mΔ*(3⁄₂-)

DSE 1.05 1.73 1.86 2.09 1.33 1.85 1.98 2.16

EBAC 1.76 1.80 1.39 1.98
 mean-|relative-error| = 2%-Agreement

DSE dressed-quark-core masses cf. Excited Baryon Analysis Center (JLab) 
bare masses is significant ’cause no attempt was made to ensure this. 
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 Mesons & Diquarks
Cahill, Roberts, Praschifka: Phys.Rev. D36 (1987) 2804

Proof of mass ordering: diquark-mJ+ > meson-mJ-

H.L.L. Roberts, L. Chang and C.D. Roberts
arXiv:1007.4318 [nucl-th]
H.L.L. Roberts, L. Chang, I.C. Cloët and C.D. Roberts
arXiv:1007.3566 [nucl-th]

m0+ m1+ m0- m1- mπ mρ mσ ma1

0.72 1.01 1.17 1.31 0.14 0.80 1.06 1.23

 Baryons: ground-states and 1st radial exciations
mN mN* mN(⅟₂) mN*(⅟₂-) mΔ mΔ* mΔ(3⁄₂-) mΔ*(3⁄₂-)

DSE 1.05 1.73 1.86 2.09 1.33 1.85 1.98 2.16

EBAC 1.76 1.80 1.39 1.98
 mean-|relative-error| = 2%-Agreement

DSE dressed-quark-core masses cf. Excited Baryon Analysis Center (JLab) 
bare masses is significant ’cause no attempt was made to ensure this. 

1st radial
Excitation of
N(1535)?
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 Photon-baryon vertex
Oettel, Pichowsky and von Smekal, nucl-th/9909082

I.C. Cloët, C.D. Roberts, et al.
arXiv:0812.0416 [nucl-th]
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 Photon-baryon vertex
Oettel, Pichowsky and von Smekal, nucl-th/9909082

I.C. Cloët, C.D. Roberts, et al.
arXiv:0812.0416 [nucl-th]

 “Survey of nucleon 
electromagnetic form 
factors” 
– unification of meson and 
baryon observables; and 
prediction of nucleon elastic
form factors to 15 GeV2
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 New JLab data: 
S. Riordan et al., 
arXiv:1008.1738 [nucl-ex]

I.C. Cloët, C.D. Roberts, et al.
arXiv:0812.0416 [nucl-th]
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 New JLab data: 
S. Riordan et al., 
arXiv:1008.1738 [nucl-ex]

 DSE-prediction

I.C. Cloët, C.D. Roberts, et al.
arXiv:0812.0416 [nucl-th]
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This evolution is
very sensitive to
momentum-dependence
of dressed-quark 
propagator
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Brooks, Bodek, Budd, Arrington 
fit to data: hep-ex/0602017
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 New JLab data: 
S. Riordan et al., 
arXiv:1008.1738 [nucl-ex]

 DSE-prediction

I.C. Cloët, C.D. Roberts, et al.
arXiv:0812.0416 [nucl-th]
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Location of zero 
measures relative 
strength of scalar    
and axial-vector 
qq-correlations

Brooks, Bodek, Budd, Arrington 
fit to data: hep-ex/0602017
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Neutron Structure
Function at high x

SU(6) symmetry

pQCD

0+ qq only

Reviews:  
S. Brodsky et al.

NP B441 (1995)
W. Melnitchouk & A.W.Thomas

PL B377 (1996) 11
N. Isgur, PRD 59 (1999)
R.J. Holt & C.D. Roberts

RMP (2010)
DSE: 0+ & 1+ qq

I.C. Cloët, C.D. Roberts, et al.
arXiv:0812.0416 [nucl-th]
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Epilogue

 Dynamical chiral symmetry breaking (DCSB) is a reality
o Expressed in M(p2), with observable signals in experiment

 Poincaré covariance

Crucial in description of contemporary data

 Fully-self-consistent treatment of an interaction

Essential if experimental data is truly to be understood.

 Dyson-Schwinger equations: 
o single framework, with IR model-input turned to advantage, 

“almost unique in providing unambiguous path from a defined 
interaction → Confinement & DCSB → Masses → radii → form 
factors → distribution functions → etc.” McLerran & Pisarski

arXiv:0706.2191 [hep-ph]


