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Answer for the pion

Two → Infinitely many . . .
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quantum
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. . .
momentum
-dependent
dressing
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Pion Form Factor

Solve Gap Equation
⇒ Dressed-Quark Propagator, S(p)

Σ
=

D

γ
ΓS
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Pion Form Factor

Use that to Complete Bethe Salpeter Kernel, K

Solve Homogeneous Bethe-Salpeter Equation for Pion
Bethe-Salpeter Amplitude, Γπ

Solve Inhomogeneous Bethe-Salpeter Equation for
Dressed-Quark-Gluon Vertex, Γµ
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Now have all elements for Impulse Approximation to
Electromagnetic Pion Form factor

Γπ(k;P )

Γµ(k;P )

S(p)
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Pion Form Factor

Now have all elements for Impulse Approximation to
Electromagnetic Pion Form factor

Γπ(k;P )

Γµ(k;P )

S(p)

Evaluate this final,
three-dimensional integral
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DSE - Krassnigg

Ab initio calculation into timelike region
Deeper than ground-state ρ-meson pole
ρ-meson not put in “by hand” – generated dynamically as a bound-
state of dressed-quark and dressed-antiquark
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Dimensionless product: rπ fπ

Improved rainbow-ladder interaction

Repeating Fπ(Q2) calculation

Great strides towards placing nucleon studies on same

footing as mesons
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Improved rainbow-ladder interaction

Repeating Fπ(Q2) calculation

Experimentally: rπfπ = 0.315 ± 0.005

DSE prediction

Lattice results

– James Zanotti [UK QCD]

Fascinating result:

DSE and Lattice

– Experimental value

obtains independent of

current-quark mass.
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Dimensionless product: rπ fπ

Improved rainbow-ladder interaction

Repeating Fπ(Q2) calculation

Experimentally: rπfπ = 0.315 ± 0.005

DSE prediction

Fascinating result:

DSE and Lattice

– Experimental value

obtains independent of

current-quark mass.

Potentially useful

but must first be understood.
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Deep-inelastic scattering

Looking for Quarks

Signature Experiment for QCD:

Discovery of Quarks at SLAC

Cross-section: Interpreted as Measurement of
Momentum-Fraction Prob. Distribution: q(x), g(x)
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Pion’s valence quark distn

π is Two-Body System: “Easiest” Bound State in QCD

However, NO π Targets!

Existing Measurement Inferred from Drell-Yan:

πN → µ+µ−X

Proposal (Holt & Reimer, ANL, nu-ex/0010004)

e−5GeV – p25 GeV Collider → Accurate “Measurement”

p n

πγ
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Handbag diagrams

Bjorken Limit: q2 → ∞ , P · q → −∞

but x := − q2

2P · q fixed.

Numerous algebraic simplifications
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Resolving Scale: q0 = 0.54GeV = 1/(0.37 fm)
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Calc. uV (x) cf. Drell-Yan data

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

xu
v(

x)

x u v(x;q 0=0.54GeV)
x u v(x;q=2GeV)
E615 πN Drell−Yan 4GeV
SMRS 92 Fit
x u v(x;q=4GeV)
Fit x

α
(1−x)

β

H
ec

ht
, R

ob
er

ts
, S

ch
m

id
t, 

nu
cl

−
th

/0
00

80
49

q =

2GeV Calc. Fit, 92 Latt., 97

〈x〉q 0.24 0.24 ± 0.01 0.27 ± 0.01

〈x2〉q 0.10 0.10 ± 0.01 0.11 ± 0.3

〈x3〉q 0.050 0.058 ± 0.004 0.048 ± 0.020
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Extant theory vs. experiment

K. Wijersooriya, P. Reimer and R. Holt,

nu-ex/0509012 ... Phys. Rev. C (Rapid)
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New Challenges

Next Steps . . . Applications to excited states and

axial-vector mesons, e.g., will improve understanding of

confinement interaction between light-quarks.

Move on to the problem of a symmetry preserving treatment

of hybrids and exotics.
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New Challenges

Another Direction . . . Also want/need information about

three-quark systems

With this problem . . . current expertise at approximately

same point as studies of mesons in 1995.

Namely . . . Model-building and Phenomenology,

constrained by the DSE results outlined already.
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Nucleon . . .
Three-body Problem?

What is the picture in quantum field theory?

Three →
infinitely
many!
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Faddeev equation

=
aΨ

P

p
q

p
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Γ−a

p
d

p
q

bΨ
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q

Linear, Homogeneous Matrix equation

Yields wave function (Poincaré Covariant Faddeev

Amplitude) that describes quark-diquark relative motion

within the nucleon

Scalar and Axial-Vector Diquarks . . . In Nucleon’s Rest

Frame Amplitude has . . . s−, p− & d−wave correlations
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Diquark correlations

QUARK-QUARK
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Diquark correlations

QUARK-QUARK

Same interaction that

describes mesons also

generates three coloured

quark-quark correlations:

blue–red, blue–green,

green–red

Confined . . . Does not

escape from within baryon.

Scalar is isosinglet,

Axial-vector is isotriplet

DSE and lattice-QCD

m[ud]
0+

= 0.74 − 0.82

m(uu)
1+

= m(ud)
1+

= m(dd)
1+

= 0.95 − 1.02
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Nucleon EM Form Factors: A Précis
Höll, et al. : nu-th/0412046 & nu-th/0501033
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Cloët, et al. :
arXiv:0710.2059, arXiv:0710.5746 & arXiv:0804.3118

• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H − M calc

H ]2

[M exp
H ]2

)1/2

= 2%

(Oettel, Hellstern, Alkofer, Reinhardt: nucl-th/9805054)
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• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H − M calc

H ]2

[M exp
H ]2

)1/2

= 2%

• But is that good?

• Cloudy Bag: δMπ−loop
+ = −300 to −400 MeV!

• Critical to anticipate pion cloud effects

Roberts, Tandy, Thomas, et al., nu-th/02010084
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(2π)4
g2
PV (P, k)∆π((P − k)2)

× γ · (P − k)γ5 G(k) γ · (P − k)γ5

= iγ · k [A(k2) − 1] + B(k2)

• Pseudovector coupling

• Completely equivalent to pseudoscalar coupling

IF that is treated completely

• Tadpole contribution can’t be neglected

(Hecht, Oettel, Roberts, Schmidt, Tandy, Thomas: nucl-th/0201084)
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∫

d4k

(2π)4
g2
PV (P, k) ∆π((P − k)2)

× γ · (P − k)γ5 G(k) γ · (P − k)γ5

= iγ · k [A(k2) − 1] + B(k2)

gPV (P, k), πN vertex function

Calculated using Γπ and ΨN

Always soft: Monopole λ ∼ 0.6 GeV

Corresponds to range rλ ∼ 0.8 fm

. . . pion cloud does not

penetrate deeply within nucleon. 0.0 0.5 1.0 1.5
k (GeV)

0.0

0.2
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u
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Nucleon’s self-energy - pion loop

Σ(P ) = 3

∫

d4k

(2π)4
g2
PV (P, k)∆π((P − k)2)

× γ · (P − k)γ5 G(k) γ · (P − k)γ5

= iγ · k [A(k2) − 1] + B(k2)

G(k) = 1/[iγ · k + M + Σ(P )] Pole Position Not

= −iγ · k σV(k2) + σS(k2) Known a priori

Mass shift calculated via self-consistent solution
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Σ(P ) = 3

∫

d4k

(2π)4
g2
PV (const.)∆π((P − k)2)

× γ · (P − k)γ5 G(k) γ · (P − k)γ5

= iγ · k [A(k2) − 1] + B(k2)

Obtain Integral Equation Kernels
∫

dΩk f((P − k)2) =
2

π

∫ 1

−1
dz
√

1 − z2 f(P 2 + k2 − 2Pkz)

E.g.
ωB(P 2, k2) =

∫

dΩk
(P − k)2

(P − k)2 + m2
π

= 1 − 2m2
π

a +
√

a2 − b2
,

a = P 2 + k2 + m2
π, b = 2Pk
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Σ(P ) = 3

∫

d4k

(2π)4
g2
PV (P, k)∆π((P − k)2)

× γ · (P − k)γ5 G(k) γ · (P − k)γ5

= iγ · k [A(k2) − 1] + B(k2)

But gPV = gPV (P 2, k2, P · k)

Therefore, In General, Kernel only known Numerically

Complicates analysis . . .

locating, incorporating poles in integrand
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Let’s look what happens when mπ → 0

Minkowski Space

Pseudovector Coupling

One-loop nucleon self energy

Σ(P) = 3i
g2

4M2

∫

d4k

(2π)4
∆(k2, m2

π) 6kγ5 G0(P − k) 6kγ5 .

This integral is divergent. Assume a Poincaré covariant regularisation,
characterised by a mass-scale λ
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Let’s look what happens when mπ → 0

Minkowski Space

Pseudovector Coupling

One-loop nucleon self energy

Σ(P) = 3i
g2

4M2

∫

d4k

(2π)4
∆(k2, m2

π) 6kγ5 G0(P − k) 6kγ5 .

This integral is divergent. Assume a Poincaré covariant regularisation,
characterised by a mass-scale λ

Decompose nucleon propagator into positive and negative energy components

G0(P ) =
1

6P − M0

= G+

0
(P ) + G−

0
(P )

=
M

ωN ( ~P )

[

Λ+( ~P )
1

P0 − ωN ( ~P ) + iε
+ Λ−( ~P )

1

P0 + ωN ( ~P ) − iε

]

(4)

ω2
N (~P) = ~P2 + M2, and Λ±(~P) = ( 6 P̃ ± M)/(2M), P̃ = (ω(~P), ~P)
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One-loop nucleon self energy

Σ(P) = 3i
g2

4M2

∫

d4k

(2π)4
∆(k2, m2

π) 6kγ5 G0(P − k) 6kγ5 .

Shift in the mass of a positive energy nucleon nucleon:

δM+ = 1
2
trD

[

Λ+(~P = 0) Σ(P0 = M, ~P = 0)
]
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Σ(P) = 3i
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4M2

∫

d4k

(2π)4
∆(k2, m2

π) 6kγ5 G0(P − k) 6kγ5 .

Shift in the mass of a positive energy nucleon nucleon:

δM+ = 1
2
trD

[

Λ+(~P = 0) Σ(P0 = M, ~P = 0)
]

Focus on positive energy nucleon’s contribution to the loop integral; i.e.,
∆(k) G+(P − k), which we denote: δF M

+
+
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One-loop nucleon self energy

Σ(P) = 3i
g2

4M2

∫

d4k

(2π)4
∆(k2, m2

π) 6kγ5 G0(P − k) 6kγ5 .

Shift in the mass of a positive energy nucleon nucleon:

δM+ = 1
2
trD

[

Λ+(~P = 0) Σ(P0 = M, ~P = 0)
]

Focus on positive energy nucleon’s contribution to the loop integral; i.e.,
∆(k) G+(P − k), which we denote: δF M

+
+

To evaluate k0 integral, close contour in lower half-plane, thereby encircling
only the positive-energy pion pole.

δF M
+
+ = −3g2

∫

d3k

(2π)3
ωN (~k2) − M0

4 ωN (~k2)

1

ωπ(~k2) [ωπ(~k2) + ωN (~k2) − M0]
(9)
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δF M
+
+ = −3g2

∫

d3k

(2π)3
ωN (~k2) − M0

4 ωN (~k2)

1

ωπ(~k2) [ωπ(~k2) + ωN (~k2) − M0]
(14)

On the domain for which the regularised integral has significant support, assume
that M0 is very much greater than all other mass scales.

ωN (~k2) − M ≈
~k2

2 M
(15)
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+
+ = −3g2

∫

d3k

(2π)3
ωN (~k2) − M0

4 ωN (~k2)

1

ωπ(~k2) [ωπ(~k2) + ωN (~k2) − M0]
(18)

On the domain for which the regularised integral has significant support, assume
that M0 is very much greater than all other mass scales.

ωN (~k2) − M ≈
~k2

2 M
(19)

Then δF M
+
+ ≈ −3g2

∫

d3k

(2π)3

~k2

8 M2

1

ω2
λi

(~k2)
(20)
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δF M
+
+ = −3g2

∫

d3k

(2π)3
ωN (~k2) − M0

4 ωN (~k2)

1

ωπ(~k2) [ωπ(~k2) + ωN (~k2) − M0]
(22)

On the domain for which the regularised integral has significant support, assume
that M0 is very much greater than all other mass scales.

ωN (~k2) − M ≈
~k2

2 M
(23)

Then δF M
+
+ ≈ −3g2

∫

d3k

(2π)3

~k2

8 M2

1

ω2
λi

(~k2)
(24)

So that
d2 δF M

+
+

(dm2
π)2

≈ −
3g2

4M2

∫

d3k

(2π)3

~k2

ω6
π(~k2)

= −
9

128π

g2

M2

1

mπ
. (25)

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 48 – p. 23/48



First Contents Back Conclusion

Nucleon Self Energy: Chiral Limit

Hecht, et al., nu-th/0201084

δF M
+
+ = −3g2

∫
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(2π)3
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4 ωN (~k2)

1

ωπ(~k2) [ωπ(~k2) + ωN (~k2) − M0]
(26)

On the domain for which the regularised integral has significant support, assume
that M0 is very much greater than all other mass scales.

ωN (~k2) − M ≈
~k2

2 M
(27)

Then δF M
+
+ ≈ −3g2

∫

d3k

(2π)3

~k2

8 M2

1

ω2
λi

(~k2)
(28)

So that
d2 δF M

+
+

(dm2
π)2

≈ −
3g2

4M2

∫

d3k

(2π)3

~k2

ω6
π(~k2)

= −
9

128π

g2

M2

1

mπ
. (29)

Namely δF M
+
+ = −

3

32π

g2

M2
m3

π + f
+
(1)

(λ1, λ2) m2
π + f

+
(0)

(λ1, λ2)

where the last two terms express the necessary contribution from the regulator.
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Nucleon’s self energy

δF M
+
+ = −

3

32π
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m3

π + f
+
(1)

(λ1, λ2) m2
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(0)

(λ1, λ2)
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δF M
+
+ = −

3

32π

g2

M2
m3

π + f
+
(1)

(λ1, λ2) m2
π + f

+
(0)

(λ1, λ2)

Given that m2
π ∝ m̂ in the neighbourhood of the chiral limit, the m3

π is
nonanalytic in the current-quark mass on this domain.
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Nucleon’s self energy

δF M
+
+ = −

3

32π

g2

M2
m3

π + f
+
(1)

(λ1, λ2) m2
π + f

+
(0)

(λ1, λ2)

Given that m2
π ∝ m̂ in the neighbourhood of the chiral limit, the m3

π is
nonanalytic in the current-quark mass on this domain.

This is the Leading Nonanalytic Contribution much touted in effective field
theory.

Its form is completely fixed by chiral symmetry and the pattern of its
dynamical breaking.

NB. Contribution from negative energy nucleon is ∝
1

M3
.
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Nucleon’s self energy

δF M
+
+ = −

3

32π

g2

M2
m3

π + f
+
(1)

(λ1, λ2) m2
π + f

+
(0)

(λ1, λ2)

Given that m2
π ∝ m̂ in the neighbourhood of the chiral limit, the m3

π is
nonanalytic in the current-quark mass on this domain.

This is the Leading Nonanalytic Contribution much touted in effective field
theory.

Its form is completely fixed by chiral symmetry and the pattern of its
dynamical breaking.

NB. Contribution from negative energy nucleon is ∝
1

M3
.

The remaining terms are regular in the current-quark mass. Their exact nature
depends on the explicit form of regularisation procedure.
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Nucleon’s self energy
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+
+ = −

3

32π

g2

M2
m3

π + f
+
(1)

(λ1, λ2) m2
π + f

+
(0)

(λ1, λ2)

Given that m2
π ∝ m̂ in the neighbourhood of the chiral limit, the m3

π is
nonanalytic in the current-quark mass on this domain.

The Leading Nonanalytic Contribution is a somewhat magical model-independent
result.
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Nucleon’s self energy

δF M
+
+ = −

3

32π

g2

M2
m3

π + f
+
(1)

(λ1, λ2) m2
π + f

+
(0)

(λ1, λ2)

Given that m2
π ∝ m̂ in the neighbourhood of the chiral limit, the m3

π is
nonanalytic in the current-quark mass on this domain.

The Leading Nonanalytic Contribution is a somewhat magical model-independent
result.

Unfortunately, it is not of much relevance in the real world. The actual value of the
pion loop contribution to the nucleon’s mass is completely determined by the
regularisation dependent terms.

It is essential for a framework to veraciously express the leading nonanalytic
contribution . . . it serves as a check that DCSB is truly described.

However, beyond that, one must accept that the world is messy.
The pion has a finite size. So does the nucleon.
These sizes set the mass-scale which determines the nucleon’s mass
shift.
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Model pion-nucleon coupling

gPV (P, k) =
g

2M
exp(−(P − k)2/Λ2)

• B-Kernel
∫

dΩk g2
PV ((P − k)2)

[

1 − 2m2
π

(P − k)2 + m2
π

]

Clearly the sum of two independent terms.
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Model pion-nucleon coupling

gPV (P, k) =
g

2M
exp(−(P − k)2/Λ2)

• B-Kernel
∫

dΩk g2
PV ((P − k)2)

[

1 − 2m2
π

(P − k)2 + m2
π

]

• First term can be evaluated exactly

ḡ2
PV (P 2, k2) =

∫

dΩk g2
PV ((P − k)2)

=
g2

4M2
e−2(P 2+k2)/Λ2 Λ2

2Pk
I1(4Pk/Λ2) ,
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Model pion-nucleon coupling

gPV (P, k) =
g

2M
exp(−(P − k)2/Λ2)

• B-Kernel
∫

dΩk g2
PV ((P − k)2)

[

1 − 2m2
π

(P − k)2 + m2
π

]

• Second term can be approximated

ωg2(P 2, k2) = 2m2
π

∫

dΩk
g2
PV ((P − k)2)

(P − k)2 + m2
π

≈ g2
PV (|P − k|2) 2m2

π

a +
√

a2 − b2

• Reliable when analytic

structure of gPV is not key to that of solution
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Model pion-nucleon coupling

gPV (P, k) =
g

2M
exp(−(P − k)2/Λ2)

• B-Kernel
∫

dΩk g2
PV ((P − k)2)

[

1 − 2m2
π

(P − k)2 + m2
π

]

• Total Kernel:

≈ ḡ2
PV (P 2, k2) − g2

PV (|P 2 − k2|) 2m2
π

a +
√

a2 − b2
,

=: ḡ2
PV (P 2, k2) − g̃2

PV (P 2, k2))
2m2

π

a +
√

a2 − b2
,

• Analytic structure is transparent

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 48 – p. 25/48



First Contents Back Conclusion

Nucleon’s self energy and mass shift

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 48 – p. 26/48



First Contents Back Conclusion

Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M
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Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M

• Vector self energy
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Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M

• Scalar self energy
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Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M

(Λ,ΛN ) (Λ,ΛN ) (Λ,ΛN )

(0.9,∞) (0.9, 1.5) (0.9, 2.0)

− δM (MeV) 222 61 99
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Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M

(Λ,ΛN ) (Λ,ΛN ) (Λ,ΛN )

(0.9,∞) (0.9, 1.5) (0.9, 2.0)

− δM (MeV) 222 61 99

No suppression for nucleon off-shell in self-energy loop;

i.e, gPV ((P − k2), P 2, k2)

Neglected this dependence
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Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M

(Λ,ΛN ) (Λ,ΛN ) (Λ,ΛN )

(0.9,∞) (0.9, 1.5) (0.9, 2.0)

− δM (MeV) 222 61 99

gPV (P 2, k2, P · k) =
g

2M
e−(P−k)2/Λ2

e−(P 2+M2+k2+M2)/Λ2
N

Correct on-shell limit:

gPV (P 2 = −M2, k2 = −M2, (P − k)2 = 0) =
g

2M
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Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M Range from meson
exchange model phen.

(Λ,ΛN ) (Λ,ΛN ) (Λ,ΛN )

(0.9,∞) (0.9, 1.5) (0.9, 2.0)

− δM (MeV) 222 61 99

gPV (P 2, k2, P · k) =
g

2M
e−(P−k)2/Λ2

e−(P 2+M2+k2+M2)/Λ2
N

ΛN → ∞ ⇒ pointlike nucleon
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. . . reduces nucleon’s mass by ∼ 100 MeV
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. . . reduces nucleon’s mass by ∼ 100 MeV

There’s also a π∆-loop

. . . reduces nucleon’s mass by not more than 100 MeV

−δMN ∼ 200 MeV
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Pion loop’s effect

Nonpointlike πN -loop

. . . reduces nucleon’s mass by ∼ 100 MeV

There’s also a π∆-loop

. . . reduces nucleon’s mass by not more than 100 MeV

−δMN ∼ 200 MeV

Qualitative effect of this?
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Too much of a good thing

• Refit Faddeev model parameters,

allowing for heavier “quark-core” mass
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Too much of a good thing

ω0+ ω1+ MN M∆ ωf1
ωf2

R

0+ 0.45 - 1.44 - 0.36 0.35 2.32

0+ & 1+ 0.45 1.36 1.14 1.33 0.44 0.36 0.54

0+ 0.64 - 1.59 - 0.39 0.41 1.28

0+ & 1+ 0.64 1.19 0.94 1.23 0.49 0.44 0.25

50% reduction in role of axial-vector diquark
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Too much of a good thing

ω0+ ω1+ MN M∆ ωf1
ωf2

R

0+ 0.45 - 1.44 - 0.36 0.35 2.32

0+ & 1+ 0.45 1.36 1.14 1.33 0.44 0.36 0.54

0+ 0.64 - 1.59 - 0.39 0.41 1.28

0+ & 1+ 0.64 1.19 0.94 1.23 0.49 0.44 0.25

50% reduction in role of axial-vector diquark

10% increase in role of scalar diquark
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Too much of a good thing

ω0+ ω1+ MN M∆ ωf1
ωf2

R

0+ 0.45 - 1.44 - 0.36 0.35 2.32

0+ & 1+ 0.45 1.36 1.14 1.33 0.44 0.36 0.54

0+ 0.64 - 1.59 - 0.39 0.41 1.28

0+ & 1+ 0.64 1.19 0.94 1.23 0.49 0.44 0.25

Unsurprisingly:

Requiring Exact Fit to N , ∆ masses

with only q, (qq)JP Degrees of Freedom

⇒ Forces 1+ to mimic, in part, effect of π
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Pseudoscalar mesons
and Form Factors

Light mass of pseudoscalar mesons means they play a very

important role in many aspects of hadron physics.
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Light mass of pseudoscalar mesons means they play a very

important role in many aspects of hadron physics.

Indeed, no approach to low-energy hadron physics that

does not explicitly account for pseudoscalar meson degrees

of freedom can be valid.
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Light mass of pseudoscalar mesons means they play a very

important role in many aspects of hadron physics.

Indeed, no approach to low-energy hadron physics that

does not explicitly account for pseudoscalar meson degrees

of freedom can be valid.

Another example . . . pseudoscalar mesons also contribute

materially to form factors.
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Pseudoscalar mesons
and Form Factors

Light mass of pseudoscalar mesons means they play a very

important role in many aspects of hadron physics.

Indeed, no approach to low-energy hadron physics that

does not explicitly account for pseudoscalar meson degrees

of freedom can be valid.

Another example . . . pseudoscalar mesons also contribute

materially to form factors.

Illustrate with γN → ∆ transition form factor. Focus on the

M1 (spin-flip) form factor, G∗
M(Q2).
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Harry Lee
Pions and Form Factors

Dynamical coupled-channels model . . . Analyzed extensive JLab
data . . . Completed a study of the ∆(1236)

Meson Exchange Model for πN Scattering and γN → πN Reaction, T. Sato
and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)

Dynamical Study of the ∆ Excitation in N(e, e′π) Reactions, T. Sato and
T.-S. H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)
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Harry Lee
Pions and Form Factors

Dynamical coupled-channels model . . . Analyzed extensive JLab
data . . . Completed a study of the ∆(1236)

Meson Exchange Model for πN Scattering and γN → πN Reaction, T. Sato
and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)

Dynamical Study of the ∆ Excitation in N(e, e′π) Reactions, T. Sato and
T.-S. H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)

Pion cloud effects are large in the low Q2 region.
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Q2(GeV/c)2

Dressed
Bare

Ratio of the M1 form factor in γN → ∆

transition and proton dipole form factor GD .
Solid curve is G∗

M
(Q2)/GD(Q2) including

pions; Dotted curve is GM (Q2)/GD(Q2)

without pions.
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Harry Lee
Pions and Form Factors

Dynamical coupled-channels model . . . Analyzed extensive JLab
data . . . Completed a study of the ∆(1236)

Meson Exchange Model for πN Scattering and γN → πN Reaction, T. Sato
and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)

Dynamical Study of the ∆ Excitation in N(e, e′π) Reactions, T. Sato and
T.-S. H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)

Pion cloud effects are large in the low Q2 region.

0

1

2

3

0 1 2 3 4

Q2(GeV/c)2

Dressed
Bare

Ratio of the M1 form factor in γN → ∆

transition and proton dipole form factor GD .
Solid curve is G∗

M
(Q2)/GD(Q2) including

pions; Dotted curve is GM (Q2)/GD(Q2)

without pions.

Quark Core

Responsible for only 2/3 of
result at small Q2

Dominant for Q2 >2 – 3 GeV2
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Results: Nucleon
and ∆ Masses

Mass-scale parameters (in GeV)

for the scalar and axial-vector

diquark correlations, fixed by

fitting nucleon and ∆ masses

Set A – fit to the actual masses was required; whereas for

Set B – fitted mass was offset to allow for “π-cloud” contributions

set MN M∆ m0+ m1+ ω0+ ω1+

A 0.94 1.23 0.63 0.84 0.44=1/(0.45 fm) 0.59=1/(0.33 fm)

B 1.18 1.33 0.80 0.89 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)

m1+ → ∞: MA
N = 1.15 GeV; MB

N = 1.46 GeV
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Results: Nucleon
and ∆ Masses

Mass-scale parameters (in GeV)

for the scalar and axial-vector

diquark correlations, fixed by

fitting nucleon and ∆ masses

Set A – fit to the actual masses was required; whereas for

Set B – fitted mass was offset to allow for “π-cloud” contributions

set MN M∆ m0+ m1+ ω0+ ω1+

A 0.94 1.23 0.63 0.84 0.44=1/(0.45 fm) 0.59=1/(0.33 fm)

B 1.18 1.33 0.80 0.89 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)

m1+ → ∞: MA
N = 1.15 GeV; MB

N = 1.46 GeV

Axial-vector diquark provides significant attraction
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Results: Nucleon
and ∆ Masses

Mass-scale parameters (in GeV)

for the scalar and axial-vector

diquark correlations, fixed by

fitting nucleon and ∆ masses

Set A – fit to the actual masses was required; whereas for

Set B – fitted mass was offset to allow for “π-cloud” contributions

set MN M∆ m0+ m1+ ω0+ ω1+

A 0.94 1.23 0.63 0.84 0.44=1/(0.45 fm) 0.59=1/(0.33 fm)

B 1.18 1.33 0.80 0.89 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)

m1+ → ∞: MA
N = 1.15 GeV; MB

N = 1.46 GeV

Constructive Interference: 1++-diquark + ∂µπ
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Nucleon-Photon Vertex

M. Oettel, M. Pichowsky
and L. von Smekal, nu-th/9909082

6 terms . . .
constructed systematically . . . current conserved automatically

for on-shell nucleons described by Faddeev Amplitude
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Nucleon-Photon Vertex

M. Oettel, M. Pichowsky
and L. von Smekal, nu-th/9909082

6 terms . . .
constructed systematically . . . current conserved automatically

for on-shell nucleons described by Faddeev Amplitude
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Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 48 – p. 33/48



First Contents Back Conclusion

Form Factor Ratio:
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Dressed-Quark Core

Ward-Takahashi

Identity preserving

current

Anticipate and

Estimate Pion

Cloud’s Contribution
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All parameters fixed in

other applications . . . Not varied.

Agreement with Pol. Trans. data at Q2
∼> 2 GeV2
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other applications . . . Not varied.

Agreement with Pol. Trans. data at Q2
∼> 2 GeV2

Correlations in Faddeev amplitude – quark orbital

angular momentum – essential to that agreement

Predict Zero at Q2 ≈ 6.5GeV2
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-- redistribution of charge ... moves to larger r

However, Current Density remains peaked at r = 0!
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Density profile
of charge and magnetisation

Proton’s Electromagnetic Form Factor

Appearance of a zero in GE(Q2) – Completely

Unexpected

Wave Function is complex and correlated mix of virtual

particles and antiparticles: s−, p− and d−waves

Simple independent-particle three-quark bag-model picture

is profoundly incorrect
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form factors could be reliably calculated

Exposed two weaknesses in rudimentary Ansatz
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Improved current

Composite axial-vector diquark correlation

Improved performance of code

Implemented corrections so that large-Q2 behaviour of

form factors could be reliably calculated

Exposed two weaknesses in rudimentary Ansatz

Diquark effectively pointlike to hard probe

Didn’t account for diquark being off-shell in recoil
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Long Range Plan: http://www.sc.doe.gov/np/nsac/nsac.html

What is the internal landscape of the nucleons? . . . “For many
years, we have known that the nucleons are composite particles
made up of quarks and gluons, and we have partial answers
concerning the internal structure of protons and neutrons from
years of measurements with high-energy probes. New
experiments will provide an unprecedented, tomographic view of
the quarks and their motion inside the nucleons, and map the
distributions of quarks and gluons in space, momentum, type of
quark, and spin orientation.”
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Next Five Years

Long Range Plan: http://www.sc.doe.gov/np/nsac/nsac.html

What does QCD predict for the properties of strongly interacting
matter? . . . “A critical step in the quest to understand strongly
interacting matter is to confront the results of experiments with the
quantitative implications of QCD. Doing so is exceedingly
challenging because the strong force cannot be accurately
described at the relevant scales by means of analytical
calculations. Future progress will require extensive numerical
simulations on a scale that has never before been undertaken.”
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Next Five Years

Long Range Plan: http://www.sc.doe.gov/np/nsac/nsac.html

What governs the transition of quarks and gluons into pions and
nucleons? . . . “Nucleons, and the pions that bind them together
into atomic nuclei, must emerge from nearly massless quarks and
gluons. The process that transforms deconfined matter into
hadrons and nuclei remains poorly understood. Dedicated
measurements are needed to launch a new stage in
understanding both how quarks accrete partners from the vacuum
or debris of high-energy collisions to form hadrons, and how the
interaction among protons and neutrons arises from QCD.”
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Next Five Years

Long Range Plan: http://www.sc.doe.gov/np/nsac/nsac.html

What are the phases of strongly interacting matter and what roles
do they play in the Cosmos? . . . “QCD predicts that soon after the
birth of the universe, a sea of quarks and gluons – the
quark-gluon plasma – coalesced into protons and neutrons. Can
we replicate that transition in the laboratory by creating a
high-temperature, high-density environment that temporarily frees
quarks from their normal confinement within protons and
neutrons? Experiments to address this most fundamental
question have produced tantalizing indications of just such a
transition. Further studies will lead to an understanding of matter
in the early universe and provide important clues on matter as it
now exists in the interior of compact stars.”
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Relativistic Heavy Ion Collider

RHIC . . . located at Brookhaven National Laboratory
Routinely operates with

100× 100 GeV proton-proton collisions

two intersecting beams of gold ions . . . center-of-mass energy
typically 200 GeV

Au + Au collisions create conditions kindred to those shortly after
the “Big Bang” . . . looking for a quark-gluon plasma . . .
deconfinement and chiral symmetry restoration
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In 2005 it was claimed that RHIC had created not a plasma but a
quark-gluon fluid with almost zero viscosity!
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Relativistic Heavy Ion Collider

RHIC . . . located at Brookhaven National Laboratory
Routinely operates with

100× 100 GeV proton-proton collisions

two intersecting beams of gold ions . . . center-of-mass energy
typically 200 GeV

In 2005 it was claimed that RHIC had created not a plasma but a
quark-gluon fluid with almost zero viscosity!

Understanding and explaining this is also part of hadron physics

That’s an enormous challenge
. . . Requires vast diversity of theory

From relativistic hydrodynamics . . .

. . . to equilibrium thermal quantum field theory

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 48 – p. 38/48



First Contents Back Conclusion

Thermal Field Theory

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 48 – p. 39/48



First Contents Back Conclusion

Thermal Field Theory

I’ve worked in both areas . . . but

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 48 – p. 39/48



First Contents Back Conclusion

Thermal Field Theory

I’ve worked in both areas . . . but

Conversations with colleagues in Beijing during 2007, amongst
them Prof. H.-S. Zong, stimulated a renewed interest in

thermal field theory
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Thermal Field Theory

One can ask numerous questions but I will limit myself here to
two; namely, are there values of baryon chemical potential and
temperature such that QCD exhibits

Deconfinement

and/or Chiral Symmetry Restoration

First steps toward elucidating the Phase Diagram of QCD

Necessary precursor to exploring the response of hadron
properties to chemical potential and temperature.
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Thermal Field Theory

One can ask numerous questions but I will limit myself here to
two; namely, are there values of baryon chemical potential and
temperature such that QCD exhibits

Deconfinement

and/or Chiral Symmetry Restoration

First steps toward elucidating the Phase Diagram of QCD

Particularly noteworthy that, while numerical simulations of
lattice-regularised QCD are contributing toward our understanding
of T 6= 0, contemporary algorithms are inapplicable at µ 6= 0.

Moreover, lattice methods have hitherto provided little in
connection with the evolution of hadron properties.
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Thermal Field Theory

Lack the time necessary to describe equilibrium statistical field
theory adequately.

Nevertheless, must introduce the Matsubara frequencies; viz.,
T 6= 0 can be expressed in a quantum field theory at equilibrium
with a heat bath of temperature T by replacing the continuum of
particle energy by a discrete set of frequencies:

fermions . . . ip0 → ωn = (2n + 1)πT , n ∈ Z

bosons . . . ip0 → Ωn = 2nπT , n ∈ Z

NB. For fermions, ω0 = πT . . . this is a crucial difference
between fermions and bosons (Ω0 = 0)
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Thermal Field Theory

Lack the time necessary to describe equilibrium statistical field
theory adequately.

Nevertheless, must introduce the Matsubara frequencies; viz.,
T 6= 0 can be expressed in a quantum field theory at equilibrium
with a heat bath of temperature T by replacing the continuum of
particle energy by a discrete set of frequencies:

fermions . . . ip0 → ωn = (2n + 1)πT , n ∈ Z

bosons . . . ip0 → Ωn = 2nπT , n ∈ Z

NB. For fermions, ω0 = πT . . . this is a crucial difference
between fermions and bosons (Ω0 = 0)

Within the Matsubara formalism, time is “lost” . . . the system is in
equilibrium. However, it can be recovered by summing over all
Matsubara frequencies and subsequently performing an analytic
continuation.
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Lack the time necessary to describe equilibrium statistical field
theory adequately.

With regard to chemical potential . . . QCD possesses a UB(1)

symmetry, which is associated with a conserved charge; namely,
baryon number, QB . The finite baryon density theory is defined
through the inclusion of a chemical potential, µ, that is conjugate
to QB. The baryon number density is given by

ρ(µ) =
∂P (µ)

∂µ
,

where P (µ) is the thermodynamic pressure.
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Thermal Field Theory

Lack the time necessary to describe equilibrium statistical field
theory adequately.

With regard to chemical potential . . . QCD possesses a UB(1)

symmetry, which is associated with a conserved charge; namely,
baryon number, QB . The finite baryon density theory is defined
through the inclusion of a chemical potential, µ, that is conjugate
to QB. The baryon number density is given by

ρ(µ) =
∂P (µ)

∂µ
,

where P (µ) is the thermodynamic pressure.

In practical terms this means ip0 → ip0 + iµ
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Lack the time necessary to describe equilibrium statistical field
theory adequately.

Illustrate problem with simple model that exhibits confinement and
dynamical chiral symmetry breaking in-vacuum.
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Lack the time necessary to describe equilibrium statistical field
theory adequately.

Illustrate problem with simple model that exhibits confinement and
dynamical chiral symmetry breaking in-vacuum.
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=

D

γ
ΓS
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Model Gap Equation

Illustrate problem with simple model that exhibits confinement and
dynamical chiral symmetry breaking in-vacuum.

Σ
=

D

γ
ΓS

Study gap equation at
nonzero chemical potential
and temperature with

Dµν(p) =

[

δµν − pµpν

p2

]

2π2η2
2π

T
δ0 k δ3(~p) , Γν = γν
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Illustrate problem with simple model that exhibits confinement and
dynamical chiral symmetry breaking in-vacuum.

Σ
=

D

γ
ΓS

Study gap equation at
nonzero chemical potential
and temperature with

Dµν(p) =

[

δµν − pµpν

p2

]

2π2η2
2π

T
δ0 k δ3(~p) , Γν = γν

Gap Equation: S(pωk
)−1 = S0(pωk

)−1 + 1

4
η2γνS(pωk

)γν

η = 1.06 GeV fixed at T = 0 = µ.
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Model Gap Equation

Illustrate problem with simple model that exhibits confinement and
dynamical chiral symmetry breaking in-vacuum.

Σ
=

D

γ
ΓS

Study gap equation at
nonzero chemical potential
and temperature with

Dµν(p) =

[

δµν − pµpν

p2

]

2π2η2
2π

T
δ0 k δ3(~p) , Γν = γν

Gap Equation: S(pωk
)−1 = S0(pωk

)−1 + 1

4
η2γνS(pωk

)γν

η = 1.06 GeV fixed at T = 0 = µ.

Simplicity now apparent: model allows reduction of an integral
equation to an algebraic equation. Extremely useful step toward
developing an intuitive understanding of complicated phenomena.
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Model Gap Equation

Σ
=

D

γ
ΓS

S(pωk
)−1 = S0(pωk

)−1 + 1

4
η2γνS(pωk

)γν

General form of solution:
S−1(~p, ω̃k) = i~γ · ~p A(~p 2, ω̃2

k) + B(~p 2, ω̃2

k) + iγ4 ω̃kC(~p 2, ω̃2

k)
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Model Gap Equation

Σ
=

D

γ
ΓS

S(pωk
)−1 = S0(pωk

)−1 + 1

4
η2γνS(pωk

)γν

General form of solution:
S−1(~p, ω̃k) = i~γ · ~p A(~p 2, ω̃2

k) + B(~p 2, ω̃2

k) + iγ4 ω̃kC(~p 2, ω̃2

k)

Three scalar functions: two vector self-energies: A, C, and one
scalar self-energy, B.
In solution of gap equation they express dressing owing to
emission and reabsorption of hot gluons
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Model Gap Equation

Σ
=

D

γ
ΓS

S(pωk
)−1 = S0(pωk

)−1 + 1

4
η2γνS(pωk

)γν

General form of solution:
S−1(~p, ω̃k) = i~γ · ~p A(~p 2, ω̃2

k) + B(~p 2, ω̃2

k) + iγ4 ω̃kC(~p 2, ω̃2

k)

Substituting, gap equation becomes pωk
= (~p, ωk + iµ):

η2m2 = B4 + mB3 +
(

4p2

ωk
− η2 − m2

)

B2 − m
(

2 η2 + m2 + 4 p2

ωk

)

A(pωk
) = C(pωk

) =
2B(pωk

)

m + B(pωk
)

where m is the current-quark mass
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Model Gap Equation

Σ
=

D

γ
ΓS

S(pωk
)−1 = S0(pωk

)−1 + 1

4
η2γνS(pωk

)γν

General form of solution:
S−1(~p, ω̃k) = i~γ · ~p A(~p 2, ω̃2

k) + B(~p 2, ω̃2

k) + iγ4 ω̃kC(~p 2, ω̃2

k)

Substituting, gap equation becomes pωk
= (~p, ωk + iµ):

η2m2 = B4 + mB3 +
(

4p2

ωk
− η2 − m2

)

B2 − m
(

2 η2 + m2 + 4 p2

ωk

)

A(pωk
) = C(pωk

) =
2B(pωk

)

m + B(pωk
)

where m is the current-quark mass

Structure is typical; i.e., nonlinear, coupled equations
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(

1 +
√
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) = 1

2

(

1 +
√

1 + 2η2/p2
ωk

)

What does this mean?
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A solution: B̂(pωk
) ≡ 0 , Ĉ(pωk

) = 1

2

(

1 +
√

1 + 2η2/p2
ωk

)

What does this mean?

Started with massless quarks
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Phases of QCD

Consider the chiral limit, m = 0

A solution: B̂(pωk
) ≡ 0 , Ĉ(pωk

) = 1

2

(

1 +
√

1 + 2η2/p2
ωk

)

What does this mean?

Started with massless quarks

Gluon dressing leaves the quarks massless
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Phases of QCD
Wigner Mode

Consider the chiral limit, m = 0

A solution: B̂(pωk
) ≡ 0 , Ĉ(pωk

) = 1

2

(

1 +
√

1 + 2η2/p2
ωk

)

What does this mean?

Started with massless quarks

Gluon dressing leaves the quarks massless

In this case chiral symmetry is said to be realised in the
Wigner Mode
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Phases of QCD
Wigner Mode

Consider the chiral limit, m = 0

A solution: B̂(pωk
) ≡ 0 , Ĉ(pωk

) = 1

2

(

1 +
√

1 + 2η2/p2
ωk

)

What does this mean?

Started with massless quarks

Gluon dressing leaves the quarks massless

In this case chiral symmetry is said to be realised in the
Wigner Mode

Phase in which
chiral symmetry is not broken
and the dressed-quarks are not confined.
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Stay with the chiral limit, m = 0

Another solution is:

B(pωk
) =







√

η2 − 4p2
ωk

, R(p2
ωk

) < η2

4

0 , otherwise

C(pωk
) =







2 , R(p2
ωk

) < η2

4

1

2

(

1 +
√

1 + 2η2/p2
ωk

)

, otherwise
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0 , otherwise
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Phases of QCD

Stay with the chiral limit, m = 0

Another solution is:

B(pωk
) =







√

η2 − 4p2
ωk

, R(p2
ωk

) < η2

4

0 , otherwise

C(pωk
) =







2 , R(p2
ωk

) < η2

4

1

2

(

1 +
√

1 + 2η2/p2
ωk

)

, otherwise

What does this mean?

Started with massless quarks

But this time the hot gluons have made them massive

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 48 – p. 44/48



First Contents Back Conclusion

Phases of QCD
Nambu-Goldstone Mode

Stay with the chiral limit, m = 0

Another solution is:

B(pωk
) =







√

η2 − 4p2
ωk

, R(p2
ωk

) < η2

4

0 , otherwise

C(pωk
) =







2 , R(p2
ωk

) < η2

4

1

2

(

1 +
√

1 + 2η2/p2
ωk

)

, otherwise

What does this mean?

Started with massless quarks

But this time the hot gluons have made them massive

In this case chiral symmetry is said to be realised in the
Nambu-Goldstone Mode
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Phases of QCD
Nambu-Goldstone Mode

Stay with the chiral limit, m = 0

Another solution is:

B(pωk
) =







√

η2 − 4p2
ωk

, R(p2
ωk

) < η2

4

0 , otherwise

C(pωk
) =







2 , R(p2
ωk

) < η2

4

1

2

(

1 +
√

1 + 2η2/p2
ωk

)

, otherwise

What does this mean?

Phase in which
chiral symmetry is dynamically broken
and the dressed-quarks are confined.
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Recall that fermions have a minimum Matsubara frequency:

ω0 = πT
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Phase Transition at µ = 0

Recall that fermions have a minimum Matsubara frequency:

ω0 = πT

Consider then . . .
√

η2 − 4p2
ωk

µ=0=k=~p
→

√

η2 − 4π2T 2
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Recall that fermions have a minimum Matsubara frequency:

ω0 = πT

Consider then . . .
√

η2 − 4p2
ωk

µ=0=k=~p
→

√

η2 − 4π2T 2

Plainly, argument of square-root is always negative and hence it is
impossible to support the Nambu solution

if πT >
η

2
; namely, for T > 169 MeV
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Phase Transition at µ = 0

Recall that fermions have a minimum Matsubara frequency:

ω0 = πT

Consider then . . .
√

η2 − 4p2
ωk

µ=0=k=~p
→

√

η2 − 4π2T 2

Plainly, argument of square-root is always negative and hence it is
impossible to support the Nambu solution

if πT >
η

2
; namely, for T > 169 MeV

Critical temperature:
Tc ≈ 170 MeV

. . . For temperatures greater than this only the Wigner phase can
be realised
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Phase Transition

In general a theory realises the phase with greatest pressure

Must calculate the pressure difference between Wigner and
Nambu phases

B(µ, T ) := pΣNG
(µ, T ) − pΣW

(µ, T ) ,

= 4Nc

∫ Λ̄

l,q

{

ln

[

|~p|2A2 + ω̃2

kC2 + B2

|~p|2Â2 + ω̃2

kĈ2

]

+|~p|2 (σA − σ̂A) + ω̃2

k (σC − σ̂C)






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Phase Transition

In general a theory realises the phase with greatest pressure

Must calculate the pressure difference between Wigner and
Nambu phases

T = 0, µc = 300 MeV
µ = 0, Tc = 170 MeV
Values are typical
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Phase Transition

In general a theory realises the phase with greatest pressure

Must calculate the pressure difference between Wigner and
Nambu phases

T = 0, µc = 300 MeV
µ = 0, Tc = 170 MeV
Values are typical
Consistent with µ = 0

simulations of lattice –
QCD, deconfinement
and chiral symmetry
restoration are
coincident
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Quark Pressure

Ultrarelativistic gas of fermions

pUR(µ, T ) = NcNf

1

12π2

(

µ4 + 2π2µ2T 2 +
7

15
π4T 4

)

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 48 – p. 47/48



First Contents Back Conclusion

Quark Pressure

Ultrarelativistic gas of fermions

pUR(µ, T ) = NcNf

1

12π2

(

µ4 + 2π2µ2T 2 +
7

15
π4T 4

)

Calculated pressure, normalised to UR-limit:
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Ultrarelativistic gas of fermions

pUR(µ, T ) = NcNf

1

12π2

(

µ4 + 2π2µ2T 2 +
7

15
π4T 4

)

Calculated pressure, normalised to UR-limit:

approaching the limit
. . . but slowly
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Quark Pressure

Ultrarelativistic gas of fermions

pUR(µ, T ) = NcNf

1

12π2

(

µ4 + 2π2µ2T 2 +
7

15
π4T 4

)

Calculated pressure, normalised to UR-limit:

approaching the limit
. . . but slowly

Strong interactions
persist above transition
. . . A 6= 1 & C 6= 1 . . .
liquid-like behaviour
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Epilogue

Hadron Physics is a world-wide endeavour

Nonperturbative quantum field theory

– truly frontier physics

Emergent phenomena

DCSB exists in QCD.

It is manifest in dressed propagators and vertices

It impacts dramatically upon observables.

Constituent-quarks of old are the dressed-quarks of today
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Hadron Physics is a world-wide endeavour

Nonperturbative quantum field theory

– truly frontier physics

Emergent phenomena

DCSB exists in QCD.

It is manifest in dressed propagators and vertices

It impacts dramatically upon observables.

Confinement
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Epilogue

Hadron Physics is a world-wide endeavour

Nonperturbative quantum field theory

– truly frontier physics

Emergent phenomena

DCSB exists in QCD.

It is manifest in dressed propagators and vertices

It impacts dramatically upon observables.

Confinement

Expressed and realised in dressed propagators and

vertices associated with elementary excitations

Observables can be used to explore model realisations
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Epilogue
nothing!

Hadron Physics is a world-wide endeavour

Nonperturbative quantum field theory

– truly frontier physics

Emergent phenomena

Dyson-Schwinger Equations

Contemporary tool

Describes and explains these phenomena – in-vacuum

and in-medium

Connects them with prediction of observables
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