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Argonne National Laboratory

Our research addresses the five key

heory GTOUp questions that comprise the USA’s
nuclear physics agenda. We place

o/ Staff heavy emphasis on the prediction of

henomena accessible at Argonne’s
o 5 Post .
5 05 dOCS ATLAS facility, at JLab, and at other

o / Special Term Appointees laboratories around the world; and
on anticipating and planning for

FRIB.
Our research explores problems in: theoretical and computational nuclear astrophysics;

guantum chromodynamics and hadron physics; light-hadron reaction theory; ab-initio
gﬂf’g’%ﬁﬁc"i many-body calculations based on realistic two- and three-nucleon potentials; and

coupled-channels calculations of heavy-ion reactions. Our programs provide much of the
scientific basis for the drive to physics with rare isotopes. Additional research in the
Group focuses on: atomic and neutron physics; fundamental quantum mechanics;
guantum computing; and tests of fundamental symmetries and theories unifying all the
forces of nature, and the search for a spatial or temporal variation in Nature’s basic
parameters. The pioneering development and use of massively parallel numerical
simulations using hardware at Argonne and elsewhere is a major component of the
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Nucleon ... 2 Key Hadrons
= Proton and Neutron
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® Fermions — two static properties:
proton electric charge = +1; and magnetic moment,
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® Fermions — two static properties:
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® Magnetic Moment discovered by Otto Stern and

collaborators in 1933; Awarded Nobel Prize in 1943
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Nucleon ... 2 Key Hadrons
= Proton and Neutron

Fermions — two static properties:
proton electric charge = +1; and magnetic moment,

Magnetic Moment discovered by Otto Stern and

collaborators in 1933: Awarded Nobel Prize in 1943

eh

» Dirac (1928) — pointlike fermion: p, = Y

U.S. DEFARTMENT

e eh
o %has ® Stern (1933) —pp = (1 4+ 1.79)——
e 2M
# Big Hint that Proton is not a point particle

» Proton has constituents

o These are Quarks and Gluons
Quark discovery via e~ p-scattering at SLAC in 1968
— the elementary quanta of Quantum Chromo-dynamics
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JLab

Thomas Jefferson National Accelerator Facility

® World’'s Premier Hadron Physics Facility

® Design goal (4 GeV) experiments began in 1995
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Thomas Jefferson National Accelerator Facility

® World’'s Premier Hadron Physics Facility
® Design goal (4 GeV) experiments began in 1995

® Electrons accelerated by
repeated journeys along linacs
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JLab

Thomas Jefferson National Accelerator Facility

® World’'s Premier Hadron Physics Facility

® Design goal (4 GeV) experiments began in 1995

® Electrons accelerated by
repeated journeys along linacs

z@ f:gﬁc‘g #® Once desired energy Is
reached, Beam is directed intc
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JLab

Thomas Jefferson National Accelerator Facility

® World’'s Premier Hadron Physics Facility

® Design goal (4 GeV) experiments began in 1995

® Electrons accelerated by
repeated journeys along linacs

z@ f:gﬁc‘g #® Once desired energy Is
reached, Beam is directed into
Experimental Halls A, B and C %%
® Current Peak
Electron Beam Energy
Nearly 6 GeV

Argonne
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JLab Hall-A
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JLab Hall-A

® Measured Ratio of
Proton’s Electric and Magnetic Form Factors
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JLab Hall-A
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Walker et al., Phys.

JLab Hall-A

Rev. D49, 5671 Lol
(1994). (SLAC)

Jones et al., JLab Hall -

A Collaboration, Phy&5- 08
~—
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Frontiers of Nuclear Science:
A Long Range Plan (2007)
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Frontiers of Nuclear Science:
A Long Range Plan (2007)
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Frontiers of Nuclear Science:

The Frontiers of Nuclear Science

A LONG RANGE PLAN

A Long Range Plan (2007)

In a letter dated 17 July, 2006 , the
Department of Energy’s (DOE)
Office of Science for Nuclear
Physics and the National Science
Foundation’s (NSF) Mathematical
and Physical Sciences Directorate
charged the Nuclear Science
Advisory Committee (NSAC) to
“conduct a study of the opportunities
and priorities for U.S. nuclear
physics research and recommend a
long range plan that will provide a
framework for coordinated
advancement of the nation’s nuclear
science research programs over the
next decade.”
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Frontiers of Nuclear Science:
A Long Range Plan (2007)

Primary Recommendations

1. Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.
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Frontiers of Nuclear Science:
A Long Range Plan (2007)

Primary Recommendations

1. Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.

2. Construction of the Facility for Rare Isotope Beams (FRIB), a world-leading facility
for the study of nuclear structure, reactions, and astrophysics. NB. On 20 May,
2008, the Department of Energy released a Funding Opportunity Announcement
regarding the submission of applications for the conceptual design and
establishment of a Facility for Rare Isotope Beams (FRIB). Proposals are due by
21 July, 2008.
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Frontiers of Nuclear Science:
A Long Range Plan (2007)

Primary Recommendations

1. Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.

3. Atargeted program of experiments to investigate neutrino properties and
fundamental symmetries.
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Frontiers of Nuclear Science:
A Long Range Plan (2007)

Primary Recommendations

1. Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.

4. Implementation of the RHIC Il luminosity upgrade, together with detector
improvements.
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Frontiers of Nuclear Science:
A Long Range Plan (2007)

Primary Recommendations
1. Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.

4. Implementation of the RHIC Il luminosity upgrade, together with detector
improvements.

These recommendations were followed by Initiatives. Leading the list was a statement
on Theory: “We recommend the funding of finite-duration, multi-institutional topical
collaborations initiated through a competitive, peer-review process. [...] These initiatives
are intended to bring together the best in the field, leverage resources of smaller
research groups, and provide expanded opportunities for the next generation of nuclear
theorists.”
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Frontiers of Nuclear Science:
A Long Range Plan (2007)

Primary Recommendations
1. Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.

4. Implementation of the RHIC Il luminosity upgrade, together with detector
improvements.
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on Theory: “We recommend the funding of finite-duration, multi-institutional topical
collaborations initiated through a competitive, peer-review process. [...] These initiatives
are intended to bring together the best in the field, leverage resources of smaller
research groups, and provide expanded opportunities for the next generation of nuclear
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It was followed by a statement on accelerator R&D, which urged: “targeted support of
proposal-driven accelerator Research and development supported by DOE and NSF
nuclear physics.”
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What is QCD?

® Gauge Theory:
Interactions Mediated by massless vector bosons

Fernman Jiagram of Quaric Suark Sealtering
\: Y/
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® Gauge Theory:
Interactions Mediated by massless vector bosons

Fernman Jiagram of Quaric Suark Sealtering
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® Similar interaction in QED
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What is QCD?

® Gauge Theory:
Interactions Mediated by massless vector bosons
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® Similar interaction in QED
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® Special Feature of QCD - gluon self-interactions

Completely Change the Character of the Theory
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QED cf. QCD
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Add three-gluon interaction
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Figure 9.2: Summary of the values of ae(u) at the values of o where they are
measured. The lines show the central values and the +£1e limits of our average.
The fimre clearly shows the decrease in ag(p) with increasing p. The data are,
in increasing order of g, v width, T decays, deep inelastic scattering, ete™ event
shapes at 22 GeV from the JADE data, shapes at TRISTAN at 55 GeV, £ width,
and ete™ event shapes at 135 and 159 GeV.
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QED cf. QCD

2004 Nobel Prize in Physics: Gross, Polltzer and Wilczek
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Quarks and Nuclear Physics

Standard Model
of Particle Physics
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Quarks and Nuclear Physics
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Quarks and Nuclear Physics
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Nevertheless, I Quarks and Nuclear Physics

(%] (%) Or nuMerous
char, top  good reasons,
much research

f_\’ also focuses on

Real World accessible

Normal Matter ... heavy-quarks
Only Two Light (-3) (3)
avours Active strange bottom

primarily on the
light-quarks.
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Study Structure via
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Study

Structure via

Nucleon Form Factors

® Electron’s relativistic electromagnetic current:

ietic(P) A, (Q, P)ue(P), Q=P — P

ietie(P") v, (—1) ue(P)
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Study Structure via
Nucleon Form Factors

Electron’s relativistic electromagnetic current:

ju(P',P) = det.(P)A,(Q,P)u.(P), Q=P —P
ietic(P') v, (—1) ue(P)

Nucleon’s relativistic electromagnetic current:
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Study Structure via
Nucleon Form Factors

® Electron’s relativistic electromagnetic current:

ju(P',P) = ietc(P')Au(Q. P)ue(P), Q=P -
ietie(P") 7 (1) ue(P)

® Nucleon’s relativistic electromagnetic current:
J(P', P) =iet,(P)A,(Q, P)uy(P), Q=P —

= iety(P) (yﬂFl(QQ) aWQsz(QQ)> p(P)
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Study Structure via
Nucleon Form Factors

® Electron’s relativistic electromagnetic current:

ju(P',P) = ietc(P')Au(Q. P)ue(P), Q=P -
ietie(P") 7 (1) ue(P)

® Nucleon’s relativistic electromagnetic current:
J(P', P) =iet,(P)A,(Q, P)uy(P), Q=P —

= iety(P) (yﬂFl(QQ) aWQsz(QQ)> p(P)

Office of
.g Aﬁ Scren:e

oM

2
Go(@) = F@)- 13 B(@), Gu(Q) = F(Q)+F(Q).

Point-particle: F» =0 = Gg = Gy
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Why?

® The nucleon and pion hold special places in non-perturbative
studies of QCD.
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Why?

® The nucleon and pion hold special places in non-perturbative
studies of QCD.

® An explanation of nucleon and pion structure and interactions is
central to hadron physics — they are respectively the archetypes
for baryons and mesons.

| Office of
.g,;j Science
. DEFARTMENT OF ENERGY

U3,

Argonne

Craig Roberts: Modern Hadron Physics



Why?

® The nucleon and pion hold special places in non-perturbative
studies of QCD.

® An explanation of nucleon and pion structure and interactions is
central to hadron physics — they are respectively the archetypes
for baryons and mesons.

® Form factors have long been recognized as a basic tool for
elucidating bound state properties. They can be studied from very

75, oice o low momentum transfer, the region of non-perturbative QCD, up to

e a region where perturbative QCD predictions can be tested.
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Why?

The nucleon and pion hold special places in non-perturbative
studies of QCD.

An explanation of nucleon and pion structure and interactions is
central to hadron physics — they are respectively the archetypes
for baryons and mesons.

Form factors have long been recognized as a basic tool for
elucidating bound state properties. They can be studied from very
low momentum transfer, the region of non-perturbative QCD, up to
a region where perturbative QCD predictions can be tested.

Experimental and theoretical studies of nucleon electromagnetic
form factors have made rapid and significant progress during the
last several years, including new data in the time like region, and
material gains have been made in studying the pion form factor.
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Why?

The nucleon and pion hold special places in non-perturbative
studies of QCD.

An explanation of nucleon and pion structure and interactions is
central to hadron physics — they are respectively the archetypes
for baryons and mesons.

Form factors have long been recognized as a basic tool for
elucidating bound state properties. They can be studied from very
low momentum transfer, the region of non-perturbative QCD, up to
a region where perturbative QCD predictions can be tested.

Experimental and theoretical studies of nucleon electromagnetic
form factors have made rapid and significant progress during the
last several years, including new data in the time like region, and
material gains have been made in studying the pion form factor.

Despite this, many urgent questions remain unanswered.
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NSAC Long Range Plan

A central goal of nuclear physics is to understand the structure
and properties of protons and neutrons, and ultimately atomic
nuclel, in terms of the quarks and gluons of QCD
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NSAC Long Range Plan

A central goal of nuclear physics is to understand the structure
and properties of protons and neutrons, and ultimately atomic
nuclel, in terms of the quarks and gluons of QCD
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NSAC Long Range Plan

A central goal of nuclear physics is to understand the structure
and properties of protons and neutrons, and ultimately atomic
nuclel, in terms of the quarks and gluons of QCD
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Proton Mass is 940 MeV
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Chiral Symmetry

® Heliciy Ao J - p
» Projection of Spin onto Direction of Motion

s For massless particles, helicity i1s a Lorentz
Invariant Spin Observable.

s A==+ (|| oranti-| top,)
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Chiral Symmetry

#® Chirality Operator: ;

s Chiral Transformation g(z) — €% ¢(x)
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Chiral Symmetry

Chirality Operator: 5
s Chiral Transformation g(z) — €% ¢(x)

o Chiral Rotation 0 = g

$ D=+ 7 D=+ P=— — — =-
s Hence, a theory invariant under chiral

transformations can only contain interactions that

(D HA . .. . .
are insensitive to a particle’s helicity.
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Chiral Symmetry

#® Chirality Operator: ;
s Chiral Transformation g(z) — €% ¢(x)
» Chiral Rotation ¢ = %
s Composite Particles: J/'=1 « Jr=-
s Equivalent to “Parity Conjugation” Operation
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Chiral Symmetry

#® A Prediction of Chiral Symmetry

s Degeneracy between Parity Partners
N(17,938) = N(L7,1535),
m(0~,140) = o (0T, 600),

p(17,770) = aq (1T, 1260)

#® Doesn’t Look too good
Z&;‘Dfﬂ:ce of . . . . .
b2 Scisuce Predictions not Valid — Violations too Large.
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> Appears to suggest quarks are Very Heavy
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Chiral Symmetry

#® A Prediction of Chiral Symmetry

s Degeneracy between Parity Partners
N(17,938) = N(L7,1535),
m(0~,140) = o (0T, 600),

p(17,770) = aq (1T, 1260)

#® Doesn’t Look too good
PP==" Office of . . . . .
L% Science Predictions not Valid — Violations too Large.

ice of Nuclear PR 5
(o)

> Appears to suggest quarks are Very Heavy

How can pion mass be so small
If quarks are so heavy?!
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=xplicit Chiral Symmetry Breaking

® Chiral Symmetry
Can be discussed in terms of Quark Propagator
—iy-p+m
p? + m?

» Free Quark Propagator Sy(p) =
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=xplicit Chiral Symmetry Breaking

® Chiral Symmetry
Can be discussed in terms of Quark Propagator

—ty-p+m
o Free Quark Propagator Sy (p) =
p? + m?
® Chiral Transformation
50 50
| So(p) — €7 So(p)e™”
Z’V ‘I%ﬁice of .
b Schuncs . —iyep L Q2 m
e = 5 5 ¢ 5 5
p°+m pe+m

o Symmetry Violation xcm
» m=0: So(p) — S()(p)
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=xplicit Chiral Symmetry Breaking

® Chiral Symmetry
Can be discussed in terms of Quark Propagator

» Free Quark Propagator So(p) = —ZZ - +2m
p°+m

» Quark Condfnsaie o
d>p d*p m
/] = tr [S X
Zﬁ%ﬂﬁﬁg (99)u /p, (27r)4 5(p)] /u (2m)4 p2 + m2
: » A Measure of the Chiral Symmetry Violating Term
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Chiral Symmetry Breaking

® Chiral Symmetry

Can be discussed in terms of Quark Propagator

o Free Quark Propagator Sy (p) = _ZZ = +2m
p°+m

» Quark Condj(\ensaie A
d>p d*p m
q = tr S X
P \92) /u (2m)* S /u (2m)* p2 4 m?
s A Measure of the Chiral Symmetry Violating Term
o Perturbative QCD: Vanishes it m =0
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Modern Miracles
In Hadron Physics

® proton = three constituent quarks
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® proton = three constituent quarks

9o Mproton ~ 1GeV

Modern Miracles
In Hadron Physics
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Modern Miracles
In Hadron Physics

® proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV
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Modern Miracles
In Hadron Physics

proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV

® pion =
constituent quark 4+ constituent antiquark
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Modern Miracles
In Hadron Physics

proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV

® pion =
constituent quark 4+ constituent antiquark

P>==" Office of Mproton
Scence @ guess Mpion = 2 X

~ 700 MeV

=
U.s.

Argonne
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Modern Miracles
In Hadron Physics

proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV

® pion =
constituent quark 4+ constituent antiquark

P>==" Office of Mproton
Scence @ guess Mpion = 2 X

=
U.s.

~ 700 MeV

e of Nuclear PR <
(o)

o ® WRONG ...................... Mion = 140 MeV
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Modern Miracles
In Hadron Physics

proton = three constituent quarks

Mproton ~ 1 GeV

1 GeV

guess Mconstituent—quark ~ ~ 350 MeV

pion =
constituent quark 4+ constituent antiquark

guess Mpion = 2 X proton ~ 700 MeV

WRONG .....cooveieieainn, M ion = 140 MeV
Another meson:

........... M, ="770MeV ........... No Surprises Here
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Modern Miracles
In Hadron Physics

proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV

® pion =
constituent quark 4+ constituent antiquark

P>==" Office of Mproton
Scence @ guess Mpion = 2 X

—
U.s.

~ 700 MeV

(e of Muclear py, 5
(o)

o ® WRONG ...................... Mion = 140 MeV

® What is “wrong” with the pion?

Argonne

Craig Roberts: Modern Hadron Physics



Dichotomy of Pion
— Goldstone Mode and Bound state
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Dichotomy of Pion
— Goldstone Mode and Bound state

~ """ o How does one make an almost massless particle
........... from two massive constituent-quarks?
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Dichotomy of Pion

— Goldstone Mode and Bound state

"~ » How does one make an almost massless particle

........... from two massive constituent-quarks?

# Not Allowed to do it by fine-tuning a potential

Must exhibit

Current Algebra ... 1968

2
m_ X Mg
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Dichotomy of Pion
— Goldstone Mode and Bound state

""" o How does one make an almost massless particle
........... from two massive constituent-quarks?

# Not Allowed to do it by fine-tuning a potential

Must exhibit| m?2 o m,
Current Algebra ... 1968

The correct understanding of pion observables;
g&; « €.0. mass, decay constant and form factors,
reqguires an approach to contain a

o well-defined and valid chiral limit;

#® and an accurate realisation of
dynamical chiral symmetry breaking.
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Dichotomy of Pion
— Goldstone Mode and Bound state

""" o How does one make an almost massless particle
........... from two massive constituent-quarks?

# Not Allowed to do it by fine-tuning a potential

Must exhibit| m?2 o m,
Current Algebra ... 1968

The correct understanding of pion observables;
g&; « €.0. mass, decay constant and form factors,
reqguires an approach to contain a

o well-defined and valid chiral limit;

® and an accurate realisation of

dynamical chiral symmetry breaking.
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What's the Problem?

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.
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What's the Problem?

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.

® Means ... must calculate hadron wave functions
— Can’t be done using perturbation theory
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What's the Problem?

Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.

® Means ... must calculate hadron wave functions

75, ot o — Can’t be done using perturbation theory

D
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What's the Problem?

® Minimal requirements
» detailed understanding of connection between
Current-quark and Constituent-quark masses;
# and systematic, symmetry preserving means of realising
this connection in bound-states.

® Means ... must calculate hadron wave functions
— Can’t be done using perturbation theory
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® Why problematic? Isn’t same true in quantum mechanics?

® Differences!
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What's the Problem?
Relativistic QFT!

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.
® Differences!

763, orice of o Here relativistic effects are crucial — virtual particles,

—~4 Science

quintessence of Relativistic Quantum Field Theory —
must be included
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What's the Problem?
Relativistic QFT!

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.
® Differences!

o Here relativistic effects are crucial — virtual particles,
guintessence of Relativistic Quantum Field Theory —
must be included

» Interaction between quarks — the Interquark “Potential” —
unknown throughout > 98% of a hadron’s volume
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What is the
Intranucleon Interaction?

The question must be
rigorously defined, and the
answer mapped out using
experiment and theory.
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QCD'’s Challenges

THANKYouU }
) FOR NOT
. | ENQUIRING

® Quark and Gluon Confinement

» No matter how hard one strikes the proton, one
cannot liberate an individual quark or gluon
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QCD'’s Challenges

THANKYouU }
FOR NODT
.\ ENQuIRinG

® Quark and Gluon Confinement

# No matter how hard one strikes the proton, one
cannot liberate an individual quark or gluon

® Dynamical Chiral Symmetry Breaking

» \Very unnatural pattern of bound state masses
& e.g., Lagrangian (pQCD) quark mass is small but . ..
755, omce o no degeneracy between J¥=T and J¥=—
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QCD'’s Challenges

THANKYouU }
FOR MNOT
. L ENQUIRING

® Quark and Gluon Confinement

# No matter how hard one strikes the proton, one
cannot liberate an individual quark or gluon

® Dynamical Chiral Symmetry Breaking

» \Very unnatural pattern of bound state masses
& e.g., Lagrangian (pQCD) quark mass is small but . ..
755, omce o no degeneracy between J¥=T and J¥=—
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® Neither of these phenomena is apparent in QCD’s
Lagrangian yet they are the dominant determining
characteristics of real-world QCD.
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QCD'’s Challenges
Understand Emergent Phenomena

THANKYouU }
FOR MNOT
. L ENQUIRING

A

I

® Quark and Gluon Confinement 'l
# No matter how hard one strikes the proton, onel'
cannot liberate an individual quark or gluon /I

/

® Dynamical Chiral Symmetry Breaking J

» \Very unnatural pattern of bound state masses /

& e.g., Lagrangian (pQCD) quark mass is sma/ll/but .

755, ottice o no degeneracy between J©=% and J©="/

e of Nuclear PR <
(8} ~

/
# Neither of these phenomena is apparent in QGD’s
Lagrangian yet they are the dominant determining
/7

characteristics of real-world QCD. 7
7
7
#® QCD - Complex behaviour< - - - -~
Argonne arises from apparently simple rules
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Why should
You care?

Z" Office of
-4 Science

U.S. DEFARTMENT OF ENERGY

TO THINK!
YOU SHOULD CARE.

Craig Roberts: Modern Hadron Physics

Argonne

NATIONAL
LABORATORY



7557 Office of
-~ Science
U.S. DEFARTMENT OF ENERGY

e of Nuclear PR &
(o)

Argonne

Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!
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Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!

1 1
~ 20fm or ~ —fm?

o What is the range:
2my 2 Mg 3
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Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!

1 1
~ 20fm or ~ —fm?

o What is the range:
2my 2 Mg 3

® Is 12C stable?
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Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!

: 1 1
# What is the range: ~ 20fm or ~ —fm?
2my 2 Mg 3
8 Is1%C stable?
s Probably not, if range range ~ ————
2 Mg
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Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!

o How does the binding energy of deuterium
change?
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ow does the binding energy of deuterium
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ow does the neutron lifetime change?



Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!

o How does the binding energy of deuterium

|_
change?
|_

ow does the neutron lifetime change?
s How does m, — my relate to My — Mp?
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Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!

o How does the binding energy of deuterium

|_
change?
|_

°

ow does the neutron lifetime change?

s How does m, — my relate to My — Mp?
s Can one guarantee M,, > M,"?
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Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!

o How does the binding energy of deuterium
change?

Zﬁ o How does the neutron lifetime change?
Scren:e
s How does m, — my4 relate to My — Mp?
s Can one guarantee M,, > M,?

uclea;
otwel hg"t‘s

# How do such changes affect Big Bang
Nucleosynthesis?
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Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!

o How does the binding energy of deuterium

|_
change?
|_

°

ow does the neutron lifetime change?
s How does m, — my relate to My — Mp?
s Can one guarantee M,, > M,?

Is a unique long-range interaction between
light-quarks responsible for all this or are there
&  anuncountable Infinity of qualitatively equivalent
Argonne : :
whe | Interactions?

Craig RobertsT Modern Hadro ysiC
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Hamiltonian?

® Plainly, nonperturbative method is necessary.
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Hamiltonian?

® Plainly, nonperturbative method is necessary.

® However, is there an answer to the question?

o Possible to obtain or even sensible to ask for a quantum
mechanical description of light-quark systems in a
relativistic quantum gauge field theory, wherein virtual
particles play an essential role?
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Hamiltonian?

® Plainly, nonperturbative method is necessary.

® However, is there an answer to the question?

o Possible to obtain or even sensible to ask for a quantum
mechanical description of light-quark systems in a
relativistic quantum gauge field theory, wherein virtual
particles play an essential role?
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Hamiltonian?

Plainly, nonperturbative method is necessary.

However, is there an answer to the question?

o Possible to obtain or even sensible to ask for a quantum
mechanical description of light-quark systems in a
relativistic guantum gauge field theory, wherein virtual
particles play an essential role?

® No, it's not. True understanding of the meson spectrum and
o decays requires the ab initio nonperturbative solution of a
fully-fledged relativistic quantum field theory
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Hamiltonian?

® Plainly, nonperturbative method is necessary.

® However, is there an answer to the question?

» Possible to obtain or even sensible to ask for a quantum
mechanical description of light-quark systems in a
relativistic quantum gauge field theory, wherein virtual
particles play an essential role?

757, o o ® No, it's not. True understanding of the meson spectrum and
decays requires the ab initio nonperturbative solution of a
fully-fledged relativistic quantum field theory

e of Nuclear PR 5
— S

NB. Hadron Physics Milestone, 2012: Measure the
a electromagnetic excitations of low-lying hadrons and their
Argonne  transition form factors.
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Traditional approach to
strong force problem Model QCD
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Traditional approach to

strong force problem Model QCD
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Lattice QCD
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One modern nonperturbative approaChLattice QCD
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One modern nonperturbative approachl_attice QCD
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Confinement
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....... bosonic string
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_____ integration of the force-3 loops .

continuum limit
L=6.92
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Confinement

® Infinitely Heavy Quarks ... Picture in Quantum Mechanics

o~ 470 MeV

Necco & Sommer
he-1a/0108008
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Confinement

#® lllustrate this in terms of the action density ... analogous to

Iy 1
plotting the Force = Fpo(r) = o + — T

0.00 .
l laction density, groundstate| Ba“, et al

he-la/0512018
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Confinement

® What happens in the real world; namely, in the presence of
light-quarks?
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Confinement

® What happens in the real world; namely, in the presence of
light-quarks? No one knows ... but QQ + 2 X ggq

_ _ Bali, et al.
laction density, groundstate|
he-la/0512018
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Confinement

® What happens in the real world; namely, in the presence of
light-quarks? No one knows ... but QQ + 2 X ggq

_ _ Bali, et al.
laction density, groundstate|
he-la/0512018

“The breaking of the string appears to be an instantaneous
processh with de-localized light quark pair creation.”
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Confinement

® What happens in the real world; namely, in the presence of
light-quarks? No one knows ... but QQ + 2 X ggq

_ _ Bali, et al.
laction density, groundstate|
he-la/0512018

“The breaking of the string appears to be an instantaneous
processh with de-localized light quark pair creation.”
Therefore ... No
Information on potential
between light-quarks.
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A Compromise?
Dyson-Schwinger Equations
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A Compromise?
Dyson-Schwinger Equations

1994 ... “As computer technology continues to improve,
lattice gauge theory [LGT] will become an increasingly
useful means of studying hadronic physics through
Investigations of discretised quantum chromodynamics

[QCD].....
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A Compromise?
Dyson-Schwinger Equations

® 1994 ... “However, it is equally important to develop other
complementary nonperturbative methods based on
continuum descriptions. In particular, with the advent of new
accelerators such as CEBAF and RHIC, there is a need for
the development of approximation techniques and models
which bridge the gap between short-distance, perturbative
QCD and the extensive amount of low- and

Zé‘?"s’,’_f:gﬁg Intermediate-energy phenomenology in a single covariant

framework. ...”
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A Compromise?
Dyson-Schwinger Equations

1994 ... “Cross-fertilisation between LGT studies and
continuum techniques provides a particularly useful means
of developing a detailed understanding of nonperturbative
QCD.”
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A Compromise?
Dyson-Schwinger Equations

® 1994 ... “Cross-fertilisation between LGT studies and
continuum techniques provides a particularly useful means
of developing a detailed understanding of nonperturbative
QCD.”

C. D. Roberts and A. G. Williams, “Dyson-Schwinger equations
and their application to hadronic physics,” Prog. Part. Nucl. Phys.
=5 oftce of 33, 477 (1994) [arXiv:hep-ph/9403224].
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A Compromise?
Dyson-Schwinger Equations

® 1994 ... “Cross-fertilisation between LGT studies and
continuum techniques provides a particularly useful means
of developing a detailed understanding of nonperturbative
QCD.”

C. D. Roberts and A-G-Witliams, “Dyson-Schwinger equations
and their application to hadronic physics,” Prog. Part. Nucl. Phys.
omee or 33, 477 (1994) [arXiv:hep-ph/9403224].
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A Compromise?
Dyson-Schwinger Equations

® Dyson (1949) & Schwinger (1951) ... One can derive a
system of coupled integral equations relating the Green
functions for the theory to each other.
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A Compromise?
Dyson-Schwinger Equations

® Dyson (1949) & Schwinger (1951) ... One can derive a
system of coupled integral equations relating the Green
functions for the theory to each other.
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<5 % ® These are nonperturbative equivalents in quantum field
theory to the Lagrange equations of motion.
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A Compromise?
Dyson-Schwinger Equations

Dyson (1949) & Schwinger (1951) ... One can derive a
system of coupled integral equations relating the Green
functions for the theory to each other.

===

D
@ ﬂ.u"sf_f:::i:; #® These are nonperturbative equivalents in quantum field

theory to the Lagrange equations of motion.

® Essential in simplifying the general proof of renormalisability
of gauge field theories.

Argonne
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence

» NonPerturbative, Continuum approach to QCD
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence

» NonPerturbative, Continuum approach to QCD

» Hadrons as Composites of Quarks and Gluons
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
Materially Reduces Model Dependence

» NonPerturbative, Continuum approach to QCD

» Hadrons as Composites of Quarks and Gluons
s Qualitative and Quantitative Importance of:
- Dynamical Chiral Symmetry Breaking
— Generation of fermion mass from nothing

- Quark & Gluon Confinement
— Coloured objects not detected, not detectable?
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence

» NonPerturbative, Continuum approach to QCD

» Hadrons as Composites of Quarks and Gluons
s Qualitative and Quantitative Importance of:
&5, 9ffice of - Dynamical Chiral Symmetry Breaking
- — Generation of fermion mass from nothing
- Quark & Gluon Confinement
— Coloured objects not detected, not detectable?
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence
» NonPerturbative, Continuum approach to QCD

» Hadrons as Composites of Quarks and Gluons
s Qualitative and Quantitative Importance of:

176>, Ufice of - Dynamical Chiral Symmetry Breaking

D

— Generation of fermion mass from nothing
- Quark & Gluon Confinement
— Coloured objects not detected, not detectable?

® Method yields Schwinger Functions = Propagators
Argonne
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence

» NonPerturbative, Continuum approach to QCD

» Hadrons as Composites of Quarks and Gluons

s Qualitative and Quantitative Importance of:
&5, 9ffice of - Dynamical Chiral Symmetry Breaking
SR — Generation of fermion mass from nothing
" | . Quark & Gluon Confinement

— Coloured objects not detected, not detectable?
Cross-Sections built from Schwinger Functions

Argonne
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World ...
DSE Perspective
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Persistent Challenge
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Persistent Challenge

® Infinitely Many Coupled Equations
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Persistent Challenge

® Infinitely Many Coupled Equations
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® Coupling between equations truncation
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Persistent Challenge

Infinitely Many Coupled Equations

5 D
] O
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Coupling between equations truncation

» Weak coupling expansion —- Perturbation Theory
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Persistent Challenge

® Infinitely Many Coupled Equations

5 D
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i S r
® Coupling between equations truncation
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

H.J. Munczek Phys. Rev. D 52 (1995) 4736

Dynamical chiral symmetry breaking, Goldstone’s
theorem and the consistency of the Schwinger-Dyson
and Bethe-Salpeter Equations

A. Bender, C.D. Roberts and L. von Smekal, Phys.
Lett. B 380 (1996) 7

Goldstone Theorem and Diquark Confinement Beyond
Rainbow Ladder Approximation
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

Has Enabled Proof of EXACT Results in QCD
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Persistent Challenge

Infinitely Many Coupled Equations
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

Has Enabled Proof of EXACT Results in QCD

And Formulation of Practical Phenomenological Tool to

» lllustrate Exact Results
o) Sciance » Make Predictions with Readily Quantifiable Errors
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Perturbative
Dressed-quark Propagator
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Gap Equation

Perturbative
Dressed-quark Propagator
_ Z(pY) ; >
) = L o+ M) ~O== o
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Perturbative
Dressed-quark Propagator

Z(p?) ;
i p+ M(p?) =O==

D

O
Y r

S

S(p) =

® dressed-quark propagator _
Gap Equation
1

i - p A(p?) + B(p?)

S(p) =

| 57 Office of
54 Science
U.S. DEPARTMENT OF ENERGY
(e of Nuclear p, .
ls) St

Argonne

Craig Roberts: Modern Hadron Physics



Perturbative
Dressed-quark Propagator
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® dressed-quark propagator _
Gap Equation
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Perturbative
Dressed-quark Propagator

. Z() ; >
) = L o+ M) ~O==

S
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g@gﬁ;gﬁg ® \Weak Coupling Expansion
Reproduces Every Diagram in Perturbation Theory

® dressed-quark propagator
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Perturbative
Dressed-quark Propagator

-0 =

S

® dressed-quark propagator _
Gap Equation

1 No-DCSB
°p) = iy - pA(p?) + B(p?) é;e!\

g&;gg;ggg ® \Weak Coupling Expansion
s Reproduces Every Diagram in Perturbation Theory
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Dressed-Quark Propagator
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Dressed-Quark Propagator
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Dressed-Quark Propagator
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Dressed-Quark Propagator
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Gap Equation
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Dyson-Schwinger Equation
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® Longstanding Prediction of
Dyson-Schwinger Equation
Studies
» E.g., Dyson-Schwinger
equations and their
application to hadronic
physics,
C.D. Roberts and
A. G. Williams,
Prog. Part. Nucl. Phys.
33 (1994) 477
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Dyson-Schwinger Equation
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Frontiers of Nuclear Science:
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Frontiers of Nuclear Science:
Theoretical Advances
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Frontiers of Nuclear Science:
Theoretical Advances
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Frontiers of Nuclear Science:
Theoretical Advances

Mass from nothing

In QCD a quark’s effective mass

depends on its momentum. The | v b
) o _ Rapid acquisition of mass is

function describing this can be 04

calculated and is depicted here.

Numerical simulations of lattice

. 0.3 — m=0 (Chiral limity | |
QCD (data, at two different bare < M =30 MeV
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masses) have confirmed model O
predictions (solid curves) that the =02 ~
S——— vast bulk of the constituent mass .
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propagates. In this way, a quark 0
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Consituent-quark o-term

® [mpact of Dynamical chiral symmetry breaking ... exhibited

via constituent-quark o-term

OMY¥
of:=ms(C) amf&) , (MP)2 i=s]s = M(s)*.
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Consituent-quark o-term

® [mpact of Dynamical chiral symmetry breaking ... exhibited

via constituent-quark o-term

OMY¥
of:=ms(C) amf&) , (MP)2 i=s]s = M(s)*.

® Renormalisation-group-invariant and determined from
solutions of the gap equation
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Consituent-quark o-term

® [mpact of Dynamical chiral symmetry breaking ... exhibited

via constituent-quark o-term

OMY¥
of:=ms(C) amf&) , (MP)2 i=s]s = M(s)*.

® Unambiguous probe of impact of explicit chiral symmetry
755, ottice o breaking on the mass function
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Consituent-quark o-term

® [mpact of Dynamical chiral symmetry breaking ... exhibited

via constituent-quark o-term

OMY¥
of:=ms(C) amf&) , (MP)2 i=s]s = M(s)*.

o Ratio| 7 _ EXPLICIT
o ME — EXPLICIT + DYNAMICAL
-4 Science

U.s.

(@
| measures effect of EXPLICIT chiral symmetry breaking on

dressed-quark mass-function
cf. SUM of effects of EXPLICIT AND DYNAMICAL CHIRAL
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Consituent-quark o-term

® [mpact of Dynamical chiral symmetry breaking ... exhibited

via constituent-quark o-term

OMY¥
of:=ms(C) amf&) , (MP)2 i=s]s = M(s)*.
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Consituent-quark o-term

exhibited

® |mpact of Dynamical chiral symmetry breaking ...
via constituent-quark o-term

OMY¥
of:=ms(C) amf&) , (MP)2 i=s]s = M(s)*.

Essentially dynamical T
component of chiral 0.8/
<o 5cenee symmetry breaking, and
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Established understanding
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Hadrons

» Established understanding
of two- and three-point functions

What about bound states?
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Hadrons

°/Without bound states,
Comparison with experiment is
Impossible
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Hadrons

Without bound states,
Comparison with experiment Is
Impossible

They appear as pole contributions
to n > 3-point colour-singlet
Schwinger functions
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Hadrons

Without bound states,
Comparison with experiment Is
Impossible

Bethe-Salpeter [Equation
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Without bound states,
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Hadrons

Without bound states,
Comparison with experiment Is
Impossible

Bethe-Salpeter [Equation
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QFT Generalisation of Lippmann-Schwinger Equation.
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What is the kernel, K?
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What is the light-quark
Long-Range Potential?
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What is the light-quark
Long-Range Potential?

NO MEED
To REPEnT
THE EMPp OF
THE WoRLP 1S
NDOT Possible
AND wE'RE NaT
Goine To
BURN IN HELL
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity

P, T (kP) = 8_1(k+) )\ #is + )\fz% S (k)
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QFT Statement of Chiral Symmetry
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity

b b ()
Py Tgu(k; P) = §7H(ky) 50507 + 525075
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity

Ty
P, TL,(k;P) = S 1(k+)§A;w5+§A;w5
T et — Mg iTs(k; P) — il (k; P) M
Satisfies BSE Satisfies DS

Kernels very different
but must be intimately related
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity
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Py Tgu(k; P) = §7H(ky) 50507 + 525075
o et =M il (k; P) — il'5 (k; P) M
X ) Satisfies BSE Satisfies DS

Kernels very different
but must be intimately related
Relation must be preserved by truncation
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Bethe-Salpeter Kernel

® Axial-vector Ward-Ta

| ldentity

P, T (kP) = 8_1(k+) )\ #is + )\fw5 /\
I —M¢ il (k; P) — iU (k; P) M
Satisfies BSE Satisfies DS

Kernels very different
but must be intimately related
Relation must be preserved by truncation

Nontrivial constraint
Craig Roberts: Modern Hadron Physics
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Takahashi identity

TR
P, TL,(k;P) = S 1(k+)§A;w5+§A;w5
RS o — M iTL(k; P) — il'L(k; P) M,
b Satisfies BSE Satisfies DS

Kernels very different
but must be intimately related
. Relation must be preserved by truncation
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Pion and ...
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Pion and ...
Pseudoscalar Mesons?

an a bound-state of massive. constituents truly be
assless ...
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Radial Excitations

(Maris, Roberts, Tandy & Chiral Symmetry
nu-th/9707003
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Radial Excitations

(Maris, Roberts, Tandy & Chiral Symmetry
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Radial Excitations

(Maris, Roberts, Tandy & Chiral Symmetry
nu-th/9707003
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e Sum of constituents’ current-quark masses
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