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Nucleon ... 2 Key Hadrons
= Proton and Neutron
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Nucleon ... 2 Key Hadrons
= Proton and Neutron

® Fermions — two static properties:
proton electric charge = +1; and magnetic moment,
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Nucleon ... 2 Key Hadrons
= Proton and Neutron

® Fermions — two static properties:
proton electric charge = +1; and magnetic moment,

® Magnetic Moment discovered by Otto Stern and

collaborators in 1933; Awarded Nobel Prize in 1943

h
» Dirac (1928) — pointlike fermion: p, = :ﬂ
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Nucleon ... 2 Key Hadrons
= Proton and Neutron

Fermions — two static properties:
proton electric charge = +1; and magnetic moment,

Magnetic Moment discovered by Otto Stern and

collaborators in 1933; Awarded Nobel Prize in 1943

h
» Dirac (1928) — pointlike fermion: p, = :ﬂ

o eh
7o %las @ Stern (1933) — pp = (1 + 1.79)m
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Nucleon ... 2 Key Hadrons
= Proton and Neutron

Fermions — two static properties:
proton electric charge = +1; and magnetic moment,

Magnetic Moment discovered by Otto Stern and

collaborators in 1933: Awarded Nobel Prize in 1943

eh

» Dirac (1928) — pointlike fermion: p, = Y

U.S. DEFARTMENT

e eh
o %has ® Stern (1933) —pp = (1 4+ 1.79)——
e 2M
# Big Hint that Proton is not a point particle

» Proton has constituents

o These are Quarks and Gluons
Quark discovery via e~ p-scattering at SLAC in 1968
— the elementary quanta of Quantum Chromo-dynamics
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Study Structure via
Nucleon Form Factors
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Study Structure via
Nucleon Form Factors

® Electron’s relativistic electromagnetic current:

iete(P YA, (Q,P)u.(P), Q=P — P
ietie(P") v, (—1) ue(P)
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Study Structure via
Nucleon Form Factors

Electron’s relativistic electromagnetic current:

ju(P',P) = det.(P)A,(Q,P)u.(P), Q=P —P
ietic(P') v, (—1) ue(P)

Nucleon’s relativistic electromagnetic current:

i}

- , Hard scatterin
I, oma g
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Study Structure via
Nucleon Form Factors

® Electron’s relativistic electromagnetic current:

ju(PLP) = icia(P)AL(Q P)uc(P), Q=P — P
ietic(P') v, (—1) ue(P)

® Nucleon’s relativistic electromagnetic current:
J,(P',P) =iet,(P)A,(Q,P)uy(P), Q=P — P

PP==" Office of
Lou Seiance I 2 1 2
o of Rudlear by, — 1€ Up(P ) VMF1<Q ) _l_ m O-/,Ll/ Ql/ F2(Q ) up(P)
QQ
Gp(Q*) = F(Q%)- 1 Fa(@). Gu(Q) = F(Q)+F(QY).

Argonne
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Study Structure via
Nucleon Form Factors

® Electron’s relativistic electromagnetic current:

ju(P',P) = ietc(P')Au(Q. P)ue(P), Q=P -
ietie(P") 7 (1) ue(P)

® Nucleon’s relativistic electromagnetic current:
J(P', P) =iet,(P)A,(Q, P)uy(P), Q=P —

= iety(P) (yﬂFl(QQ) aWQsz(QQ)> p(P)

Office of
.g Aﬁ Scren:e

oM

2
Go(@) = F@)- 13 B(@), Gu(Q) = F(Q)+F(Q).

Point-particle: F» =0 = Gg = Gy

Argonne
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Universal Truths

Spectrum of excited states and transition form factors
provide unigque information about long-range interaction
between light-quarks and distribution of hadron’s
characterising properties amongst its QCD constituents.
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Universal Truths

® Spectrum of excited states and transition form factors
provide unique information about long-range interaction
between light-quarks and distribution of hadron’s
characterising properties amongst its QCD constituents.

® Dynamical Chiral Symmetry Breaking (DCSB) is most
Important mass generating mechanism for visible matter in the
Universe.
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Universal Truths

® Spectrum of excited states and transition form factors
provide unique information about long-range interaction
between light-quarks and distribution of hadron’s
characterising properties amongst its QCD constituents.

® Dynamical Chiral Symmetry Breaking (DCSB) is most
Important mass generating mechanism for visible matter in the

Universe. Higgs mechanism is irrelevant to light-quarks.
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Universal Truths

¢ ® Spectrum of excited states and transition form factors
provide unique information about long-range interaction
between light-quarks and distribution of hadron’s
characterising properties amongst its QCD constituents.
Dynamical Chiral Symmetry Breaking (DCSB) is most
Important mass generating mechanism for visible matter in the
Universe. Higgs mechanism is irrelevant to light-quarks.

X Sciance - : :
——ce @ RUNNING Of quark mass entails that calculations at even

modest Q? require a Poincaré-covariant approach.
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Universal Truths

® Spectrum of excited states and transition form factors
provide unique information about long-range interaction
between light-quarks and distribution of hadron’s
characterising properties amongst its QCD constituents.
Dynamical Chiral Symmetry Breaking (DCSB) is most
Important mass generating mechanism for visible matter in the
Universe. Higgs mechanism is irrelevant to light-quarks.

= Office of
Dz g Running of quark mass entails that calculations at even

e of Nuclear PR 5
B '

modest Q2 require a Poincaré-covariant approach. Covariance
requires existence of quark orbital angular momentum in
hadron’s rest-frame wave function.

Argonne
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Universal Truths

¢ ® Spectrum of excited states and transition form factors
provide unique information about long-range interaction
between light-quarks and distribution of hadron’s
characterising properties amongst its QCD constituents.
Dynamical Chiral Symmetry Breaking (DCSB) is most
Important mass generating mechanism for visible matter in the
Universe. Higgs mechanism is irrelevant to light-quarks.

X Sciance : - :
e @ Challenge: understand relationship between parton properties

on the light-front and rest frame structure of hadrons.
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Universal Truths

® Spectrum of excited states and transition form factors
provide unique information about long-range interaction
between light-quarks and distribution of hadron’s
characterising properties amongst its QCD constituents.
Dynamical Chiral Symmetry Breaking (DCSB) is most
Important mass generating mechanism for visible matter in the
Universe. Higgs mechanism is irrelevant to light-quarks.

X Sciance : : :
® Challenge: understand relationship between parton properties

e of Nuclear PR 5
e '

on the light-front and rest frame structure of hadrons. Problem
because, e.g., DCSB - an established keystone of low-energy
QCD and the origin of constituent-quark masses - has not
been realised in the light-front formulation.
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QCD'’s Challenges
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® Quark and Gluon Confinement

» No matter how hard one strikes the proton, one
cannot liberate an individual quark or gluon
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QCD'’s Challenges
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® Quark and Gluon Confinement

# No matter how hard one strikes the proton, one
cannot liberate an individual quark or gluon

® Dynamical Chiral Symmetry Breaking

» \Very unnatural pattern of bound state masses
& e.g., Lagrangian (pQCD) quark mass is small but . ..
755, omce o no degeneracy between J¥=T and J¥=—
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QCD'’s Challenges

THANKYouU }
FOR MNOT
. L ENQUIRING

® Quark and Gluon Confinement

# No matter how hard one strikes the proton, one
cannot liberate an individual quark or gluon

® Dynamical Chiral Symmetry Breaking

» \Very unnatural pattern of bound state masses
& e.g., Lagrangian (pQCD) quark mass is small but . ..
755, omce o no degeneracy between J¥=T and J¥=—
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® Neither of these phenomena is apparent in QCD’s
Lagrangian yet they are the dominant determining
characteristics of real-world QCD.
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QCD'’s Challenges
Understand Emergent Phenomena

THANKYouU }
FOR MNOT
. L ENQUIRING

A

I

® Quark and Gluon Confinement 'l
# No matter how hard one strikes the proton, onel'
cannot liberate an individual quark or gluon /I

/

® Dynamical Chiral Symmetry Breaking J

» \Very unnatural pattern of bound state masses /

& e.g., Lagrangian (pQCD) quark mass is sma/ll/but .

pzs: ortice of no degeneracy between J©=% and J©="/

-
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-~ 4 Science
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e of Nuclear PR 5
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/
# Neither of these phenomena is apparent in QGD’s
Lagrangian yet they are the dominant determining
/7

characteristics of real-world QCD. 7
7
7
#® QCD - Complex behaviour< - - - -~
Argonne arises from apparently simple rules
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Dichotomy of Pion

— Goldstone Mode and Bound state

" » How does one make an almost massless particle
from two massive constituent-quarks?
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Dichotomy of Pion
— Goldstone Mode and Bound state

"~ » How does one make an almost massless particle
........... from two massive constituent-quarks?

# Not Allowed to do it by fine-tuning a potential

Must exhibit| m?2 o m,
Current Algebra ... 1968
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Dichotomy of Pion
— Goldstone Mode and Bound state

""" o How does one make an almost massless particle
........... from two massive constituent-quarks?

# Not Allowed to do it by fine-tuning a potential

Must exhibit| m?2 o m,
Current Algebra ... 1968

The correct understanding of pion observables;
g&; « €.0. mass, decay constant and form factors,
reqguires an approach to contain a

o well-defined and valid chiral limit;

#® and an accurate realisation of
dynamical chiral symmetry breaking.
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Dichotomy of Pion
— Goldstone Mode and Bound state

""" o How does one make an almost massless particle
........... from two massive constituent-quarks?

# Not Allowed to do it by fine-tuning a potential

Must exhibit| m?2 o m,
Current Algebra ... 1968

The correct understanding of pion observables;
g&; « €.0. mass, decay constant and form factors,
reqguires an approach to contain a

o well-defined and valid chiral limit;

® and an accurate realisation of

dynamical chiral symmetry breaking.

AtBaMe  Highly Nontrivial
B ighly Nontrivia
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What's the Problem?

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.

| Office of
.g 4 Science
DEFARTMENT OF ENERGY

=
U.s.

Argonne

Craig Roberts: Quarks, Hadrons, and the Constants of Nature: |



What's the Problem?

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.

® Means ... must calculate hadron wave functions
— Can’t be done using perturbation theory
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What's the Problem?

Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.

® Means ... must calculate hadron wave functions

75, ot o — Can’t be done using perturbation theory

D

o ® Why problematic? Isn’t same true in quantum mechanics?
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What's the Problem?

® Minimal requirements
» detailed understanding of connection between
Current-quark and Constituent-quark masses;
# and systematic, symmetry preserving means of realising
this connection in bound-states.

® Means ... must calculate hadron wave functions
— Can’t be done using perturbation theory

Z@ ’312,‘3:;'

® Why problematic? Isn’t same true in quantum mechanics?

® Differences!
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What's the Problem?
Relativistic QFT!

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.
® Differences!

765, offics of » Here relativistic effects are crucial — virtual particles,
guintessence of Relativistic Quantum Field Theory —
must be included

Argonne
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What's the Problem?
Relativistic QFT!

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.
® Differences!

o Here relativistic effects are crucial — virtual particles,
guintessence of Relativistic Quantum Field Theory —
must be included

» Interaction between quarks — the Interquark “Potential” —
unknown throughout > 98% of a hadron’s volume
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Intranucleon Interaction

98% of the volume

Argonne
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What is the
Intranucleon Interaction?

The question must be
rigorously defined, and the
answer mapped out using
experiment and theory.

Va ol 98% of the volume
BTGNS
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Dyson-Schwinger Equations
Dressed-Quark Propagator
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Dyson-Schwinger Equations
Dressed-Quark Propagator
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Gap Equation
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Dyson-Schwinger Equations
Dressed-Quark Propagator
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Gap Equation
# Gap Equation’s Kernel Enhanced on IR domaln
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Dyson-Schwinger Equations
Dressed-Quark Propagator
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Gap Equation
# Gap Equation’s Kernel Enhanced on IR domaln
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Dyson-Schwinger Equations
Dressed-Quark Propagator

-0 =

S

Gap Equation
# Gap Equation’s Kernel Enhanced on IR domaln

IR Enhancement of M (p?) MR R S
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___ g Euclidean Constituent—Quark 19" ¢oooo000005s; T
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ME ‘ ~ 102 ‘ ~ 10 ‘ ~ 15 ‘ ~11 I O chiral limit
e . . 10_3 _ Mz(pz) _ pz
Argne Predictions confirmed in 107 100 2-1-00 2 10 10
wewon — NUMerical simulations of lattice-QCD| p (GeV)
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Frontiers of Nuclear Science:
A Long Range Plan (2007)
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Frontiers of Nuclear Science:
Theoretical Advances
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Frontiers of Nuclear Science:
Theoretical Advances

I ' I '
Rapid acquisition of mass is
0.4 —
,. _ ,effect of gluon cloud
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In QCD a quark’s effective mass
depends on its momentum. The
function describing this can be
calculated and is depicted here.
Numerical simulations of lattice
QCD (data, at two different bare
masses) have confirmed model
predictions (solid curves) that the
vast bulk of the constituent mass
of a light quark comes from a
cloud of gluons that are dragged
along by the quark as it
propagates. In this way, a quark
that appears to be absolutely
massless at high energies

(m = 0, red curve) acquires a
large constituent mass at low
energies.
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Mass from nothing

0.4

0.3

) [GeV]

£0.2

M

0.1

Frontiers of Nuclear Science:
Theoretical Advances

I ' I '
Rapid acquisition of mass is

— m =30 MeV
— m=70 MeV

— m = 0 (Chiral limit)
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In QCD a quark’s effective mass
depends on its momentum. The
function describing this can be
calculated and is depicted here.
Numerical simulations of lattice
QCD (data, at two different bare
masses) have confirmed model
predictions (solid curves) that the
vast bulk of the constituent mass
of a light quark comes from a
cloud of gluons that are dragged
along by the quark as it
propagates. In this way, a quark
that appears to be absolutely
massless at high energies

(m = 0, red curve) acquires a
large constituent mass at low
energies.
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Mass from nothing

Frontiers of Nuclear Science:

Theoretical Advances
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Hadrons

L =it
=

e omer o Established understanding of
two- and three-point functions
What about bound states?

Argonne
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Hadrons

Without bound states, Comparison with
experiment is impossible
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Hadrons

Without bound states, Comparison with
experiment is impossible

They appear as pole contributions to n > 3-point
colour-singlet Schwinger functions
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Hadrons

Without bound states, Comparison with
experiment is impossible

Bethe-Salpeter Equation
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QFT Generalisation of Lippmann-Schwinger Equation.
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Hadrons

Without bound states, Comparison with
experiment is impossible

Bethe-Salpeter Equation

13
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QFT Generalisation of Lippmann-Schwinger Equation.
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)

What is the kernel, K?
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Confinement

® Infinitely Heavy Quarks ... Picture in Quantum Mechanics

: o~ 470 MeV

7 Necco & Sommer
1 he-1a/0108008

2 T T T T T T T T T T T |
L —'.B‘,,
i integration of the force-3 loops D'_,.'B)
- . . K J -
....... bosonic string ..D,.-
L - . |
1 — 13 ]
— "'d:',"
s_'CD L p u
— - & -
—~ .
[9)
S—d r -
N—’
> 0
I L ]
~—
V; Office of R i
-4 Science = . o
U.S. DEFARTMENT OF ENERGY —_ — .Contlnuum llmlt |
i ,B=6.4 -
_2 Il Il | Il Il Il | Il Il Il Il |
0 0.5 1 1.5
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Confinement

#® lllustrate this in terms of the action density ... analogous to

Iy 1
plotting the Force = Fpo(r) = o + — T

0.00 .
l laction density, groundstate| Ba“, et al

he-la/0512018

PP——=S" Office of
.g,;j Science
US. DEPARTMENT OF ENERGY

of Muclear py, i
4

0&\‘\(6

Argonne

Craig Roberts: Quarks, Hadrons, and the Constants of Nature: |
Seminar: UNSW, Wed. 12/Nov/08... 40 - p. 12/41




Confinement

® What happens in the real world; namely, in the presence of
light-quarks?
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Confinement

® What happens in the real world; namely, in the presence of
light-quarks? No one knows ... but QQ + 2 X ggq

_ _ Bali, et al.
laction density, groundstate|
he-la/0512018
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Confinement

® What happens in the real world; namely, in the presence of
light-quarks? No one knows ... but QQ + 2 X ggq

_ _ Bali, et al.
laction density, groundstate|
he-la/0512018

“The breaking of the string appears to be an instantaneous
processh with de-localized light quark pair creation.”

Z@ Office of

cfen:e
HERGY

Argonne
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Confinement

® What happens in the real world; namely, in the presence of
light-quarks? No one knows ... but QQ + 2 X ggq

_ _ Bali, et al.
laction density, groundstate|
he-la/0512018

“The breaking of the string appears to be an instantaneous
processh with de-localized light quark pair creation.”

’ Therefore ... No
Information on potential
between light-quarks.

0.40

Z@ Office of

cfen:e
HERGY

0.60 | =

Argonne
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What is the light-quark
Long-Range Potential?

NO MEED
To REPENT
THE EMp OF
THE WoRLP 1S
NOT PoSsiBLE
AND wWERE NoT
Goine To
BURwM N HELL
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R Imple way to the light-quark interaction........
N e el B255LRIC WY ght-quark interaction.......

What is the light-quark
Long-Range Potential?

NO MEED
To REPEnT
THE EMPp OF
THE wWoRLp 1
NeT Possible
AnD wE'RE NeT
Goine To
BURNM (M HELL

L THE ERAMK L'-"’"j!

Potential between static (infinitely heavy) quarks

measured in simulations of lattice-QCD is not related




Bethe-Salpeter Kernel
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity

P, T (kP) = 8_1(k+) )\ #is + )\fz% S (k)
CR —Mcily(k; P) — iT'5(k; P) M

QFT Statement of Chiral Symmetry

Argonne
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity

b b ()
Py Tgu(k; P) = §7H(ky) 50507 + 525075

DY —M¢ il (k; P) — iU (k; P) M

e of Nuclear PR <
(o)

Satisfies BSE Satisfies DSE

Argonne
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity

Ty
Py Tgu(k; P) = §7H(ky) 50507 + 525075
o et =M il (k; P) — il'5 (k; P) M
Satisfies BSE Satisfies DS

Kernels very different
but must be intimately related
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity

Ty
Py Tgu(k; P) = §7H(ky) 50507 + 525075
o et =M il (k; P) — il'5 (k; P) M
Satisfies BSE Satisfies DS

Kernels very different
but must be intimately related
Relation must be preserved by truncation
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity

P, Fgu(k;P) — 8_1(k+) )\ 275 4 )‘f175 /\
(-2 b — M iTL(k; P) — il'L(k; P) M,
{ C Satisfies BSE Satisfies DS

Kernels very different
but must be intimately related
Relation must be preserved by truncation

Nontrivial constraint
Craig Roberts: Quarks, Hadrons, and the Constants of Nature: |

Argonne



Bethe-Salpeter Kernel

#® Axial-vector Ward-Takahashi identity

TR
P, TL,(k;P) = S 1(k+)§A;w5+§A;w5
Dt — M. iTL(k; P) — iTL(k; P) M,
Satisfies BSE Satisfies DS

Kernels very different
but must be intimately related
. Relation must be preserved by truncation

Argonne T : :
. = Explicit Violation of QCD’s Chiral Symmetry
Craig Roberts: Quarks, Hadrons, and the Constants of Nature: |
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Persistent Challenge

® Infinitely Many Coupled Equations
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Persistent Challenge

® Infinitely Many Coupled Equations

D
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~Om =

® Coupling between equations truncation
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Persistent Challenge

Infinitely Many Coupled Equations

D

O
Y S

~Om =

Coupling between equations truncation

» Weak coupling expansion —- Perturbation Theory
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Persistent Challenge

® Infinitely Many Coupled Equations

5 D
] O
i S r
® Coupling between equations truncation

» Weak coupling expansion —- Perturbation Theory
Not useful for the nonperturbative problems
In which we're interested

‘g‘ﬁ Office of

Scrence

Argonne

Craig Roberts: Quarks, Hadrons, and the Constants of Nature: |
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

H.J. Munczek Phys. Rev. D 52 (1995) 4736

Dynamical chiral symmetry breaking, Goldstone’s
theorem and the consistency of the Schwinger-Dyson
and Bethe-Salpeter Equations

A. Bender, C.D. Roberts and L. von Smekal, Phys.
Lett. B 380 (1996) 7

Goldstone Theorem and Diquark Confinement Beyond
Rainbow Ladder Approximation

Craig Roberts: Quarks, Hadrons, and the Constants of Nature: |
Seminar: UNSW, Wed. 12/Nov/08... 40 - p. 16/41
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Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

Has Enabled Proof of EXACT Results in QCD
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

Has Enabled Proof of EXACT Results in QCD

And Formulation of Practical Phenomenological Tool to

» lllustrate Exact Results
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

Has Enabled Proof of EXACT Results in QCD

And Formulation of Practical Phenomenological Tool to

» lllustrate Exact Results
o) Sciance » Make Predictions with Readily Quantifiable Errors

=4 Science
OF ENERGY

U.S. DEFARTMENT

Argonne
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Radial Excitations
& Chiral Symmetry

V; Office of

— 4 Science

U.S. DEFARTMENT OF ENERGY

Argonne

NATIONAL
LABORATORY

Craig Roberts: Quarks, Hadrons, and the Constants of Nature: |


http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+key+3584445
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+key+5899605

nu-th/9707003
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(Maris, Roberts, Tandy

Radial Excitations
& Chiral Symmetry
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Radial Excitations

(Maris, Roberts, Tandy & Chiral Symmetry
nu-th/9707003

e Mass? of pseudoscalar hadron
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nu-th/9707003
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Argonne

(Maris, Roberts, Tandy

Radial Excitations
& Chiral Symmetry

M = travour [M(M) {TH (1" )tH = Mg, + mq,

e Sum of constituents’ current-quark masses
eeg., T =1 (04N

Craig Roberts: Quarks, Hadrons, and the Constants of Nature: |
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http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+key+3584445
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+key+5899605

Radial Excitations

(Maris, Roberts, Tandy & Chiral Symmetry
nu-th/9707003

A
[ pp = Zz/ %tr{(TH)t%w S(q+) ' (q; P)S(q-) }

e Pseudovector projection of BS wave functio& atxr =20
e Pseudoscalar meson’s leptonic decay constant

(;‘;‘\(e of Nudlear pp,, . —
s — 1B : (_’ ) H
T _fnkll A _ 5 1(T/2)Y Ye
_____ — SR — ~~—NT
—
k
Argonne 1S
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Radial Excitations
& Chiral Symmetry

ip! = Z4 /qA %tr{(TH)t% S(q+)'u(g; P)S(q-) }

e Pseudoscalar projection of BS wave function at x =0

1S

(Maris, Roberts, Tandy
nu-th/9707003

G — .

W

0‘{\\L of Hugesr By Ste,

Argonne
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Radial Excitations

(Maris, Roberts, Tandy & Chiral Symmetry
nu-th/9707003

#® Light-quarks;i.e., mg ~ 0

—(qq)?
s fu— 4 &pl — ¢, Independent of my
© I
PP—==5" Office of 2 _<qq>2 .
K62 Scionce Hence | myz; = mq | ... GMOR relation, a corollary
T (f¥)?

Argonne
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Radial Excitations

(Maris, Roberts, Tandy & Chiral Symmetry
nu-th/9707003

#® Light-quarks;i.e., mg ~ 0

= \0
—(qq)
s fg— f%&p? > 70 C, Independent of m,
H
= \0
- —(4q) .
X Sciance Hence |m3;, = 70 ); mg | ... GMOR relation, a corollary
0“\\(3 of Nuclear py, iy H

T e Heavy-quark + light-quark
B - 1
and p!' o< /mp

VT

:>fHOC

Hence, mpyg o< mq

Argonne
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Radial Excitations
& Chiral Symmetry

s

=

—

=
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fi miyp=— p' My

® Valid for ALL Pseudoscalar mesons
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Radial Excitations
& Chiral Symmetry

& o iy

=
——
—

[ mfg=— p Mpy

® Valid for ALL Pseudoscalar mesons

® /), = finite, nonzero value in chiral limit, My — 0

Office of
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Radial Excitations
& Chiral Symmetry

HOll, Krassnigg, Roberts

fi miy=— p' My

Valid for ALl Pseudoscalar mesons
® ;; = finite, nonzero value in chiral limit, Mgz — 0

® ‘“radial” excitation of m-meson, not the ground state, so
Z Office of

”4 Science m2 > m?2 — 0, in chiral limit

Argonne
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Radial Excitations
& Chiral Symmetry

HOll, Krassnigg, Roberts

[ my=— p Mpy

Valid for ALl Pseudoscalar mesons
® ;; = finite, nonzero value in chiral limit, Mgz — 0

® ‘“radial” excitation of m-meson, not the ground state, so

6 Sciance — 0. in chiral limi
fmwmEO > mZ2 _ =0, inchiral limit

ote of Hugesr By s,

® = fpg=20
ALL pseudoscalar mesons except 7w (140) in chiral limit

Argonne
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Radial Excitations
& Chiral Symmetry

HOll, Krassnigg, Roberts

[ my=— p Mpy

Valid for ALl Pseudoscalar mesons
® ;; = finite, nonzero value in chiral limit, Mgz — 0

® ‘“radial” excitation of m-meson, not the ground state, so
Office of . . . .
54 Science fmwmEO > mﬂn _,=20,1In chiral limit

® = fpg=20
ALL pseudoscalar mesons except 7w (140) in chiral limit

ote of Hugesr By s,

®» Dynamical Chiral Symmetry Breaking
— Goldstone’s Theorem —
Impacts upon every pseudoscalar meson

Cralg Roberts: Quarks, Hadrons, and the Constants of Nature: |
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McNeile and Michael
he-la/0607032

Office of
g et | Scrence

U.S. DEFARTMENT OF ENERG

Argonne

NATIONAL
LABORATORY

Radial Excitations
& Lattice-QCD
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Radial Excitations
hela/607032 & Lattice-QCD

® When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.
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Radial Excitations
hela/607032 & Lattice-QCD

® When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

® CLEO: 7 — 7(1300) 4 v,
= fr, < 8.4MeV

Diehl & Hiller
he-ph/0105194
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Radial Excitations
he 0607032 - & Lattice-QCD

® When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

® CLEO: 7 — 7(1300) + v, | :
= fr, < 8.4MeV 08} 0
Diehl & Hiller i &
he-ph/0105194 N
® Lattice-QCD check: o, il
3
757, 2 of 10752,
MENI a~ 0.1 fm’ 02 ool
e s, O NPimproved
two-flavour, unquenched | ] — Btbound | ]
fﬂ'l ( ) 0o | o|.5 | I1 | 1|.5 | I2 | 2|.5 | :Is | 3|.5 | 4
= = 0.078 (93 (rgm,)°
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Radial Excitations
he 0607032 - & Lattice-QCD

® When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

® CLEO: 7™ — 7w(1300) + v, ¢ :
= fr, <8.4MeV 08~ 74

Diehl & Hiller i &
he-ph/0105194 % o
® Lattice-QCD check: o, il

75, e 167 x 32,

¢ uclear a~ 0.1 fm’ 02 O notimproved] |
gce of Bumear Phy . I O NPimproved |
two-flavour, unquenched } ___________________________ -~~~ Exptbound | ]
I _orso3) e

® Full ALPHA formulation is required to see suppression, because
Argonne PCAC relation is at the heart of the conditions imposed for

nt (determining coefficients.of.irrelevant operators
B = e R : k.ot RRIAIDIS)

Seminar: UNSW, Wed. 12/Nov/08... 40 - p. 19/41




Radial Excitations
he 0607032 - & Lattice-QCD

® When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

® CLEO: 7 — 7(1300) + v, |
= fr, < 8.4MeV 08} 0
Diehl & Hiller i -
he-ph/0105194 N
® Lattice-QCD check: o, il
3
757, 2 of 10752,
MENI a~ 0.1 fm’ 02 ool
e s, O NPimproved
two-flavour, unquenched | ] — Btbound | ]
fﬂ'l ( ) 0o | o|.5 | I1 | 1|.5 | I2 | 2|.5 | :Is | 3|.5 | 4
= = 0.078 (93 (rgm,)°

® The suppression of f,, is a useful benchmark that can be used to
Argonne tune and validate lattice QCD techniques that try to determine the

ORATORY . .
Of eXCIted States meson:%g Roberts: Quarks, Hadrons, and the Constants of Nature: |
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Answer for the pion
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Answer for the pion

wo — Infinitely mg

PP—==" Office of
4 Science

U.S. DEFARTMENT OF ENERGY

Argonne

NATIONAL
LABORATORY

Craig Roberts: Quarks, Hadrons, and the Constants of Nature: |



Answer for the pion

wo — Infinitely mg
Handle that
roperly in
guantum

fleld theor
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Answer for the pion

wo — Infinitely mg
Handle that
roperly in
guantum oy B
field theorys &« &

_ momentu
Offlcenf

—seee —(epende
€ & dressing
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Answer for the pion

wo — Infinitely mg
Handle that
roperly in
quantum  / pope & B
field theorys & & 5

momentu

Offlceof
2%iss depende
dressing

o mass depends
Argonne
=, 0N the resolving sca

I - -
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Explicit Chiral Symmetry Breaking
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Explicit Chiral Symmetry Breaking

® Chiral symmetry is explicitly broken in QCD by the current-quark
mass term, which for the u- and d-quark sector is expressed in the
action as

[ 0 mae

|
o)
i~
N
/N
g
VN
N
N——"
Q.
VN
N
N——"
N—"

T Yo
wom,  Where: (7°);; = §;; and {7%; k = 1, 2,3} are Pauli matrices; and

i w,-w[.wm._w&._w’*" m = (m’U, —|— md)/2 and m — (m’u, - md)/2'

Argonne
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Explicit Chiral Symmetry Breaking

® Chiral symmetry is explicitly broken in QCD by the current-quark
mass term, which for the u- and d-quark sector is expressed in the
action as

[ 0 mae

|
o)
i~
N
/N
g
VN
N
N——"
Q.
VN
N
N——"
N—"

Z@ Office of

Science
MENT OF ENERGY

R where: (7-0),1:- — 5'1, and {Tk; k = 17 2, 3} are Pauli matriceS; and
» j j
S o= (mu 4+ mg)/2 and m = (my, — mg) /2.

‘ ® Empirical success with the application of chiral effective theories
6 to low-energy phenomena in QCD indicates that this term can
often be treated as a perturbation.
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Dynamical Chiral Symmetry Breaking

® Success of Chiral Effective Theory owes fundamentally to the
phenomenon of dynamical chiral symmetry breaking (DCSB) in
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Dynamical Chiral Symmetry Breaking

® Success of Chiral Effective Theory owes fundamentally to the
phenomenon of dynamical chiral symmetry breaking (DCSB) in
QCD

# The feature that the dressed-quark Schwinger function is
nonperturbatively modified at infrared momenta: p < 1 GeV.
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Dynamical Chiral Symmetry Breaking

Success of Chiral Effective Theory owes fundamentally to the
phenomenon of dynamical chiral symmetry breaking (DCSB) in
QCD

# The feature that the dressed-quark Schwinger function is
nonperturbatively modified at infrared momenta: p < 1 GeV.

® This is a longstanding prediction of Dyson-Schwinger equation
(DSE) studies.
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Dynamical Chiral Symmetry Breaking

Success of Chiral Effective Theory owes fundamentally to the

phenomenon of dynamical chiral symmetry breaking (DCSB) in

QCD

# The feature that the dressed-quark Schwinger function is
nonperturbatively modified at infrared momenta: p < 1 GeV.

® This is a longstanding prediction of Dyson-Schwinger equation
(DSE) studies.

Z@ ',’_f:g::;:: # K.D. Lane, “Asymptotic Freedom And Goldstone Realization
Of Chiral Symmetry,” Phys. Rev. D 10, 2605 (1974).

o H.D. Politzer, “Effective Quark Masses In The Chiral Limit,”
Nucl. Phys. B117, 397 (1976).

o C.D. Roberts and A. G. Williams, “Dyson-Schwinger
equations and their application to hadronic physics,” Prog.
ATgonne Part. Nucl. Phys. 33, 477 (1994).
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Holl, et al., nu-th/0510075 Slgma Term

® o-term for hadron, H, obtained from the isoscalar matrix element

(H ()l Jo ()| H(y)), Jo(2) = Q(2)T°Q(2),
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Sigma Term

Holl, et al., nu-th/0510075

® o-term for hadron, H, obtained from the isoscalar matrix element
(H(x)|m Jy(2)|H(y)), Jo(2) = Q(2)7°Q(z),

$» Simple counting of field dimensions =
# Mesons, amputated matrix element has mass-dimension two,
# Fermions, it has mass-dimension one.
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Sigma Term

Holl, et al., nu-th/0510075

® o-term for hadron, H, obtained from the isoscalar matrix element
(H(x)|m Jy(2)|H(y)), Jo(2) = Q(2)7°Q(z),

$» Simple counting of field dimensions =
# Mesons, amputated matrix element has mass-dimension two,
# Fermions, it has mass-dimension one.

® For all hadrons the o-term vanishes in the chiral limit.
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Sigma Term

Holl, et al., nu-th/0510075

® o-term for hadron, H, obtained from the isoscalar matrix element
(H(x)|m Jy(2)|H(y)), Jo(2) = Q(2)7°Q(z),

$» Simple counting of field dimensions =
# Mesons, amputated matrix element has mass-dimension two,
# Fermions, it has mass-dimension one.

® For all hadrons the o-term vanishes in the chiral limit.

e » Therefore ... of the impact of
on a hadron, in particular, on a hadron’s
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Sigma Term

Holl, et al., nu-th/0510075

® o-term for hadron, H, obtained from the isoscalar matrix element
(H(x)|m Jy(2)|H(y)), Jo(2) = Q(2)7°Q(z),

$» Simple counting of field dimensions =
# Mesons, amputated matrix element has mass-dimension two,
# Fermions, it has mass-dimension one.

® For all hadrons the o-term vanishes in the chiral limit.

e » Therefore ... of the impact of
on a hadron, in particular, on a hadron’s
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® Important for numerous reasons, some of longstanding.
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Fundamental “Constants”

® ltis afeature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation.
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Fundamental “Constants”

® |t is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation. For example

# Intheories extra dimensions, the “constants” will depend on
the size of the extra dimensions, and some new scalar fields
introduced in the theory
s E.g., dilaton in superstring theory.
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. LENQUIRING

Fundamental “Constants”

® |t is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation. For example

# Intheories extra dimensions, the “constants” will depend on
the size of the extra dimensions, and some new scalar fields
introduced in the theory
s E.g., dilaton in superstring theory.

Z&"m‘ Office of
=4 Science

U.S. DEFAR

# Therefore, if size of extra dimensions changes, or scalar fields
are z-dependent, then “constants” will also change.
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Fundamental “Constants”

® |t is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation. For example

# Intheories extra dimensions, the “constants” will depend on
the size of the extra dimensions, and some new scalar fields
introduced in the theory

s E.g., dilaton in superstring theory.
g@‘-‘* Office of

Scrence
T

# Therefore, if size of extra dimensions changes, or scalar fields
are z-dependent, then “constants” will also change.

of Nuclear pp,

# In such theories there is no reason why the size of the extra
dimensions and the new scalar fields should be constants
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Fundamental “Constants”

® |t is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation. For example

# Intheories extra dimensions, the “constants” will depend on
the size of the extra dimensions, and some new scalar fields
introduced in the theory
s E.g., dilaton in superstring theory.

_a.“
gy Office of

Scrence
RTM

# Therefore, if size of extra dimensions changes, or scalar fields
are z-dependent, then “constants” will also change.

# In such theories there is no reason why the size of the extra
dimensions and the new scalar fields should be constants
. Indeed, it might be hard to explain, if they were!
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Fundamental “Constants”

® |t is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation. For example

# Intheories extra dimensions, the “constants” will depend on
the size of the extra dimensions, and some new scalar fields
introduced in the theory
s E.g., dilaton in superstring theory.
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# Therefore, if size of extra dimensions changes, or scalar fields
are z-dependent, then “constants” will also change.

# In such theories there is no reason why the size of the extra
dimensions and the new scalar fields should be constants
... Indeed, it might be hard to explain, if they were!

# Hence, nature’s “constants” may vary.
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Fundamental “Constants”

® |t is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation.

® Consequently, there is an expanding search for this variation via
laboratory, astronomical and geochemical measurements.
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Fundamental “Constants”

It is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation.

Consequently, there is an expanding search for this variation via
laboratory, astronomical and geochemical measurements.

Interpretation of some of these measurements requires
calculations of the current-quark mass dependence of the
parameters characterising nuclear systems.
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Fundamental “Constants”

It is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation.

® Consequently, there is an expanding search for this variation via
laboratory, astronomical and geochemical measurements.

® |[nterpretation of some of these measurements requires
_g e calculations of the current-quark mass dependence of the
parameters characterising nuclear systems.

® NB. Higher dimensional theories do not necessarily require
varying “constants”, but they provide a framework for describing
the variations, if they exist.
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Pion Sigma Term

® Useful illustrative example . ..
form factor:

s2(Q%) = (n(P")|m Jo(Q)|n(P)), Qu = (P = P),.

o-term for 7t ... begin with scalar
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Pion Sigma Term

® Useful illustrative example . ..
form factor:

s2(Q%) = (n(P")|m Jo(Q)|n(P)), Qu = (P = P),.

o-term for 7t ... begin with scalar

® Inra nbow-ladder truncation of QCD’s Dyson-Schwinger Equation:
(ﬁa,,B = ¢+ aP + /BQ)

d*¢
SW(QQ) = tI'C’DF/(27T)4 8(5_1,%)mFTO(E_l’O;Q)S(g_l,_%)
Lo Scionce XDr (01,0 P) Sy 1) Tl y 15 P)

.ce of Nuclear PR
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Pion Sigma Term

® Useful illustrative example . ..
form factor:

s2(Q%) = (n(P")|m Jo(Q)|n(P)), Qu = (P = P),.

o-term for 7t ... begin with scalar

® Inra nbow-ladder truncation of QCD’s Dyson-Schwinger Equation:
(Ea,,B = ¢+ aP + BQ)

d*¢
SW(QQ) = tI‘CDF/(27T)4 5(6_1,%)mr7.0(€_1,0;Q)S(ﬁ_l,_%)

Ko Scionce xTr(l 1 0; P)S(ly 1) (b1 15 P)

202

e of Nuclear PR <
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® ranbow-ladder ... first term in a nonperturbative, systematic and
symmetry preserving truncation scheme =- triangle diagram

o S(¢) ... two-flavour dressed-quark propagator

6 o T', (4;P) ... pion’s Bethe-Salpeter amplitude
Argonne s TI',0(4Q) ... two-flavour inhomogeneous isoscalar scalar
Lasorarosr vertex
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Return to Pion Sigma Term

The pion’s o-term is defined by
2My 0 = 5:(Q°=0)

d*¢
= trCDF/(Qw)4 8(6—1,0)mFTO(g—l,O;O)S(g—l,O)
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Return to Pion Sigma Term

® The pion’s o-term is defined by
2My 0 = 5:(Q°=0)
d/ _
= tropr 8(6_1,0)m1“70(€_1,0;0) 5(5_1,0)

(2m)*
XFW(K_%,O; —P) 5(5) FW(K_%’O; P)

$ Symmetry preserving truncation

| %,
(DYt =m0 S(k) = — S(k) L'70(k;0) S(k)
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Return to Pion Sigma Term

The pion’s o-term is defined by
2My 0 = 5:(Q°=0)

d/ _
= tropr S(g_l,o)mFTo(g_l,o;O) 5(5_1,0)

(2m)*
XFW(K_%,O; —P) 5(5) FW(K_%’O; P)

$ Symmetry preserving truncation

B,
(DYt =m0 S(k) = —8(k)T'ro(k;0) S(k)

b, .
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d 0S(l_1,) | |
(2m)* om(¢) o o

2M, Op = —TTL(C) tr(;DF/
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Return to Pion Sigma Term

® The pion’s o-term is defined by
2My 0 = 5:(Q°=0)

d*¢
= trCDF/(Qw)4 8(5—1,0)mFTO(E—l,O;O)S(g—l,O)

XFW(f_l 05 —P) 5(5) Fﬂ(f_l 03 P)

27 27

® Canonical normalisation condition for Bethe-Salpeter amplitude

A
| 7 ice o 8
5405’3"5 2P, =trcpr / I'z(q; —P) 5P, S(q+ Q/2)I'x(q; P)S(q — Q/2) +sym
q L

(e of Muclear py, 5
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® Hence

d*0 OS(0-
2my o = —m(() trCDF/(Qﬂ-)‘l 8571(50> Ir(_1 05 =P)SU)Tx(l_1 o5 P

29

oP d¢ 0S({_10)
Argonne —— 7 K : o —P 1 o3 P
BomS m(¢) am(g)trCDF/(Qw)4 oP, FW(€—§,07 ) S(¢) Fw(€—§,07
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Return to Pion Sigma Term

® The pion’s o-term is defined by

2Myp Op = ST('(QZZO)
= tr(;DF/ A S(l-1,0)mT70(l-1,050) S(l—1,0)
(2m)4 ’ - |
XD (€_1,05=P)S() Tr(l_1 05 P)

29

® Canonical normalisation condition for Bethe-Salpeter amplitude

A
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Return to Pion Sigma Term

® The pion’s o-term is defined by
2My 0 = 5:(Q°=0)

d*¢
= trCDF/(Qw)4 8(5—1,0)mFTO(E—l,O;O)S(g—l,O)

XFW(f_l 05 —P) 5(5) Fﬂ(f_l 03 P)

27 2

® Canonical normalisation condition for Bethe-Salpeter amplitude

A
| 7 ice o 8
5405’3"5 2P, =trcpr / I'z(q; —P) 5P, S(q+ Q/2)I'x(q; P)S(q — Q/2) +sym
q L
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® Hence

d*0 OS(0-
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Feynman-Hellmann Theorem

® In deriving

o = m(C)

om

om(¢)

| Office of
.g,;j Science
U.S. DEPARTMENT OF ENERGY

(e of Muclear py, 5
(o)

Argonne

, | have depended heavily upon

the fact that the rainbow-ladder expression is the leading term in a
systematic, nonperturbative and symmetry preserving truncation.
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Feynman-Hellmann Theorem

om

om(¢)

the fact that the rainbow-ladder expression is the leading term in a
systematic, nonperturbative and symmetry preserving truncation.

® Inderiving|o, = m(() , | have depended heavily upon

® Concrete illustration of a general result that may be viewed as a
consequence of the Feynman-Hellmann theorem.
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Feynman-Hellmann Theorem

om

om(¢)

the fact that the rainbow-ladder expression is the leading term in a
systematic, nonperturbative and symmetry preserving truncation.

® Inderiving|o, = m(() , | have depended heavily upon

® Concrete illustration of a general result that may be viewed as a
consequence of the Feynman-Hellmann theorem.

# Present case: theorem states that response of an eigenvalue

Z" Office of
-4 Science

of the QCD mass?-operator to a change in a parameter in that

operator is given by expectation value of the derivative of the
mass2-operator operator with respect to the parameter.

OEn2 <8M2>
X  \ O\
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® Inderiving|o 7 (C)

om (C)

Feynman-Hellmann Theorem

, | have depended heavily upon

the fact that the rainbow-ladder expression is the leading term in a
systematic, nonperturbative and symmetry preserving truncation.

® Concrete illustration of a general result that may be viewed as a
consequence of the Feynman-Hellmann theorem.

CH o

OFE 2

(

OM?
oA

)

Argonne

Derived by Feynman, when 21, in his final year as an
undergraduate. Has played an important role in theoretical
chemistry and condensed matter physics.
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Feynman-Hellmann Theorem

® |Inderiving | o 7 (C) Y= (C) , | have depended heavily upon

the fact that the rainbow-ladder expression is the leading term in a
systematic, nonperturbative and symmetry preserving truncation.

® Concrete illustration of a general result that may be viewed as a
consequence of the Feynman-Hellmann theorem.
OF p 2 < OM? >

‘g lOfflce of —_— =
gg Scren:e 8A 8A

® The resultis valid in this form for all mesons: i.e.,

2 (©) = M(Q) M. gy = m(C) M.
mpOopnr = SM =m — ON =
om(¢) (C )
NB. The o-term is a renormalisation point invariant, in general and
AFE%QQS also in the explicit calculation, so long as a RGI ra nbow-ladder

used \ Craig Roberts: Quarks, Hadrons, and the Constants of Nature: |
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Pion Sigma Term: Algebraic

® Pion’s mass is expressed precisely via

—2m(¢) Pw(C)
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® Pion’s mass is expressed precisely via

Pion Sigma Term: Algebraic

my = —2m(()

p=(C)
Ir

® Neighbourhood of chiral limit

p~(C) TP

(3q)?
SO
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Pion Sigma Term: Algebraic

® Pion’s mass is expressed precisely via

Ir
® Neighbourhood of chiral limit
| ®» Hence
Ko Science T PN ()Y 0 1
Oweomuclearpﬁ " 2 mﬂ- 0-71- — _2 m(C) 0\2 0-71' — — mTl'
(2)

# Model-independent result.
» Essential consequence of DCSB.

Argonne
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Pion Sigma Term: Numeric
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Pion Sigma Term: Numeric

Typical, calculated chiral limit values of:

s f% =0.088GeV
® (d9)_; gev = (—0.241 GeV)?
# and current-quark mass m({ = 1 GeV) = 0.0055 GeV
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Pion Sigma Term: Numeric

® Typical, calculated chiral limit values of:

s f% =0.088GeV

® (d9)_; gev = (—0.241 GeV)?

# and current-quark mass m({ = 1 GeV) = 0.0055 GeV
Then m, = 141 MeV
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Pion Sigma Term: Numeric

® Typical, calculated chiral limit values of:

s f% =0.088GeV

® (d9)_; gev = (—0.241 GeV)?

# and current-quark mass m({ = 1 GeV) = 0.0055 GeV
Then m, = 141 MeV

or = 0.95/m({ =1GeV) =71 MeV
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Pion Sigma Term: Numeric

Typical, calculated chiral limit values of:

s f% =0.088GeV

® (d9)_; gev = (—0.241 GeV)?

# and current-quark mass m({ = 1 GeV) = 0.0055 GeV
Then m, = 141 MeV

or = 0.95/m({ =1GeV) =71 MeV

755, meeot - @ ON the other hand, the value obtained from direct calculation in
ra nbow-ladder truncation ( triangle diagram )

D

e of Nuclear PR <
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a'fL = 69 MeV.
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Pion Sigma Term: Numeric

Typical, calculated chiral limit values of:

s f% =0.088GeV

® (d9)_; gev = (—0.241 GeV)?

# and current-quark mass m({ = 1 GeV) = 0.0055 GeV
Then m, = 141 MeV

or = 0.95/m({ =1GeV) =71 MeV

76, 9meeor @ On the other hand, the value obtained from direct calculation in
e ra nbow-ladder truncation ( triangle diagram )

a'fL = 69 MeV.

$» Same value is obtained in one-loop chiral perturbation theory

b
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New Challenges

® Next Steps ... Applications to excited states and
axial-vector mesons, e.g., will improve understanding of
confinement interaction between light-quarks.
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New Challenges

Next Steps ... Applications to excited states and
axial-vector mesons, e.g., will improve understanding of
confinement interaction between light-quarks.

® Move on to the problem of a symmetry preserving treatment
of hybrids and exotics.
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New Challenges

® Another Direction ... ‘want/need information about

three-quark systems
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New Challenges

#® Another Direction . . . _Also Wa‘ntfnaed iInformation about
three-quark sys)e/ms

® With this rLrobIem ....most wide-ranging studr}!es employ
62, Sienca expertise familiar from me applications circa ~ 1995.
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New Challenges

® Another Direction .

. Also WaTTt/need information about
three-quark syste/ms :

® With this é?roblem ....most wide-ranging studjes employ
62, Sienca expertise ﬁ@miliar from me applications circa ~ 1995.

ce of Nuclear Ep i
s e 5

=
=

B T

& » Namely... Model-building and Phenomenology,
gt constrained by the DSE results outlined already.
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New Challenges

-
e
r

Another Direction > _Also want/need information about
three-quark systems

r
i
i
#
i

# With this problem ... most wide-ranging studies employ
(), Seionce expertise familiar from m pplications circa ~ 1995.

».
'¥‘—"
EFAR

— e

® However, that is begi nge ...
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b
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Nucleon ...
Three-body Problem?
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Nucleon ...
Three-body Problem?

_F_d_,..-—'—""_'""—--..__‘_q_
S

# What is the pieture In quantumx“' d theory?
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Nucleon ...
Three-body Problem?

2ld theory?

® Three —
Infinitely
many!
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Unifying Study
of Mesons and Baryons

® How does one incorporate dressed-quark mass function,
M (p?), in study of baryons?
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Unifying Study
of Mesons and Baryons

® How does one incorporate dressed-quark mass function,
M (p?), in study of baryons? Behaviour of M (p?) is es-
sentially a quantum field theoretical effect.
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Unifying Study
of Mesons and Baryons

How does one incorporate dressed-quark mass function,
M (p?), in study of baryons? Behaviour of M (p?) is es-
sentially a quantum field theoretical effect.

® |n quantum field theory a nucleon appears as a pole in a six-
point quark Green function.
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Unifying Study
of Mesons and Baryons

® How does one incorporate dressed-quark mass function,
M (p?), in study of baryons? Behaviour of M (p?) is es-
sentially a quantum field theoretical effect.

® |n quantum field theory a nucleon appears as a pole in a six-
point quark Green function.
» Residue is proportional to nucleon’s Faddeev amplitude
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Unifying Study
of Mesons and Baryons

® How does one incorporate dressed-quark mass function,
M (p?), in study of baryons? Behaviour of M (p?) is es-
sentially a quantum field theoretical effect.

® |n quantum field theory a nucleon appears as a pole in a six-
point quark Green function.
» Residue is proportional to nucleon’s Faddeev amplitude

# Poincare covariant Faddeev equation sums all possible
exchanges and interactions that can take place between
three dressed-quarks
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Unifying Study
of Mesons and Baryons

® How does one incorporate dressed-quark mass function,
M (p?), in study of baryons? Behaviour of M (p?) is es-
sentially a quantum field theoretical effect.

® [n quantum field theory a nucleon appears as a pole in a six-
point quark Green function.
» Residue is proportional to nucleon’s Faddeev amplitude

o Poincaré covariant Faddeev equation sums all possible
exchanges and interactions that can take place between
three dressed-quarks

Zﬁ Office of

i Scren:e
TME|

e of Nuclear PR 5
e '

» Tractable equation is founded on observation that an
Interaction which describes colour-singlet mesons also
generates quark-quark (diquark) correlations in the
colour-3 (antitriplet) channel
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Faddeev equation
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Faddeev equation

P
-

&5 omeoor B Linear, Homogeneous Matrix equation

gee

e » Yields wave function (Poincaré Covariant Faddeev
Amplitude) that describes quark-diquark relative motion

within the nucleon

® Scalar and Axial-Vector Diquarks ... In Nucleon’s Rest
Argonne Frame Amplitude has ... s—, p— & d—wave correlations
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Diquark correlations
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Same interaction that Diquark correlations

describes mesons also
generates three coloured
guark-quark correlations:
blue—red, blue—green,
green-red

Confined ... Does no
escape from within ba

Scalar is isosinglet,
Axial-vector is isotriple

DSE and lattice-QCD
Myd] , = 0.74 — 0.82

m(uu)1+ — m(U'd)1+ o m(dd)1+

......

QUARK-QUARK

ature: |
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Nucleon-Photon Vertex
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6 terms...
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M. Oettel, M. Pichowsky
and L.von Smekal, nu-th/9909082

for on-shell nucleons described by Faddeev Amplitude
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M. Oettel, M. Pichowsky
and L.von Smekal, nu-th/9909082

6 terms . .. Nucleon-Photon Vertex

b B P,
W Y
axiial vector scalar \
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DSE-based
Faddeev Equation
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Cloét_e.t al. _ DSE-based
Faddeev Equation
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Cloét et al. DSE-based

— arXiv:0710.2059 [nucl-th]
- arXiv:0710.5746 [nucl-th] Faddeev Equation

Faddeev equation input —
algebraic parametrisations of
DSE results, constrained by =
and K observables
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Cloét et al.
— arXiv:0710.2059 [nucl-th]

Faddeev equation input —
algebraic parametrisations of
DSE results, constrained by =
and K observables

® Two parameters
— o+ — 0.8 GeV,
M1_|_ = 0.9 GeV
— chosen to give
Mpn = 1.18, M = 1.33
— allow for pseudoscalar meson
contributions
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Cloét et al.

— arXiv:0710.2059 [nucl-th]
— arX|v 0710.5746 [nucl-th]

Faddeev equation input —
algebraic parametrisations of
DSE results, constrained by =
and K observables

Two parameters ©)

o+ =0.8GeV, auw
M, | = 0.9GeV O
— chosen to give =+
Mpn = 1.18, M = 1.33
— allow for pseudoscalar meson 0
contributions

Sensitivity to details of the o)

current — expressed through
diquark radius

DSE-based
Faddeev EO

uation

...... r.-=1.2fm

o SLAC global
A Qattan (2005
= Punjabi (200!
® Gayou (2002
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Cloét et al.
— arXiv:0710.2059 [nucl-th]
— arXiv

DSE-based
Faddeev Equation

...... r»=12fm
Q SLAC global

o
A Qattan (2005
=
34

Faddeev equation input —
algebraic parametrisations of -
DSE results, constrained by 7 : §§§ § & %
and K observables _

Punjabi (200!

o = _\‘\ . o -7 N - Gayou (2002
Two parameters © A

\ o —
— o+ — 0.8 GeV, Q_OLIJ 05k |
M1_|_ = 0.9 GeV 10_ . i i

— chosen to give

Mpn = 1.18, M = 1.33

— allow for pseudoscalar meson 0
contributions I

|
Sensitivity to details of the 0 2 4
current — expressed through Q2 [Gevz]
diquark radius

On Q? <4 GeV? result lies below experiment. This can be attributed to omission
of pseudoscalar-meson-cloud contributions
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Cloét et al.
— arXiv:0710.2059 [nucl-th]

DSE-based
Faddeev Equation

...... r»=12fm
Q SLAC global

o
A Qattan (2005
=
34

Faddeev equation input —
algebraic parametrisations of -
DSE results, constrained by 7 : §§§ § & %
and K observables _

Punjabi (200!
Gayou (2002

Two parameters ©)
~ M,y =0.8GeV, o ]
M, | = 0.9GeV O

— chosen to give =+

Mpn = 1.18, M = 1.33

— allow for pseudoscalar meson 0

contributions i

|
Sensitivity to details of the 0 2 4
current — expressed through Q2 [Gevz]
diquark radius

On Q? <4 GeV? result lies below experiment. This can be attributed to omission
of pseudoscalar-meson-cloud contributions

Always a zero but position depends on details of current
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Q>  FQY)

9

(InQ?/A)? F(Q?)
A=A/Mpy =0.44

Ensures proton ratio
constant for Q2 > 4
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Ratio of Neutron
Pauli & Dirac Form Factors
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Ratio of Neutron
Pauli & Dirac Form Factors
Q2  FrQ?)
(In Q2/A)2 Fin(Qz) T | | | | | | ._:
A = A/MN — 0.44 . — DSE result ]

9

® -DSE-
A Hall A E02-013 Preliminary
v Madey et al. nucl-ex/0308007

Ensures proton ratio
constant for Q2 > 4
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Pion Cloud
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Pion Cloud
F2 — neutron
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® Comparison
between Faddeev
equation result

and Kelly’'s

parametrisation

Faddeev

equation set-up

to describe

dressed-quark

core

n-
F,": DSE - Kelly

0.15

©
=

0.05

Pion Cloud
F2 — neutron

Pseudoscalar contribution 7]
20% of peak value
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Pion Cloud
F2 — neutron

® Comparison

0.15F ]
between Faddeev
equation result
and Ke”y’S § 0.1 Pseudoscalar contribution 7]
. . ) 20% of peak value
parametrisation B i
()]
Faddeev i
. 0.05 _]
- equation set-up
Zgﬁosgzgﬁcoef .
;ml to describe
{ dressed-quark ot g —
atter - e 2,8 22
core oM

® Pseudoscalar meson cloud (and related
effects) significant for Q% < 3 — 4 M3,
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everything.

® DCSB exists in QCD.
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ell everyone,
I'm sorry
about ...

Epilogue

everything.
® DCSB exists in QCD.

» Itis manifest in dressed propagators and
vertices
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ell everyone,
I'm sorry

abouth . Epilogue

everything.

® DCSB exists in QCD.

# It is manifest in dressed propagators and
vertices

o It predicts, amongst other things, that

s light current-quarks become heavy
constituent-quarks

& pseudoscalar mesons are unnaturally
light

& pseudoscalar mesons couple unnaturally
strongly to light-quarks

& pseudscalar mesons couple unnaturally
strongly to the lightest baryons
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ell everyone,
I'm sorry
about ...

Epilogue

everything.

® DCSB exists in QCD.

# It is manifest in dressed propagators and
vertices

o It predicts, amongst other things, that

s light current-quarks become heavy
constituent-quarks

& pseudoscalar mesons are unnaturally
light

& pseudoscalar mesons couple unnaturally
strongly to light-quarks

& pseudscalar mesons couple unnaturally
strongly to the lightest baryons

Z&" Office of

Scrence

ice of Nuclear Ph 5
. qe

A . .
BEC » It impacts dramatically upon observables.
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ell everyone,
I'm sorry
about ...

Epilogue

everything.

» Nature’s constants

o DCSB means that a small change in current-quark mass
Is amplified in the response of hadron masses
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ell everyone,
I'm sorry
about ...

» Nature’s constants

Is amplified in the response of hadron masses

radii and magnetic moments.

Epilogue

o DCSB means that a small change in current-quark mass

» But DCSB suppresses the dm-response of quark-core

The rapid change arises from the pseudoscalar meson

cloud owing to the pion o-term
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