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Hadron Physics
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Nucleon ... 2 Key Hadrons
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Nucleon ... 2 Key Hadrons
= Proton and Neutron

® Fermions — two static properties:
proton electric charge = +1; and magnetic moment,
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Nucleon ... 2 Key Hadrons
= Proton and Neutron

® Fermions — two static properties:
proton electric charge = +1; and magnetic moment,

® Magnetic Moment discovered by Otto Stern and

collaborators in 1933; Awarded Nobel Prize in 1943

h
» Dirac (1928) — pointlike fermion: p, = :ﬂ
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Nucleon ... 2 Key Hadrons
= Proton and Neutron

Fermions — two static properties:
proton electric charge = +1; and magnetic moment,

Magnetic Moment discovered by Otto Stern and

collaborators in 1933; Awarded Nobel Prize in 1943

h
» Dirac (1928) — pointlike fermion: p, = :ﬂ

o eh
oSG Stern (1933) —pp = (1 + 1-79)m
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Nucleon ... 2 Key Hadrons
= Proton and Neutron

Fermions — two static properties:
proton electric charge = +1; and magnetic moment,

Magnetic Moment discovered by Otto Stern and

collaborators in 1933: Awarded Nobel Prize in 1943

eh

» Dirac (1928) — pointlike fermion: p, = Y

U.S. DEFARTMENT

e eh
7o %has @ Stern (1933) — pp = (1 4 1.79) ——
i 2M
# Big Hint that Proton is not a point particle

» Proton has constituents

o These are Quarks and Gluons
Quark discovery via e~ p-scattering at SLAC in 1968
— the elementary quanta of Quantum Chromo-dynamics

l | e | | o | UNSW School of Physics Colloquiurm: 2 December 2008 — p. 342
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What is QCD?

® Gauge Theory:
Interactions Mediated by massless vector bosons

Fernman Jiagram of Quaric Suark Sealtering
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What is QCD?
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What is QCD?

® Gauge Theory:
Interactions Mediated by massless vector bosons
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® Similar interaction in QED
? o rh’h«
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® Special Feature of QCD — gluon self-interactions

Completely Change the Character of the Theory
l - - - - UNSW School of Physics Colloquium: 2 December 2008 — p. 4/42

Argonne



QED cf. QCD

'z Office of

— 4 Science

U.S. DEFARTMENT OF ENERGY

Argonne

NATIONAL
LABORATORY

l [=:=] - [===] - UNSW School of Physics Colloquium: 2 December 2008 — p. 542



0.00760

2
(@04
o 0.00755
PP—==" Office of
==~ Science  0.00750 | el T 000
Q (GeV)
(8
QQED —
. 2 2)
VY 1 — a/37In (Q2?/m?2

Argonne

NATIONAL
LABORATORY

QED cf. QCD

UNSW School of Physics Colloquium: 2 December 2008 — p. 5/42



0.00760 r

@)
LL
o

o 0.00755

; Office of
—d Science 0.00750

U.S. DEFARTME

1000

Q ( G e\/)100

(87

GQED = a/3mIn (Q2/m?2)

b

Argonne

NATIONAL
LABORATORY

QED cf. QCD

Add three-gluon interaction
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Figure 9.2: Summary of the values of ae(u) at the values of o where they are
measured. The lines show the central values and the +£1e limits of our average.
The fimre clearly shows the decrease in ag(p) with increasing p. The data are,
in increasing order of g, v width, T decays, deep inelastic scattering, ete™ event
shapes at 22 GeV from the JADE data, shapes at TRISTAN at 55 GeV, £ width,
and ete™ event shapes at 135 and 159 GeV.
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QED cf. QCD

2004 Nobel Prize in Physics: Gross, Polltzer and Wilczek
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Figure 9.2: Summary of the values of ae(u) at the values of o where they are
measured. The lines show the central values and the +£1e limits of our average.
The fimre clearly shows the decrease in ag(p) with increasing p. The data are,

(814 in increasing order of g, v width, T decays, deep inelastic scattering, ete™ event
ED = shapes at 22 GeV from the JADE data, shapes at TRISTAN at 58 GeV, Z width,
o Q 1 a/371_ ]_n (Q2 / 2) and ete™ event shapes at 135 and 159 GeV.
e 127

Argonne o —
I QCD (33 _ 2Nf) In (Qz/Az)

l [=:=] - [===] - UNSW School of Physics Colloquium: 2 December 2008 — p. 542



Fundamental Constant of QCD

9o AQCD = 250 £+ 20 MeV
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Fundamental Constant of QCD

9o AQCD = 250 £+ 20 MeV

® \What does it do?
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Fundamental Constant of QCD

9o AQCD = 250 £+ 20 MeV

® \What does it do?

It sets the scale of the coupling and of all masses that can
be produced by the theory
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Fundamental Constant of QCD
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® What does it do?
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Fundamental Constant of QCD

9o AQCD = 250 £+ 20 MeV

® What does it do?
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| 7 Office of . . .
Lou Seience strong interaction. Where does it come from?

e of Nuclear PR 5
e

Argonne

l [=:=] - [===] - UNSW School of Physics Colloquium: 2 December 2008 — p. 642



Fundamental Constant of QCD

9o AQCD = 250 £+ 20 MeV

® What does it do?
It sets the scale of the coupling and of all masses that can
be produced by the theory

o0 127
Q) = 3o /A 0p]

® The Lagrangian of QCD possesses no mass-scale for the

| 7 Office of . . .
Lou Seience strong interaction. Where does it come from?

e of Nuclear PR 5
e

Nobody knows!

Argonne

l [=:=] - [===] - UNSW School of Physics Colloquium: 2 December 2008 — p. 642



Fundamental Constant of QCD

9o AQCD = 250 £+ 20 MeV

® What does it do?
It sets the scale of the coupling and of all masses that can
be produced by the theory

o0 127
Q) = 3o /A 0p]

® The Lagrangian of QCD possesses no mass-scale for the

| 7 Office of . . .
Lou Seience strong interaction. Where does it come from?
‘ Nobody knows! A bit exaggerated. The mathematical origin
IS plain.

Argonne
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Fundamental Constant of QCD

9o AQCD = 250 £+ 20 MeV

® What does it do?
It sets the scale of the coupling and of all masses that can
be produced by the theory

9 127
(@) = 23 1n [QQ/AQCD]

® The Lagrangian of QCD possesses no mass-scale for the

r Office of . . .
Ko Science strong interaction. Where does it come from?

e ¢ of Nuclear p ”s,'
B 'Co

Nobody knows! A bit exaggerated. The mathematical origin
Is plain. The classical theory has no scale but in defining
the quantum field theory associated with it, this mass scale
arises through regularisation of ultraviolet divergences and
Argonne subsequent renormalisation.
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Fundamental Constant of QCD

9o AQCD = 250 £+ 20 MeV

® What does it do?
It sets the scale of the coupling and of all masses that can
be produced by the theory

o0 127
Q) = 3o /A 0p]

® The Generating Functional of QCD as a quantum field
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Fundamental Constant of QCD

Aqcp = 250 £ 20 MeV

What does it do?
It sets the scale of the coupling and of all masses that can
be produced by the theory

o0 127
Q) = 3o /A 0p]

The Generating Functional of QCD as a quantum field
theory possesses a mass-scale for the strong interaction.
Such effects occur often in passing from classical to
guantum theory. In this instance one says that QCD has a
conformal anomaly: quantisation destroys a symmetry of
the classical theory.
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Fundamental Constant of QCD

9o AQCD = 250 £+ 20 MeV

® What does it do?
It sets the scale of the coupling and of all masses that can
be produced by the theory
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® The Generating Functional of QCD as a quantum field
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® Quantisation also changes the theory’s ground state. It
becomes a “sea” of quark-antiquark pairs with a density

—(qq) = 1/A:2,20D-
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Fundamental Parameter of QCD

Aqcp = 250 £ 20 MeV

What does it do?

It sets the scale of the coupling and of all masses that can
be produced by the theory

9 127
(@) = 23 1n [QQ/AQCD]

The Generating Functional of QCD as a quantum field
theory possesses a mass-scale for the strong interaction.

Quantisation also changes the theory’s ground state. It
becomes a “sea” of quark-antiquark pairs with a density

—(qq) = 1/AQCD

In contemporary models for a Grand Unification of all forces,

ﬁCD can be time-dependent and even location dependent.
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Quarks and Nuclear Physics

Standard Model
of Particle Physics
Six Flavours
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Quarks and Nuclear Physics
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char top  good reasons,
much research
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Nevertheless, I Quarks and Nuclear Physics

(3] (%) Or nuMerous
char top  good reasons,
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Modern Miracles
In Hadron Physics
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Modern Miracles
In Hadron Physics

® proton = three constituent quarks
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Modern Miracles
In Hadron Physics

® proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV
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Modern Miracles
In Hadron Physics

proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV

® pion =
constituent quark 4+ constituent antiquark
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Modern Miracles
In Hadron Physics

proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV

® pion =
constituent quark 4+ constituent antiquark
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Modern Miracles
In Hadron Physics

proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV
® pion =
constituent quark 4+ constituent antiquark
Office of M
TS ® guess Mpjon ~ 2 X —E2°R ~ 700 MeV
® WRONG .....cooviveiiiin, M ion = 140 MeV
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Modern Miracles
In Hadron Physics

proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV

® pion =
constituent quark 4+ constituent antiquark

st 8 guess Mpjon = 2 X — 22 ~ 700 MeV
® WRONG .....cooviveiiiin, M ion = 140 MeV
®» Another meson:
........... M, ="770MeV ........... No Surprises Here

Argonne
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Modern Miracles
In Hadron Physics

proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV
® pion =
constituent quark 4+ constituent antiquark
st 8 guess Mpjon = 2 X — 22 ~ 700 MeV
® WRONG .....cooviveiiiin, M ion = 140 MeV

® What is “wrong” with the pion?

Argonne
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Dichotomy of Pion
— Goldstone Mode and Bound state
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Dichotomy of Pion
— Goldstone Mode and Bound state

~ """ o How does one make an almost massless particle
........... from two massive constituent-quarks?
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— Goldstone Mode and Bound state

""" o How does one make an almost massless particle
........... from two massive constituent-quarks?

# Not Allowed to do it by fine-tuning a potential

Must exhibit| m?2 o m,
Current Algebra ... 1968

The correct understanding of pion observables;
- e.g. mass, decay constant and form factors,
.. lequires an approach to contain a
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What's the Problem?

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.
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® Means ... must calculate hadron wave functions
— Can’t be done using perturbation theory
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What's the Problem?
Relativistic QFT!

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.
® Differences!

765, offics of o Here relativistic effects are crucial — virtual particles,
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What's the Problem?
Relativistic QFT!

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.

® Differences!

755, orce o o Here relativistic effects are crucial — virtual particles,

quintessence of Relativistic Quantum Field Theory —
- must be included

» Interaction between quarks — the Interquark “Potential” —
unknown throughout > 98% of a hadron’s volume
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Intranucleon Interaction
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What is the
Intranucleon Interaction?

The question must be
rigorously defined, and the
answer mapped out using
experiment and theory.
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QCD'’s Challenges
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® Quark and Gluon Confinement

» No matter how hard one strikes the proton, one
cannot liberate an individual quark or gluon
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QCD'’s Challenges

® Quark and Gluon Confinement

o No matter how hard one strikes the proton, one
cannot liberate an individual quark or gluon

® Dynamical Chiral Symmetry Breaking

» Very unnatural pattern of bound state masses
& e.g., Lagrangian (pQCD) quark mass is small but . ..
no degeneracy between J¥=T and J¥=—

® Neither of these phenomena is apparent in QCD’s
Lagrangian yet they are the dominant determining
characteristics of real-world QCD.
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QCD'’s Challenges
Understand Emergent Phenomena
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Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!
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forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!
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~ 20fm or ~ —fm?

o What is the range:
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Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!

: 1 1
# What is the range: ~ 20fm or ~ —fm?
2my 2 Mg 3
- ® |s 1°C stable?
s Probably not, if range range ~ ————
a, 2 Mg

b
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Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!

o How does the binding energy of deuterium
change?
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Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive
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range and there i1s No Iintermediate range attraction!
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Why should
You care?

Absent DCSB: m, = m, = repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!

o How does the binding energy of deuterium
change?

Zﬁ""”“’ o How does the neutron lifetime change?
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s How does m, — mg, relate to My — Mp?
_— s Can one guarantee M,, > M,?

# How do such changes affect Big Bang
Nucleosynthesis?
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Absent DCSB: m, = m,

Why should
You care?

= repulsive and attractive

forces in nucleon-nucleon interaction both have SAME
range and there i1s No Iintermediate range attraction!

o How does the binding energy of deuterium
change?

o How does the neutron lifetime change?
s How does m, — my relate to My — Mp?
s Can one guarantee M,, > M,?

Is a unique long-range interaction between
light-quarks responsible for all this or are there
an uncountable infinity of qualitatively equivalent
Interactions?
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Traditional approach to
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One modern nonperturbative approaChLattice QCD
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One modern nonperturbative approachl_attice QCD

~ 500 people
worldwide.

Collaborations
~ 20 people
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A Compromise?
Dyson-Schwinger Equations
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A Compromise?
Dyson-Schwinger Equations

1994 ... “As computer technology continues to improve,
lattice gauge theory [LGT] will become an increasingly
useful means of studying hadronic physics through
Investigations of discretised quantum chromodynamics
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A Compromise?
Dyson-Schwinger Equations

® 1994 ... “However, it is equally important to develop other
complementary nonperturbative methods based on
continuum descriptions. In particular, with the advent of new
accelerators such as CEBAF and RHIC, there is a need for
the development of approximation techniques and models
which bridge the gap between short-distance, perturbative
QCD and the extensive amount of low- and
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A Compromise?
Dyson-Schwinger Equations

® 1994 ... “Cross-fertilisation between LGT studies and
continuum techniques provides a particularly useful means
of developing a detailed understanding of nonperturbative
QCD.”
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A Compromise?
Dyson-Schwinger Equations

® 1994 ... “Cross-fertilisation between LGT studies and
continuum techniques provides a particularly useful means
of developing a detailed understanding of nonperturbative
QCD.”

C. D. Roberts and A. G. Williams, “Dyson-Schwinger equations
and their application to hadronic physics,” Prog. Part. Nucl. Phys.
33, 477 (1994) [arXiv:hep-ph/9403224].
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A Compromise?
Dyson-Schwinger Equations

® 1994 ... “Cross-fertilisation between LGT studies and
continuum techniques provides a particularly useful means
of developing a detailed understanding of nonperturbative
QCD.”

C. D. Roberts and A-G-Witliams, “Dyson-Schwinger equations
and their application to hadronic physics,” Prog. Part. Nucl. Phys.
33, 477 (1994) [arXiv:hep-ph/9403224].
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A Compromise?
Dyson-Schwinger Equations

® Dyson (1949) & Schwinger (1951) ... One can derive a
system of coupled integral equations relating the Green
functions for the theory to each other.
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A Compromise?
Dyson-Schwinger Equations

® Dyson (1949) & Schwinger (1951) ... One can derive a
system of coupled integral equations relating the Green
functions for the theory to each other.
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theory to the Lagrange equations of motion.

(e of Muclear py, 5
o G o

b

Argonne

l [=:=] - [===] - UNSW School of Physics Colloguium: 2 December 2008 — p. 19/42



A Compromise?
Dyson-Schwinger Equations

® Dyson (1949) & Schwinger (1951) ... One can derive a
system of coupled integral equations relating the Green
functions for the theory to each other.
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theory to the Lagrange equations of motion.

® Essential in simplifying the general proof of renormalisability
of gauge field theories.
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence

| Office of
.g 4 Science
DEPARTMENT OF ENERGY

—
U.s.

Argonne

l [=:=] - [===] - UNSW School of Physics Colloguium: 2 December 2008  p. 20/42



Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence

» NonPerturbative, Continuum approach to QCD
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence

» NonPerturbative, Continuum approach to QCD

» Hadrons as Composites of Quarks and Gluons
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
Materially Reduces Model Dependence

» NonPerturbative, Continuum approach to QCD

» Hadrons as Composites of Quarks and Gluons
s Qualitative and Quantitative Importance of:
- Dynamical Chiral Symmetry Breaking
— Generation of fermion mass from nothing

- Quark & Gluon Confinement
— Coloured objects not detected, not detectable?
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence

» NonPerturbative, Continuum approach to QCD

» Hadrons as Composites of Quarks and Gluons
s Qualitative and Quantitative Importance of:
&5, 9ffice of - Dynamical Chiral Symmetry Breaking
— Generation of fermion mass from nothing
| - Quark & Gluon Confinement
— Coloured objects not detected, not detectable?

® — Understanding InfraRed ( )
AIGOMMNE ove ettt behaviour of a;(Q?)
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence

» NonPerturbative, Continuum approach to QCD

» Hadrons as Composites of Quarks and Gluons
s Qualitative and Quantitative Importance of:
&5, 9ffice of - Dynamical Chiral Symmetry Breaking
— Generation of fermion mass from nothing
| - Quark & Gluon Confinement
— Coloured objects not detected, not detectable?

® Method yields Schwinger Functions = Propagators
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence

» NonPerturbative, Continuum approach to QCD

» Hadrons as Composites of Quarks and Gluons

s Qualitative and Quantitative Importance of:
&5, 9ffice of - Dynamical Chiral Symmetry Breaking
R — Generation of fermion mass from nothing
" | . Quark & Gluon Confinement

— Coloured objects not detected, not detectable?
Cross-Sections built from Schwinger Functions
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Perturbative
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Gap Equation

Perturbative
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Perturbative
Dressed-quark Propagator
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® dressed-quark propagator _
Gap Equation
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QCD & Interaction Between
Light-Quarks

® Kernel of Gap Equation: D,,,(p —q) ', (q)
Dressed-gluon propagator and dressed-quark-gluon vertex

® Reliable DSE studies of Dressed-gluon propagator:

# R. Alkofer and L. von Smekal, The infrared behavior of QCD
Green’s functions ... , Phys. Rept. 353, 281 (2001).
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QCD & Interaction Between
Light-Quarks

Kernel of Gap Equation: D,,,(p —q) L', (q)
Dressed-gluon propagator and dressed-quark-gluon vertex

® Reliable DSE studies of Dressed-gluon propagator:

# R. Alkofer and L. von Smekal, The infrared behavior of QCD
Green’s functions ... , Phys. Rept. 353, 281 (2001).

® Dressed-gluon propagator — lattice-QCD simulations confirm that

behaviour:
gé"sfﬁﬁ:’; o D.B. Leinweber, J.1. Skullerud, A. G. Williams and C.

Parrinello [UKQCD Collaboration], Asymptotic scaling and
infrared behavior of the gluon propagator, Phys. Rev. D 60,
094507 (1999) [Erratum-ibid. D 61, 079901 (2000)].

® Exploratory DSE and lattice-QCD studies
of dressed-quark-gluon vertex
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Dyson-Schwinger Equations
Dressed-Quark Propagator
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Dyson-Schwinger Equations
Dressed-Quark Propagator
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Frontiers of Nuclear Science:
A Long Range Plan (2007)
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Frontiers of Nuclear Science:
Theoretical Advances

Gap Equation
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Frontiers of Nuclear Science:
Theoretical Advances
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Frontiers of Nuclear Science:
Theoretical Advances

Mass from nothing

In QCD a quark’s effective mass
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Hadrons

1

Zﬁ“;ﬂ;ggcﬂ; “» Established understanding of
two- and three-point functions

What about bound states?
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Hadrons

Without bound states, Comparison with
experiment is impossible
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Hadrons

Without bound states, Comparison with
experiment is impossible

They appear as pole contributions to n > 3-point
colour-singlet Schwinger functions
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Hadrons

Without bound states, Comparison with
experiment is impossible

Bethe-Salpeter Equation
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Hadrons

Without bound states, Comparison with
experiment is impossible

Bethe-Salpeter Equation
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What is the kernel, K?

or What is the long-range potential in QCD?
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Bethe-Salpeter Kernel

® Axial-vector Ward-Ta
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity
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73, e ! —Mcily(k; P) — iT'5(k; P) M
Satisfies BSE Satisfies DS

Kernels very different
but must be intimately related
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Relation must be preserved by truncation
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity

P, T (kP) = 8_1(k+) )\ #is + )\fw5 /\
CRE —M¢ il (k; P) — il'5 (k; P) M,
Satisfies BSE Satisfies DS

Kernels very different
but must be intimately related
Relation must be preserved by truncation

Nontrivial constraint
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Takahashi identity
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Radial Excitations

(Maris, Roberts, Tandy & Chiral Symmetry
nu-th/9707003
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Radial Excitations

(Maris, Roberts, Tandy & Chiral Symmetry
nu-th/9707003
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Explicit Chiral Symmetry Breaking
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Explicit Chiral Symmetry Breaking

® Chiral symmetry is explicitly broken in QCD by the current-quark
mass term, which for the u- and d-quark sector is expressed in the
action as
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m = (my +mg)/2 and m = (m, — mg)/2.
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Explicit Chiral Symmetry Breaking

® Chiral symmetry is explicitly broken in QCD by the current-quark
mass term, which for the u- and d-quark sector is expressed in the
action as
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m = (my +mg)/2 and m = (m, — mg)/2.

® Empirical success with the application of chiral effective theories
6 to low-energy phenomena in QCD indicates that this term can
often be treated as a perturbation.
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Dynamical Chiral Symmetry Breaking
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® Success of Chiral Effective Theory owes fundamentally to the
phenomenon of dynamical chiral symmetry breaking (DCSB) in
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Dynamical Chiral Symmetry Breaking

® Success of Chiral Effective Theory owes fundamentally to the
phenomenon of dynamical chiral symmetry breaking (DCSB) in
QCD

# The feature that the dressed-quark Schwinger function is
nonperturbatively modified at infrared momenta: p < 1 GeV.
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Dynamical Chiral Symmetry Breaking

Success of Chiral Effective Theory owes fundamentally to the
phenomenon of dynamical chiral symmetry breaking (DCSB) in
QCD

# The feature that the dressed-quark Schwinger function is
nonperturbatively modified at infrared momenta: p < 1 GeV.

® This is a longstanding prediction of Dyson-Schwinger equation
(DSE) studies.

7557 Office of
-~ Science
U.S. DEFARTMENT OF ENERGY

e of Muclear py, 5
Cy

Argonne

l [=:=] - [===] - UNSW School of Physics Colloguium: 2 December 2008 — p. 30/42



Dynamical Chiral Symmetry Breaking

Success of Chiral Effective Theory owes fundamentally to the

phenomenon of dynamical chiral symmetry breaking (DCSB) in

QCD

# The feature that the dressed-quark Schwinger function is
nonperturbatively modified at infrared momenta: p < 1 GeV.

® This is a longstanding prediction of Dyson-Schwinger equation
(DSE) studies.

Z@ '312,‘3:;' » K.D. Lane, “Asymptotic Freedom And Goldstone Realization
Of Chiral Symmetry,” Phys. Rev. D 10, 2605 (1974).

o H.D. Politzer, “Effective Quark Masses In The Chiral Limit,”
Nucl. Phys. B117, 397 (1976).

o C.D. Roberts and A. G. Williams, “Dyson-Schwinger
equations and their application to hadronic physics,” Prog.
ATgonne Part. Nucl. Phys. 33, 477 (1994).
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Sigma Term

Holl, et al., nu-th/0510075
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Holl, et al., nu-th/0510075 Slgma Term

® o-term for hadron, H, obtained from the isoscalar matrix element

(H ()l Jo ()| H(y)), Jo(2) = Q(2)T°Q(2),
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Sigma Term

Holl, et al., nu-th/0510075

® o-term for hadron, H, obtained from the isoscalar matrix element
(H(x)|m Jy(2)|H(y)), Jo(2) = Q(2)7°Q(z),

$» Simple counting of field dimensions =
# Mesons, amputated matrix element has mass-dimension two,
# Fermions, it has mass-dimension one.
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.g,,;d Science
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Sigma Term

Holl, et al., nu-th/0510075

® o-term for hadron, H, obtained from the isoscalar matrix element
(H(x)|m Jy(2)|H(y)), Jo(2) = Q(2)7°Q(z),

$» Simple counting of field dimensions =
# Mesons, amputated matrix element has mass-dimension two,
# Fermions, it has mass-dimension one.

® For all hadrons the o-term vanishes in the chiral limit.
Z Office of

-4 Science
U.S. DEPARTMENT OF ENERGY
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Sigma Term

Holl, et al., nu-th/0510075

® o-term for hadron, H, obtained from the isoscalar matrix element
(H(x)|m Jy(2)|H(y)), Jo(2) = Q(2)7°Q(z),

$» Simple counting of field dimensions =
# Mesons, amputated matrix element has mass-dimension two,
# Fermions, it has mass-dimension one.

® For all hadrons the o-term vanishes in the chiral limit.

e » Therefore ... of the impact of
on a hadron, in particular, on a hadron’s

U3,

e of Nuclear PR <
(o)

Mmass.
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HGll, et al., nu-th/0510075 Sigma Term

® o-term for hadron, H, obtained from the isoscalar matrix element
(H(x)|m Jy(2)|H(y)), Jo(2) = Q(2)7°Q(z),

$» Simple counting of field dimensions =
# Mesons, amputated matrix element has mass-dimension two,
# Fermions, it has mass-dimension one.

® For all hadrons the o-term vanishes in the chiral limit.

e » Therefore ... of the impact of
on a hadron, in particular, on a hadron’s

D

e of Nuclear PR <
(o)

Mmass.

® Important for numerous reasons, some of longstanding.
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Fundamental “Constants”

® ltis afeature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation.
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Fundamental “Constants”

It is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation. For example

# Intheories extra dimensions, the “constants” will depend on
the size of the extra dimensions, and some new scalar fields
introduced in the theory
s E.g., dilaton in superstring theory.

UNSW School of Physics Colloquium: 2 December 2008 — p. 32/42
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THAMKYoU |
FOR NOT
. LENQUIRING

Fundamental “Constants”

® |t is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation. For example

# Intheories extra dimensions, the “constants” will depend on
the size of the extra dimensions, and some new scalar fields
introduced in the theory

s E.g., dilaton in superstring theory.
Zﬁ*ofﬁce of

=~ Science
ayY

U.S. DEF

# Therefore, if size of extra dimensions changes, or scalar fields
are z-dependent, then “constants” will also change.
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Fundamental “Constants”

It is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation. For example

# Intheories extra dimensions, the “constants” will depend on
the size of the extra dimensions, and some new scalar fields
introduced in the theory
s E.g., dilaton in superstring theory.

# Therefore, if size of extra dimensions changes, or scalar fields
are z-dependent, then “constants” will also change.

# In such theories there is no reason why the size of the extra
dimensions and the new scalar fields should be constants
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Fundamental “Constants”

® |t is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation. For example
# Intheories extra dimensions, the “constants” will depend on
the size of the extra dimensions, and some new scalar fields
introduced in the theory
s E.g., dilaton in superstring theory.
o) Sciance L . . .
e # Therefore, if size of extra dimensions changes, or scalar fields
; are x-dependent, then “constants” will also change.

# In such theories there is no reason why the size of the extra

dimensions and the new scalar fields should be constants
... Indeed, it might be hard to explain, if they were!
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Fundamental “Constants”

® |t is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation. For example
# Intheories extra dimensions, the “constants” will depend on
the size of the extra dimensions, and some new scalar fields
introduced in the theory
s E.g., dilaton in superstring theory.
o) Sciance L . . .
e # Therefore, if size of extra dimensions changes, or scalar fields
are x-dependent, then “constants” will also change.

# In such theories there is no reason why the size of the extra
dimensions and the new scalar fields should be constants
... Indeed, it might be hard to explain, if they were!

Argonne # Hence, nature’s “constants” may vary.
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Fundamental “Constants”

® |t is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation.

® Consequently, there is an expanding search for this variation via
laboratory, astronomical and geochemical measurements.
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Fundamental “Constants”

It is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation.

Consequently, there is an expanding search for this variation via
laboratory, astronomical and geochemical measurements.

Interpretation of some of these measurements requires
calculations of the current-quark mass dependence of the
parameters characterising nuclear systems.
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Fundamental “Constants”

It is a feature anticipated of models for the unification of all
Interactions that the so-called fundamental “constants” actually
exhibit spatial and temporal variation.

® Consequently, there is an expanding search for this variation via
laboratory, astronomical and geochemical measurements.

® |Interpretation of some of these measurements requires
K55, Ofice of calculations of the current-quark mass dependence of the
e parameters characterising nuclear systems.
® NB. Higher dimensional theories do not necessarily require
varying “constants”, but they provide a framework for describing

the variations, if they exist.
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Impact of Variation? ... Example

$» A variation in
# light-meson masses will modify the internucleon potential

» the nucleon mass will affect the kinetic energy term in the
nuclear Hamiltonian.
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Impact of Variation? ... Example

$» A variation in
# light-meson masses will modify the internucleon potential

» the nucleon mass will affect the kinetic energy term in the
nuclear Hamiltonian.

® Such changes could change the binding energy in deuterium.
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Impact of Variation? ... Example

®» Avariation in

# light-meson masses will modify the internucleon potential

» the nucleon mass will affect the kinetic energy term in the
nuclear Hamiltonian.

® Such changes could change the binding energy in deuterium.

® = Material impact on Big Bang Nucleosynthesis (BBN) because
the first step in BBN is the process|p + n — d + ~.

PP——=S" Office of . . . . .
5@5” # Rate of this process is crucially dependent on the binding
energy of deuterium

# This reaction is seed for all subsequent processes and
therefore the primordial abundance of light elements.
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Impact of Variation? ... Example

A variation in
# light-meson masses will modify the internucleon potential

» the nucleon mass will affect the kinetic energy term in the
nuclear Hamiltonian.

°

Such changes could change the binding energy in deuterium.

°

= Material impact on Big Bang Nucleosynthesis (BBN) because
the first step in BBN is the process|p + n — d + ~.

=5 Office of . . . . .
5@5” # Rate of this process is crucially dependent on the binding

.ce of Nuclear Phy.
O AL 9’(‘

energy of deuterium

# This reaction is seed for all subsequent processes and
therefore the primordial abundance of light elements.

®» Calculation of current-quark mass dependence of hadron
properties necessary to enable use of observational data to place
constraints on variation of nature’s “constants”.
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Evidence of Variation?

o Uranium mine in Gabon, West Africa
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Evidence of Variation?

# Evidence suggesting that a natural fission reactor was in
operation there about 1.8 Gy ago
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Evidence of Variation?

# Evidence suggesting that a natural fission reactor was in
operation there about 1.8 Gy ago

® Abundance of 1*2Sm is lower than that found elsewhere

# Depletion via neutron capture during the time the reactor was
In operation:
n+149Sm — 150Sm 4~

| Office of
.g,,;d Science
U.S. DEPARTMENT OF ENERGY
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Evidence of Variation?

# Evidence suggesting that a natural fission reactor was in
operation there about 1.8 Gy ago

® Abundance of 1*2Sm is lower than that found elsewhere

# Depletion via neutron capture during the time the reactor was
In operation:
n+149Sm — 150Sm 4~

® By measuring abundance of 14°Sm at Oklo, it's possible to
755, oftcs of estimate the n-capture cross-section

-4 Science
U.S. DEPARTMENT OF ENERGY

# Depends on the values of a.,, and other constants.

(e of Muclear py, 5
(o)
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Evidence of Variation?

# Evidence suggesting that a natural fission reactor was in
operation there about 1.8 Gy ago

® Abundance of 1*2Sm is lower than that found elsewhere

# Depletion via neutron capture during the time the reactor was
In operation:
n+149Sm — 150Sm 4~

® By measuring abundance of 14°Sm at Oklo, it's possible to
W& oftice of estimate the n-capture cross-section
-54“*-'

# Depends on the values of a.,, and other constants.

® Hence it's possible to estimate «.,, at Oklo 1.8 Gy ago

Argonne
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Evidence of Variation?

# Evidence suggesting that a natural fission reactor was in
operation there about 1.8 Gy ago

® Abundance of 1*2Sm is lower than that found elsewhere

# Depletion via neutron capture during the time the reactor was
In operation:
n+149Sm — 150Sm 4~

® By measuring abundance of 14°Sm at Oklo, it's possible to
W& oftice of estimate the n-capture cross-section
-54“*-'

# Depends on the values of a.,, and other constants.

® This has been done
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Evidence of Variation?

# Evidence suggesting that a natural fission reactor was in
operation there about 1.8 Gy ago

® Abundance of 1*2Sm is lower than that found elsewhere

# Depletion via neutron capture during the time the reactor was
In operation:
n+149Sm — 150Sm 4~

® By measuring abundance of 14°Sm at Oklo, it's possible to
estimate the n-capture cross-section

.é: Office of
‘é_gl Scren:e

# Depends on the values of a.,, and other constants.

® This has beendone... e.g., S. K. Lamoreaux and J. R.
Torgerson, “Neutron moderation in the Oklo natural reactor and
the time variation of alpha,” Phys. Rev. D 69, 121701 (2004).

now

past
Qem — %em 4541078, (60 confidence)

Argonne

aem
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Evidence of Variation?

# Evidence suggesting that a natural fission reactor was in
operation there about 1.8 Gy ago

® Abundance of 1*2Sm is lower than that found elsewhere

# Depletion via neutron capture during the time the reactor was
In operation:
n+149Sm — 150Sm 4~

® By measuring abundance of 14°Sm at Oklo, it's possible to
estimate the n-capture cross-section

cfen ce
ERGY

Z@ Office of

# Depends on the values of a.,, and other constants.

This has been done

| I

“Finally, these results might be interpreted more efficiently in
terms of , for which the sensitivity is about two orders of

Aqcp
magnitude higher than the sensitivity to a variation in a,p,.”

Argonne

l [=:=] - [===] - UNSW School of Physics Colloguium: 2 December 2008 — p. 34/42



Evidence of Variation?
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Evidence of Variation?

In addition

® Interpretation of
o Numerous measurements of quasar absorption spectra
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Evidence of Variation?

In addition

® Interpretation of

o Numerous measurements of quasar absorption spectra
e.g., P. Tzanavaris, J. K. Webb, M. T. Murphy, V. V. Flambaum
and S. J. Curran, “Limits on variations in fundamental
constants from 21-cm and ultraviolet quasar absorption lines,
Phys. Rev. Lett. 95, 041301 (2005)
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Evidence of Variation?

In addition

® Interpretation of

o Numerous measurements of quasar absorption spectra
e.g., P. Tzanavaris, J. K. Webb, M. T. Murphy, V. V. Flambaum
and S. J. Curran, “Limits on variations in fundamental
constants from 21-cm and ultraviolet quasar absorption lines,
Phys. Rev. Lett. 95, 041301 (2005)

75, Otice of # Superprecise atomic clocks

—
U.s.

(e of Muclear py, 5
(o)

Argonne

l [=:=] - [===] - UNSW School of Physics Colloguium: 2 December 2008 — p. 3542



Evidence of Variation?

In addition

® Interpretation of

o Numerous measurements of quasar absorption spectra
e.g., P. Tzanavaris, J. K. Webb, M. T. Murphy, V. V. Flambaum
and S. J. Curran, “Limits on variations in fundamental
constants from 21-cm and ultraviolet quasar absorption lines,
Phys. Rev. Lett. 95, 041301 (2005)

K55, Ofice of # Superprecise atomic clocks

e.g., V. V. Flambaum, D. B. Leinweber, A. W. Thomas and

R. D. Young, “Limits on the temporal variation of the fine

structure constant, quark masses and strong interaction from

guasar absorption spectra and atomic clock experiments,”

6 Phys. Rev. D 69, 115006 (2004)
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Evidence of Variation?

In addition

® Interpretation of
o Numerous measurements of quasar absorption spectra
& Superprecise atomic clocks

® Plus... alarge number of new and more accurate measurements
expected to appear soon
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Evidence of Variation?

In addition

® Interpretation of
o Numerous measurements of quasar absorption spectra
& Superprecise atomic clocks

® Plus... alarge number of new and more accurate measurements
expected to appear soon

® Emphasise the important role that

Z Office of . .
e Sy the hadron physics calculations can

(e of Muclear py, 5
(o)

play in the interpretation of many
measurements performed in several
areas of physics and astronomy
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Pion Sigma Term

® Useful illustrative example . ..
form factor:

s2(Q%) = (n(P")|m Jo(Q)|n(P)), Qu = (P = P),.

o-term for 7t ... begin with scalar

7557 Office of
-~ 4 Science
US. DEPARTMENT OF ENERGY

e of Muclear py, i
e

Argonne

l [=:=] - [===] - UNSW School of Physics Colloguium: 2 December 2008 — p. 36142



Pion Sigma Term

® Useful illustrative example . ..
form factor:

s2(Q%) = (n(P")|m Jo(Q)|n(P)), Qu = (P = P),.

o-term for 7t ... begin with scalar

® Inra nbow-ladder truncation of QCD’s Dyson-Schwinger Equation:
(ﬁa,,B = ¢+ aP + /BQ)

d*¢
SW(QQ) = tI‘CDF/(27T)4 5(5_1,%)mr7.0(€_1,0;Q)S(f_l,_%)

ij%ﬁ:gﬁ;’; er(f—%,m P") S(¢,

e of Muclear py, i
e

)4
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Pion Sigma Term

® Useful illustrative example . ..
form factor:

s2(Q%) = (n(P")|m Jo(Q)|n(P)), Qu = (P = P),.

o-term for 7t ... begin with scalar

® Inra nbow-ladder truncation of QCD’s Dyson-Schwinger Equation:
(Ea,,B = ¢+ aP + BQ)

d*¢
SW(QQ) = tI‘CDF/(27T)4 5(6_1,%)mr7.0(€_1,0;Q)S(ﬁ_l,_%)

Ko Scionce xTr(l 1 0; P)S(ly 1) (b1 15 P)

202

e of Nuclear PR <

® ranbow-ladder ... first term in a nonperturbative, systematic and
symmetry preserving truncation scheme =- triangle diagram

o S(¢) ... two-flavour dressed-quark propagator
o T', (4;P) ... pion’s Bethe-Salpeter amplitude

Argonne o T' 0(4Q) ... two-flavour inhomogeneous isoscalar scalar
vertex
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Return to Pion Sigma Term
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Return to Pion Sigma Term

The pion’s o-term is defined by
2My 0 = 5:(Q°=0)

d*¢
= trCDF/(Qw)4 8(6—1,0)mFTO(g—l,O;O)S(g—l,O)
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Return to Pion Sigma Term

® The pion’s o-term is defined by

2My 0 = 5:(Q°=0)
= tr / af SU_10)mT0(l_10;0)S(l_1)
= troor [ Gz Sl-to 70 (£—1,0; ~1,0

XFW(K_%,O; —P) 5(5) FW(K_%’O; P)

$ Symmetry preserving truncation

)
e, e ot ——-8(k) = —S(k)'7o(k;0) S(k)
e ) om(¢)

(e of Muclear py, 5
(o)

Argonne

l [=:=] - [===] - UNSW School of Physics Colloguium: 2 December 2008 — p. 3742



Return to Pion Sigma Term

The pion’s o-term is defined by

2My 0 = 5:(Q°=0)
= tr / af SU_10)mT0(l_10;0)S(l_1)
= troor [ Gz Sl-to 70(€-1,0; ~1,0

XFW(K_%,O; —P) 5(5) Fw(f_l 03 P)

29

$ Symmetry preserving truncation

5,
(CDR ==~ S(k) = —S(k) I'7o(k; 0) S(k)
o om(¢)
$» Hence

d¢ 0S(/_
2my or = —m(() trCDF/(QW)4 8571(50) Lr(l_10;=P) SO T (01 o5 P

Argonne
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Return to Pion Sigma Term

The pion’s o-term is defined by
2My 0 = 5:(Q°=0)

d*¢
= trCDF/(Qw)4 8(5—1,0)mFTO(E—l,O;O)S(g—l,O)

XFW(f_l 05 —P) 5(5) Fﬂ(f_l 03 P)

27 27

® Canonical normalisation condition for Bethe-Salpeter amplitude

A

767 ice o 8

5405ﬁf 2P, =trcpr / I'z(q; —P) YN S(g+Q/2)I'z(q; P)S(q — Q/2) + sym
q M

(e of Muclear py, 5
(o)

® Hence

d*0 OS(0-
2my o = —m(() trCDF/(Qﬂ-)‘l 8571(50> Ir(_1 05 =P)SU)Tx(l_1 o5 P
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a oP d¢ 0S({_10)
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Return to Pion Sigma Term

The pion’s o-term is defined by

2Myp Op = ST('(QZ =0)
= tr(;DF/ A S(l-1,0)mT70(l-1,050) S(l—1,0)
(2m)4 ’ - |
XD (€_1,05=P)S() Tr(l_1 05 P)

27 27

® Canonical normalisation condition for Bethe-Salpeter amplitude

Office of A a
X9 Scionce 2Py =trcprF / Fr(g; —P )—813 S(g+Q/2)T'x(q; P)S(q — Q/2) + sym
e of Nuclear g, q
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_ d*¢ 0SS/
2mg o = —m(() trepr / (27T)4 ({97(72(50) FW@—%,O; —P)S(¢) FW@—%,O? P
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Return to Pion Sigma Term

The pion’s o-term is defined by
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® Canonical normalisation condition for Bethe-Salpeter amplitude
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Feynman-Hellmann Theorem
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Feynman-Hellmann Theorem

om

om(¢)

the fact that the rainbow-ladder expression is the leading term in a
systematic, nonperturbative and symmetry preserving truncation.

® Inderiving|o, = m(() , | have depended heavily upon

| Office of
.g,,;d Science
U.S. DEPARTMENT OF ENERGY

(e of Muclear py, 5
(o)
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Feynman-Hellmann Theorem

om

om(¢)

In deriving | o, = m(¢)

, | have depended heavily upon

the fact that the rainbow-ladder

expression is the leading term in a

systematic, nonperturbative and symmetry preserving truncation.

Concrete illustration of a general result that may be viewed as a
consequence of the Feynman-Hellmann theorem.
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Feynman-Hellmann Theorem

om

om(¢)

the fact that the rainbow-ladder expression is the leading term in a
systematic, nonperturbative and symmetry preserving truncation.

® Inderiving|o, = m(() , | have depended heavily upon

® Concrete illustration of a general result that may be viewed as a
consequence of the Feynman-Hellmann theorem.

# Present case: theorem states that response of an eigenvalue
of the QCD mass?-operator to a change in a parameter in that
operator is given by expectation value of the derivative of the
mass2-operator operator with respect to the parameter.

OF 2 <8M2>
X  \ O\

Z Office of

I Scren:e
TMENT O

e of Nuclear PR <
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Argonne
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® |Inderiving| o, = m(()

om

om(¢)

Feynman-Hellmann Theorem

, | have depended heavily upon

the fact that the rainbow-ladder expression is the leading term in a
systematic, nonperturbative and symmetry preserving truncation.

® Concrete illustration of a general result that may be viewed as a
consequence of the Feynman-Hellmann theorem.
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Derived by Feynman, when 21, in his final year as an
undergraduate. Has played an important role in theoretical
chemistry and condensed matter physics.
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Feynman-Hellmann Theorem

om

om(¢)

the fact that the rainbow-ladder expression is the leading term in a
systematic, nonperturbative and symmetry preserving truncation.

® Inderiving|o, = m(() , | have depended heavily upon

® Concrete illustration of a general result that may be viewed as a
consequence of the Feynman-Hellmann theorem.

OE <8M2 >

g‘ég?.sﬂgﬁ:o; O\ O\
® The resultis valid in this form for all mesons; i.e.,
8m2 BmM
ZmMO'M bt SM(O)ZTT”L(C) — M = O'MZTT”L(C) —
om(Q) om(¢)
NB. The o-term is a renormalisation point invariant, in general and
Argonne also in the explicit calculation, so long as a RGI ra nbow-ladder
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Pion Sigma Term: Algebraic

® Pion’s mass is expressed precisely via

p=(C)
Ir

my = —2m(()
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Pion Sigma Term: Algebraic

® Pion’s mass is expressed precisely via

p=(C)
Ir

my = —2m(()

® Neighbourhood of chiral limit

p~(C) TP

(3q)?
SO
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Pion Sigma Term: Algebraic

® Pion’s mass is expressed precisely via

p=(C)
Ir

my = —2m(()

® Neighbourhood of chiral limit

p~(C) TP

(3q)?
SO

®» Hence

7557 Office of
-~ Science
U.S. DEFARTMENT OF ENERGY

(e of Muclear py, 5
(o)

(f2)?

2y o =" —2m(C)

# Model-independent result.
» Essential consequence of DCSB.
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Example: BBN

® Primordial nucleosynthesis took place a few minutes after Big
Bang. Responsible for the formation of ?H, 3He & *He, °Li & “Li
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Example: BBN

Primordial nucleosynthesis took place a few minutes after Big
Bang. Responsible for the formation of ?H, 3He & *He, °Li & “Li

® Nuclear reaction theory: BBN abundances of 2H, *He, “Li are
sensitive to variation in binding energies of 2:3H, 3*He, %7Li & "Be
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Flambaum and Wiringa Phys. Rev. C 76 (2007) 054002 (11 pages)
Flambaum et al., Few Body Syst. 38 (2006) pp. 31-51 Example- BBN

Primordial nucleosynthesis took place a few minutes after Big
Bang. Responsible for the formation of ?H, 3He & *He, °Li & “Li

® Nuclear reaction theory: BBN abundances of ?H, “He, “Li are
sensitive to variation in binding energies of 2:3H, 3*He, %7Li & "Be

» Standard Model of Nuclear Physics: Hamiltonian capable of
decimal point accuracy in calculation of light-element binding

energies.
IS, armcw it # DSE result for hadron mass dependence on
premind X, = mq/Aqcn

Argonne
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Flambaum and Wiringa Phys. Rev. C 76 (2007) 054002 (11 pages)
Flambaum et al., Few Body Syst. 38 (2006) pp. 31-51 Example- BBN

® Primordial nucleosynthesis took place a few minutes after Big
Bang. Responsible for the formation of ?H, 3He & “He, °Li & "Li

® Nuclear reaction theory: BBN abundances of ?H, “He, “Li are
sensitive to variation in binding energies of 2:3H, 3*He, %7Li & "Be

» Standard Model of Nuclear Physics: Hamiltonian capable of
decimal point accuracy in calculation of light-element binding

energies.
Z At # DSE result for hadron mass dependence on
oy Xq :=mq/AqcD

® 1% increase in X4 is sufficient by itself to resolve existing
discrepancies between theoretical and measured abundances of
2H, “He, "Li

7 — 0.007 - 0.026.
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® DCSB exists in QCD: mass from nothing
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the mess Fhat white folks made Epilogue

® DCSB exists in QCD: mass from nothing

» Manifest in dressed propagators and
vertices
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| eemember when phe
anly joia a black man coul
gh in Americg was clrEﬂhl'i-.ﬁ up

the mess Fhat white folks mode Epllogue

® DCSB exists in QCD: mass from nothing

» Manifest in dressed propagators and
vertices

» It predicts, amongst other things, that
s light current-quarks become heavy
constituent-quarks: 4 — 400 MeV
7655, otfce of & pseudoscalar mesons are unnaturally
light: m, = 770 cf. m, = 140 MeV
& pseudoscalar mesons couple unnaturally
strongly to light-quarks: grq, ~ 4.3
& pseudscalar mesons couple unnaturally
strongly to the lightest baryons

g’]TNN ~ 12.8 ~ Sgﬂ-qq
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ﬂhly joﬁ a black man couldl
gb in America was cf‘Eﬂning- w

the mess Fhat white folks made Epl|0gue

® DCSB exists in QCD: mass from nothing

» Manifest in dressed propagators and
vertices

» Impacts enormously upon observables.
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® Nature’s constants
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Epilogue
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CHAMNECE

® Nature’s constants

o DCSB means that a small change in
current-quark mass is amplified in the
response of hadron masses
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Epilogue
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CHAMNECE

® Nature’s constants

» DCSB means that a small change in
current-quark mass is amplified in the
response of hadron masses

o But DCSB suppresses the dm-response of
guark-core radii and magnetic moments.
The rapid change arises from the
pseudoscalar meson cloud owing to the
pion o-term
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Epilogue

[ LrinkLs
Jeme THints
PERw' T EvER

CHAMNECE

® Nature’s constants

» DCSB means that a small change in
current-quark mass is amplified in the
response of hadron masses

o But DCSB suppresses the dm-response of
guark-core radii and magnetic moments.

755 oce of The rapid change arises from the

iy pseudoscalar meson cloud owing to the

W pion o-term

® The only thing constant in life is change
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