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Universal Truths

a8 ¢ ® Form factors give information about distribution of hadron’s
/ J characterising properties amongst its QCD constituents.
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Universal Truths

'Y , \ ¥ ® Form factors give information about distribution of hadron’s

t e\ W/ J characterising properties amongst its QCD constituents.

B ® Calculations at Q2 > 1 GeV? require a Poincaré-covariant
approach.
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Universal Truths

2% \ s P#¢ e Form factors give information about distribution of hadron’s

: > A e _///J characterising properties amongst its QCD constituents.

® Calculations at Q2 > 1 GeV? require a Poincaré-covariant
approach. Covariance requires existence of quark orbital
angular momentum in hadron’s rest-frame wave function.
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Universal Truths

® Form factors give information about distribution of hadron’s
/ J characterising properties amongst its QCD constituents.

® Calculations at Q2 > 1 GeV? require a Poincaré-covariant
approach. Covariance requires existence of quark orbital
angular momentum in hadron’s rest-frame wave function.

® DCSB is most important mass generating mechanism for

) matter in the Universe.
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Universal Truths

'Y , \ ¥ ® Form factors give information about distribution of hadron’s

t e\ W/ J characterising properties amongst its QCD constituents.

e ® Calculations at Q2 > 1 GeV? require a Poincaré-covariant
approach. Covariance requires existence of quark orbital
angular momentum in hadron’s rest-frame wave function.

® DCSB is most important mass generating mechanism for
matter in the Universe. Higgs mechanism is irrelevant to
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Universal Truths

® [Form factors give information about distribution of hadron’s
J characterising properties amongst its QCD constituents.

® Calculations at Q% > 1 GeV? require a Poincaré-covariant
approach. Covariance requires existence of quark orbital
angular momentum in hadron’s rest-frame wave function.

® DCSB is most important mass generating mechanism for
matter in the Universe. Higgs mechanism is irrelevant to
light-quarks.
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Universal Truths

® Form factors give information about distribution of hadron’s
/ J characterising properties amongst its QCD constituents.

® Calculations at Q2 > 1 GeV? require a Poincaré-covariant
approach. Covariance requires existence of quark orbital
angular momentum in hadron’s rest-frame wave function.

® DCSB is most important mass generating mechanism for
matter in the Universe. Higgs mechanism is irrelevant to
light-quarks.

Z&Zj Office of

Science
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e of Nuclear PR <

. Challenge: understand relationship between parton properties
e on the light-front and rest frame structure of hadrons. Problem
because, e.g., DCSB - an established keystone of low-energy
QCD and the origin of constituent-quark masses - has not
been realised in the light-front formulation.
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® Quark and Gluon Confinement

» No matter how hard one strikes the proton, one
cannot liberate an individual quark or gluon
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® Quark and Gluon Confinement

# No matter how hard one strikes the proton, one
cannot liberate an individual quark or gluon

® Dynamical Chiral Symmetry Breaking

» \Very unnatural pattern of bound state masses
& e.g., Lagrangian (pQCD) quark mass is small but . ..
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QCD'’s Challenges

THANKYouU }
FOR MNOT
. L ENQUIRING

® Quark and Gluon Confinement

# No matter how hard one strikes the proton, one
cannot liberate an individual quark or gluon

® Dynamical Chiral Symmetry Breaking

» \Very unnatural pattern of bound state masses
& e.g., Lagrangian (pQCD) quark mass is small but . ..
755, omce o no degeneracy between J¥=T and J¥=—
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® Neither of these phenomena is apparent in QCD’s
Lagrangian yet they are the dominant determining
characteristics of real-world QCD.
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QCD'’s Challenges

Understand Emergent Phenomena 1

I
® Quark and Gluon Confinement 'l
# No matter how hard one strikes the proton, onel'

cannot liberate an individual quark or gluon /I
/
® Dynamical Chiral Symmetry Breaking J

» \Very unnatural pattern of bound state masses /

& e.g., Lagrangian (pQCD) quark mass is sma/ll/but .

no degeneracy between J©=% and J©="/
/
# Neither of these phenomena is apparent in QGD’s

Lagrangian yet they are the dominant determining
/7
characteristics of real-world QCD. 7

7

7
-~

® QCD - Complex behaviour< — - -~
arises from apparently simple rules
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Why?

® The nucleon and pion hold special places in non-perturbative
studies of QCD.
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Why?

® The nucleon and pion hold special places in non-perturbative
studies of QCD.

® An explanation of nucleon and pion structure and interactions is
central to hadron physics — they are respectively the archetypes
for baryons and mesons.
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Why?

® The nucleon and pion hold special places in non-perturbative
studies of QCD.

® An explanation of nucleon and pion structure and interactions is
central to hadron physics — they are respectively the archetypes
for baryons and mesons.

® Form factors have long been recognized as a basic tool for
elucidating bound state properties. They can be studied from very

75, oice o low momentum transfer, the region of non-perturbative QCD, up to

e a region where perturbative QCD predictions can be tested.
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Why?

The nucleon and pion hold special places in non-perturbative
studies of QCD.

An explanation of nucleon and pion structure and interactions is
central to hadron physics — they are respectively the archetypes
for baryons and mesons.

Form factors have long been recognized as a basic tool for
elucidating bound state properties. They can be studied from very
low momentum transfer, the region of non-perturbative QCD, up to
a region where perturbative QCD predictions can be tested.

Experimental and theoretical studies of nucleon electromagnetic
form factors have made rapid and significant progress during the
last several years, including new data in the time like region, and
material gains have been made in studying the pion form factor.
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Why?

The nucleon and pion hold special places in non-perturbative
studies of QCD.

An explanation of nucleon and pion structure and interactions is
central to hadron physics — they are respectively the archetypes
for baryons and mesons.

Form factors have long been recognized as a basic tool for
elucidating bound state properties. They can be studied from very
low momentum transfer, the region of non-perturbative QCD, up to
a region where perturbative QCD predictions can be tested.

Experimental and theoretical studies of nucleon electromagnetic
form factors have made rapid and significant progress during the
last several years, including new data in the time like region, and
material gains have been made in studying the pion form factor.

Despite this, many urgent questions remain unanswered.
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Some Questions

# What is the role of pion cloud in nucleon
electromagnetic structure?

# Can we understand the pion cloud in a more

guantitative and, perhaps, model-independent
way?
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Some Questions

o Where is the transition from non-pQCD to pQCD In
the pion and nucleon electromagnetic form
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Some Questions

o Do we understand the high @? behavior of the
proton form factor ratio in the space-like region?

o Can we make model-independent statements
about the role of relativity or orbital angular
momentum in the nucleon?
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Some Questions

® Can we understand the rich structure of the
time-like proton form factors in terms of
resonances?

o What do we expect for the proton form factor ratio
In the time-like region?
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#» What is the relation between proton and neutron
form factor in the time-like region?

® How do we understand the ratio between time-like
and space-like form factors?
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Some Questions

o What is the role of two-photon exchange
contributions in understanding the discrepancy
between the polarization and Rosenbluth
measurements of the proton form factor ratio?

55 o o What is the impact of these contributions on other
e form factor measurements?

foﬂﬂ”!"m
e of uclear Ph o
Niddiar u

i .

e

Argonne

Craig Roberts: Hadron Form Factors



Office of
.g 4 Screm:e

0‘{\\L of Hugesr By Ste,

Argonne

Some Questions

o How accurately can the pion form factor be
extracted from the ep — e’nm™ reaction?
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Status

® Current status is described in

# J. Arrington, C. D. Roberts and J. M. Zanotti
“Nucleon electromagnetic form factors,”
J. Phys. G 34, S23 (2007); [arXiv:nucl-th/0611050].

# C. F Perdrisat, V. Punjabi and M. Vanderhaeghen,
“Nucleon electromagnetic form factors,”
Prog. Part. Nucl. Phys. 59, 694 (2007);
[arXiv:hep-ph/0612014].
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Status

® Current status is described in

# J. Arrington, C. D. Roberts and J. M. Zanotti
“Nucleon electromagnetic form factors,”
J. Phys. G 34, S23 (2007); [arXiv:nucl-th/0611050].

# C. F Perdrisat, V. Punjabi and M. Vanderhaeghen,
“Nucleon electromagnetic form factors,”
Prog. Part. Nucl. Phys. 59, 694 (2007);
[arXiv:hep-ph/0612014].
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® Most recently:
“ECT* Workshop on Hadron Electromagnetic Form Factors”
Organisers: Alexandrou, Arrington, Friedrich, Maas, Roberts
Presentations, etc., available on-line
http://ect08.phy.anl.gov/
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Dichotomy of Pion
— Goldstone Mode and Bound state
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Dichotomy of Pion
— Goldstone Mode and Bound state

~ """ o How does one make an almost massless particle
........... from two massive constituent-quarks?
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Dichotomy of Pion

— Goldstone Mode and Bound state

"~ » How does one make an almost massless particle

........... from two massive constituent-quarks?

# Not Allowed to do it by fine-tuning a potential

Must exhibit

Current Algebra ... 1968
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Dichotomy of Pion
— Goldstone Mode and Bound state

""" o How does one make an almost massless particle
........... from two massive constituent-quarks?

# Not Allowed to do it by fine-tuning a potential

Must exhibit| m?2 o m,
Current Algebra ... 1968

The correct understanding of pion observables;
g&; « €.0. mass, decay constant and form factors,
reqguires an approach to contain a

o well-defined and valid chiral limit;

#® and an accurate realisation of
dynamical chiral symmetry breaking.
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Dichotomy of Pion
— Goldstone Mode and Bound state

""" o How does one make an almost massless particle
........... from two massive constituent-quarks?

# Not Allowed to do it by fine-tuning a potential

Must exhibit| m?2 o m,
Current Algebra ... 1968

The correct understanding of pion observables;
g&; « €.0. mass, decay constant and form factors,
reqguires an approach to contain a

o well-defined and valid chiral limit;

® and an accurate realisation of

dynamical chiral symmetry breaking.
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Pion Form Factors

o There is a sense in which it is easy to fabricate a
model that can reproduce the elastic
electromagnetic pion form factor
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Pion Form Factors

o There is a sense in which it is easy to fabricate a
model that can reproduce the elastic
electromagnetic pion form factor

# However, a veracious description of the pion will
simultaneously predict the elastic electromagnetic
form factor, F.(Q*) AND the ~v*m — ~ transition
form factor
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Pion Form Factors
Infidelity without simultaneity

o There is a sense in which it is easy to fabricate a
model that can reproduce the elastic
electromagnetic pion form factor

# However, a veracious description of the pion will
simultaneously predict the elastic electromagnetic
form factor, F.(Q?) AND the ~v*m — ~ transition
form factor

ZA%'Z:::::; # The latter is connected with the Abelian anomaly —

- therefore fundamentally connected with chiral
symmetry and its dynamical breaking — no mere
model can successfully describe this without fine
tuning
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Pion Form Factors
Infidelity without simultaneity

o There is a sense in which it is easy to fabricate a

model that can reproduce the elastic
electromagnetic pion form factor

However, a veracious description of the pion will
simultaneously predict the elastic electromagnetic
form factor, F.(Q?) AND the ~v*m — ~ transition
form factor

The latter is connected with the Abelian anomaly —
therefore fundamentally connected with chiral
symmetry and its dynamical breaking — no mere
model can successfully describe this without fine
tuning

Must similarly require prediction of v*nr — 7 and
all other anomalous processes

Craig Roberts: Hadron Form Factors
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What's the Problem?

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.
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What's the Problem?

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.

® Means ... must calculate hadron wave functions
— Can’t be done using perturbation theory
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What's the Problem?

Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.

® Means ... must calculate hadron wave functions

75, ot o — Can’t be done using perturbation theory
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o ® Why problematic? Isn’t same true in quantum mechanics?

Argonne

Craig Roberts: Hadron Form Factors



What's the Problem?

® Minimal requirements
» detailed understanding of connection between
Current-quark and Constituent-quark masses;
# and systematic, symmetry preserving means of realising
this connection in bound-states.

® Means ... must calculate hadron wave functions
— Can’t be done using perturbation theory
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® Why problematic? Isn’t same true in quantum mechanics?

® Differences!
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What's the Problem?
Relativistic QFT!

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.

® Differences!

763, orice of o Here relativistic effects are crucial — virtual particles,
—~4 Science
guintessence of Relativistic Quantum Field Theory —

must be included

Argonne

Craig Roberts: Hadron Form Factors



PP——=S" Office of
54 Science
U.S. DEPARTMENT OF ENERGY

(e of Muclear py, 5
(o)

Argonne

What's the Problem?
Relativistic QFT!

® Minimal requirements

» detailed understanding of connection between
Current-quark and Constituent-quark masses;

# and systematic, symmetry preserving means of realising
this connection in bound-states.
® Differences!

o Here relativistic effects are crucial — virtual particles,
guintessence of Relativistic Quantum Field Theory —
must be included

» Interaction between quarks — the Interquark “Potential” —
unknown throughout > 98% of a hadron’s volume

Craig Roberts: Hadron Form Factors
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Intranucleon Interaction
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Intranucleon Interaction
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What is the
Intranucleon Interaction?

The question must be
rigorously defined, and the
answer mapped out using
experiment and theory.
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Dyson-Schwinger Equations
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Dyson-Schwinger Equations
Dressed-Quark Propagator
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Dyson-Schwinger Equations
Dressed-Quark Propagator
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Gap Equation
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Dyson-Schwinger Equations
Dressed-Quark Propagator
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Gap Equation
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Dyson-Schwinger Equations
Dressed-Quark Propagator
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Gap Equation
# Gap Equation’s Kernel Enhanced on IR domaln

IR Enhancement of M (p?) | I
¢ Euclidean Constltuent—Quark 10" soooo00mnmmg s
gﬁomce of |
AScren:e E. 2\2 >
Mass: Myt p = M (p*) S
N: —— b—quark
%‘ I c—quark
flavour ‘ u/d ‘ S ‘ c ‘ b 10 - i—dOI_U(;iJ;rk
ME T 02 | o N N ' O chiral limit
e ‘ 10 ‘ 10 ‘ 1.5 ‘ 1.1 N o
10 - .
07 100 100 100 10
Argonne p2 (GeVZ)

Craig Roberts: Hadron Form Factors



Dyson-Schwinger Equations
Dressed-Quark Propagator

-0 =

S

Gap Equation
# Gap Equation’s Kernel Enhanced on IR domaln
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Argne Predictions confirmed in 107 100 2-1-00 2 10 10
wewon — NUMerical simulations of lattice-QCD| p (GeV)
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Hadrons

Established understanding
of two- and three-point functions
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Hadrons

» Established understanding
of two- and three-point functions

What about bound states?
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Hadrons

°/Without bound states,
Comparison with experiment is
Impossible
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Hadrons

Without bound states,
Comparison with experiment Is
Impossible

They appear as pole contributions
to n > 3-point colour-singlet
Schwinger functions
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Hadrons

Without bound states,
Comparison with experiment Is
Impossible

Bethe-Salpeter [Equation
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QFT Generalisation of Lippmann-Schwinger Equation.
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Hadrons

Without bound states,
Comparison with experiment Is
Impossible

Bethe-Salpeter [Equation
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QFT Generalisation of Lippmann-Schwinger Equation.

|

A

What is the kernel, K?
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Hadrons

Without bound states,
Comparison with experiment Is
Impossible

Bethe-Salpeter [Equation

15
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e o Bugear Fry o —
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QFT Generalisation of Lippmann-Schwinger Equation.

|

A

What is the kernel, K?
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What is the light-quark
Long-Range Potential?

NO MEED
To REPEnT
THE ENp OF
THE WeRLP 1§
NeT PoSsiBLe
AnD wE'RE NeT
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BURwM N HELL
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What is the light-quark
Long-Range Potential?

NO MEED
To REPEnT
THE EMPp OF
THE wWoRLp 1
NeT Possible
AnD wE'RE NeT
oG To
BURM v HELL
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A Potential between static (infinitely heavy) quarks
agonne Measured in simulations of lattice-QCD is not related

R imple way to the light-quark interaction......
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Bethe-Salpeter Kernel
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity

P, T (kP) = 8_1(k+) )\ #is + )\fz% S (k)
CR —Mcily(k; P) — iT'5(k; P) M

QFT Statement of Chiral Symmetry
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity

b b ()
Py Tgu(k; P) = §7H(ky) 50507 + 525075

DY —M¢ il (k; P) — iU (k; P) M

e of Nuclear PR <
(o)

Satisfies BSE Satisfies DSE

Argonne
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Bethe-Salpeter Kernel

® Axial-vector Ward-Ta

| ldentity

P, T (kP) = 8_1(k+) )\ #is + )\fw5 /\
I —M¢ il (k; P) — iU (k; P) M
Satisfies BSE Satisfies DS

Kernels very different
but must be intimately related

Argonne
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Ta |identity

Ty
Py Tgu(k; P) = §7H(ky) 50507 + 525075
o et =M il (k; P) — il'5 (k; P) M
X ) Satisfies BSE Satisfies DS

Kernels very different
but must be intimately related
Relation must be preserved by truncation

Argonne
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Bethe-Salpeter Kernel

® Axial-vector Ward-Ta

| ldentity

P, T (kP) = 8_1(k+) )\ #is + )\fw5 /\
I —M¢ il (k; P) — iU (k; P) M
Satisfies BSE Satisfies DS

Kernels very different
but must be intimately related
Relation must be preserved by truncation

Nontrivial constraint
Craig Roberts: Hadron Form Factors
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Bethe-Salpeter Kernel

#® Axial-vector Ward-Takahashi identity

b b ()
Py Tgu(k; P) = §7H(ky) 50507 + 545075

— M ili(k; P) — ils (k; P) M

Satisfies BSE Satisfies DS
Kernels very different
but must be intimately related

. Relation must be preserved by truncation

Argonne T : ) :
ki = Explicit Violation of QCD’s Chiral Symmetry
l - - - - JLat?User Gr(;up, 16-18 June 08... 26 —p. 14/45




Pion Form Factor

Procedure Now Straightforward
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Pion Form Factor

#® Solve Gap Equation
— Dressed-Quark Propagator, S(p)
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Pion Form Factor

#® Use that to Complete Bethe Salpeter Kernel, i

#® Solve Homogeneous Bethe-Salpeter Equation for Pion
Bethe-Salpeter Amplitude, 1",

7557 Office of
-~ Science
U.S. DEFARTMENT OF ENERGY

.ce of Nuclear PR
0“\“

Argonne
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Pion Form Factor

#® Use that to Complete Bethe Salpeter Kernel, i

#® Solve Homogeneous Bethe-Salpeter Equation for Pion
Bethe-Salpeter Amplitude, 1",

7557 Office of
-~ Science
U.S. DEFARTMENT OF ENERGY

e of Nuclear PR <
(o)

#® Solve Inhomogeneous Bethe-Salpeter Equation for
Dressed-Quark-Gluon Vertex, I',,

Argonne
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Pion Form Factor

# Now have all elements for Impulse Approximation to
Electromagnetic Pion Form factor

| Fu (]f ; P )

(e of Muclear py, 5
(o)

Argonne
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Pion Form Factor

# Now have all elements for Impulse Approximation to
Electromagnetic Pion Form factor

7557 Office of
-4 Science
U.S. DEFARTMENT OF ENERGY

.ce of Nuclear PR
0“\“

® Evaluate this final,

three-dimensional integral
Argonne
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Calculated Pion Form Factor

Calculation first published in 1999; No Parameters Varied

Numerical method improved in 2005 | i
05—
04 —
L i
> i ]
O 03 _
(\Ig K ]
T ]
g Office of c\IO‘ 0.2 _|
iy ﬁmScrence - O Amendoliaetal. -
L O  Ackermannet al. _
L O Braud etd. i
- O Tadevosyanetd. |
0.1 & Hometal. ]
25 —— Marisand Tandy, 2005 |
| | | | | | | | | | | | | | | | | | | | | | ]
OO 1 2 3 4
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Calculated Pion Form Factor

Calculation first published in 1999; No Parameters Varied

Numerical method improved in 2005 ' ' = ' = ]
05—

0.4

Data puinshedF
in 2001. 3

o
w
T T 1 | T T 1 | T T 1 | T T T

Subsequently &
E
. LL
pas ortice of revised O 05
il O  Ackermannet al.
e of Nuclear pp, O Braud etal.
& QO Tadevosyanetal.
R il 0.1 5 Hornet al.
S —— Marisand Tandy, 2005
O P | | | | | | | | | | | | | | | | | | | | | |
0 1 2 3 4

Argonne
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Timelike Pion Form Factor
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Timelike Pion Form Factor

| Ab initio calculation into timelike region
Deeper than ground-state p-meson pole
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Timelike Pion Form Factor

g

. Ab initio calculation into timelike region
Deeper than ground-state p-meson pole

7 F T T T | T T T T T T T T T T T T | T T T T | T T -
6.5 E_ % O Amendoliaetal. _E
6 O Ackermannetal. T
- O Braud etal. -
E QO Tadevosyanetal. =
55 = Hornet al. -
5 E % O Bakovetd. =
C —— DSE - Krassnigg -
Z Office of 4.5 ;_ _;
-4 Science C -
U.S. DEFARTMENT OF ENERGY : 4 __ __
NO’ C .
< 35K —
o F E
3 —
25F =
15F =
Argonne 05 S
g o E 0 oo b N R R R N NN TR R SR N S S R
1

I
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‘ 1 =

Timelike Pion Form Factor

iy

| Ab initio calculation into timelike region

' Deeper than ground-state p-meson pole

p-meson not put in “by hand” — generated dynamically as a bound-
state of dresse7d-quark and dressed-antiquark

- T T T | T T T T | T T T T | T T T T | T T T T | T T -
6.5 =
- O Amendoliaet al. -
6E O Ackermannetal. T
- O Braud etal. -
= O Tadevosyanetal. =
55 = Hornetal. -
5 = % O Bakoveta. =
C —— DSE - Krassnigg -
r;/ Office of 45 =
-4 Science 4 = =
e of Nuclear py, o AN E E
> s € 35F E
L - -
atar - @ 3 -
25 —
2F —
15F —
1 —
Argonne 05E .
NATIONAL —
LABORATORY I R R N NN N N N N R R RN N T TR TR SR AN SN S S N B S
1

|
- -0.5 0 0.5 Craig Roberils: Hadron Form Facjelé



Nucleon Challenge
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Nucleon Challenge

® Another Direction ...
three-quark systems

‘want/need information about

X6, Sciance \

(e of Muclear py, 5
(o)

b

Argonne
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Nucleon Challenge

#® Another Direction . . . _Also Wa‘ntfnaed iInformation about
three-quark sys)e/ms

® With this rLrobIem ....current expertise at approximately
. II .
X Sciance same point as studies of |

e of Nuclear Ph i
B '

Argonne

Craig Roberts: Hadron Form Factors



Nucleon Challenge

Another Direction . . . _Also Wa‘ntfnaed iInformation about
three-quark sys)e/ms

9

.é: Office of
‘é_gl Scren:e

e of Nuclear Ep i
e '

roximately

® Namely ... Model-building and Phenomenology,
constrained by the DSE results outlined already.

Craig Roberts: Hadron Form Factors
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Nucleon EM Form Factors: A Précis

al.: nu-th/0412046 & nu-th/0501033
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Nucleon EM Form Factors: A Précis
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Nucleon EM Form Factors: A Précis
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Nucleon EM Form Factors: A Précis

Cloét, et al.:
arXiv:0710.2059, arXiv:0710.5746 & larXiv:0804.3118
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Nucleon EM Form Factors: A Précis

Cloét, et al.:
arXiv:0710.2059, arXiv:0710.5746 & larXiv:0804.3118

e Interpreting expts. with GeV electromagnetic probes
requires Poincareé covariant treatment of baryons
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Nucleon EM Form Factors: A Précis

Cloét, et al.:
arXiv:0710.2059, arXiv:0710.5746 & larXiv:0804.3118

e Interpreting expts. with GeV electromagnetic probes
requires Poincareé covariant treatment of baryons
—- Covariant dressed-quark Faddeev Equation
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http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0710.2059
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Nucleon EM Form Factors: A Précis

Cloét, et al.:
arXiv:0710.2059, arXiv:0710.5746 & larXiv:0804.3118

e Interpreting expts. with GeV electromagnetic probes
requires Poincareé covariant treatment of baryons
—- Covariant dressed-quark Faddeev Equation
e Excellent mass spectrum (octet and decuplet)
Easlly obtained:

1/2
exXp calc]2
I763, Office of 1 E [MH MH ] — 929
e it €XPp12
. N (M)

H
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Nucleon EM Form Factors: A Précis

Cloét, et al.:
arXiv:0710.2059, arXiv:0710.5746 & larXiv:0804.3118

e Interpreting expts. with GeV electromagnetic probes
requires Poincareé covariant treatment of baryons
—- Covariant dressed-quark Faddeev Equation
e Excellent mass spectrum (octet and decuplet)
Easlly obtained:

1/2
exp calc]2
I763, Office of 1 [MH B MH ] — 29
A e N E : (MEPP2 - e
. H H

(Cettel, Hellstern, Alkofer, Reinhardt: nucl-th/9805054)
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Nucleon EM Form Factors: A Précis

Cloét, et al.:
arXiv:0710.2059, arXiv:0710.5746 & larXiv:0804.3118

e Interpreting expts. with GeV electromagnetic probes
requires Poincareé covariant treatment of baryons
—- Covariant dressed-quark Faddeev Equation
e Excellent mass spectrum (octet and decuplet)
Easlly obtained:

1/2
exXp calc]2
I763, Office of 1 E [MH MH ] — 929
e it €XPp12
. N (M)

H
o BUt is that good?
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Nucleon EM Form Factors: A Précis

Cloét, et al.:
arXiv:0710.2059, arXiv:0710.5746 & larXiv:0804.3118

e Interpreting expts. with GeV electromagnetic probes
requires Poincareé covariant treatment of baryons
—- Covariant dressed-quark Faddeev Equation
e Excellent mass spectrum (octet and decuplet)
Easlly obtained:

1/2
; | 1 Mexp o Mcalc 2
I, et — > My Py | = 2%
e Ng 5 My
@ o Bulis that good?

e e Cloudy Bag: 5M:[_l°°p = —300 to —400 MeV!
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Nucleon EM Form Factors: A Précis

Cloét, et al.:
arXiv:0710.2059, arXiv:0710.5746 & larXiv:0804.3118

e Interpreting expts. with GeV electromagnetic probes
requires Poincareé covariant treatment of baryons
—- Covariant dressed-quark Faddeev Equation
e Excellent mass spectrum (octet and decuplet)
Easlly obtained:

1/2
1 MeXP . Mcalc 2
rLs (— > My i = 2%

Ny (M7
o BUt is that good?
» Cloudy Bag: M '°°" = —300 to —400 MeV!

o Critical to anticipate pion cloud effects
Roberts, Tandy, Thomas, et al., nu-th/02010084

Argonne
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Faddeev equation
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Faddeev equation

P
-

Dt #® Linear, Homogeneous Matrix equation

Science

(e of Nuclear Ep 5
— S

£ »# Yields wave function (Poincaré Covariant Faddeev
Amplitude) that describes quark-diquark relative motion
o within the nucleon

® Scalar and Axial-Vector Diquarks ... In Nucleon’s Rest
Argonne Frame Amplitude has ... s—, p— & d—wave correlations

LABO
Craig Roberts: Hadron Form Factors



Diquark correlations
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Same interaction that Diquark correlations

describes mesons also
generates three coloured
guark-quark correlations:
blue—red, blue—green,
green-red

Confined ... Does no
escape from within ba

Scalar is isosinglet,
Axial-vector is isotriple

DSE and lattice-QCD
Myd] , = 0.74 — 0.82

m(uu)1+ — m(U'd)1+ o m(dd)1+

......

UARK-QUARK

Craig RoBerts: Hadron Form Factors



Nucleon-Photon Vertex
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6 terms...

PP—==" Office of
g/;j Science

.ce of Nuclear PR 5
4
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Argonne

M. Oettel, M. Pichowsky
and L.von Smekal, nu-th/9909082

Nucleon-Photon Vertex

for on-shell nucleons described by Faddeev Amplitude

Craig Roberts: Hadron Form Factors
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M. Oettel, M. Pichowsky
and L.von Smekal, nu-th/9909082

6 terms . .. Nucleon-Photon Vertex

-
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Form Factor Ratio:
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Form Factor Ratio:
® Combine these elements . .. GE/GM

e -
- A precision Rosenbluth .
05| ® polarization transfer _
) ¢  polarization transfer
PP==" Office of B .
QA Science _ 1 ] 1 ] 1 l 1 ] 1
o 2 4 6 8 1
2 2
Q" [Gev7]
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o Dressed-Quark Core

2 1 | 1 | 1 | 1 | 1 J)
1.5( % 4
U Weap9,° & 2 # ; % i
- o - -
0.5F Fls, s -
! - _
o] = e -
B A precision Rosenbluth -
05| ® polarization transfer _

) ¢  polarization transfer
1 ] 1 1 1 ] 1
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.g,,;d Science
U.S. DEPARTMENT OF ENERGY

0“\\(3 of Muclear py,

Argonne

® Combine these elements ...

Form Factor Ratio:
GE/GM

2 8 A

7
Q
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o Dressed-Quark Core

» Ward-Takahashi
|ldentity preserving
current o =

® Combine these elements ...

Form Factor Ratio:
GE/GM

2

0  Rosenbluth

A precision Rosenbluth
5]

°

polarization transfer
polarization transfer

7
Q
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o Dressed-Quark Core

® Combine these elements ...

Form Factor Ratio:
GE/GM

2 1 | 1 | 1 |
» Ward-Takahashi 15'
ldentity preserving - g
current oz PRt 3 ¢ %
N L
s Anticipate and  %* O Y
Estimate Pion & 0Of s
- i r%cs?gitg#tgosenbl uth
Cloud’s Contribution | | a  poaizionvenster
) ¢ polarization transfer
] ] ] ]

7
Q
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o Dressed-Quark Core
» Ward-Takahashi 15'

® Combine these elements ...

2

Form Factor Ratio:
GE/GM

|ldentity preserving -

current o
s Anticipate and %3 5[
Estimate Pion = oL
Cloud's Contribution .|

s 1¥Weogo ® 5w # %
HH

covariant Fadeev result
Rosenbluth
precision Rosenbluth

polarization transfer
polarization transfer

2 4
Q” [Gev

Craig Roberts: Hadron Form Factors
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o Dressed-Quark Core

Argonne

® Combine these elements ...

Form Factor Ratio:
GE/GM

Craig Roberts: Hadron Form Factors
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|ldentity preserving - 5 -
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current o= TR X ? %
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. m  polarization transfer
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o Dressed-Quark Core

» Ward-Takahashi
|ldentity preserving

2

current %E 1

P —~ 05

» Anticipate and %* ¥
19_

Estimate Pion
Cloud’s Contribution

0

® All parameters fixed in

Argonne

® Combine these elements ...

Form Factor Ratio:
GE/GM

0.5

covariant Fadeev result
Rosenbluth
precision Rosenbluth

polarization transfer

o
A
m  polarization transfer
23
1

other applications ... Not varied.

2 4 6 8
Q” [Gev?

» Agreement with Pol. Trans. data at Q? > 2 GeV?

Craig Roberts: Hadron Form Factors
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o Dressed-Quark Core

® Combine these elements ...

Form Factor Ratio:
GE/GM

2 1 | 1 | 1 | 1 | 1
» Ward-Takahashi I % -
|dentity preserving - " i
Q -
current % 1< eog2,° o 3 ? %
- B HLH HM% -
s Anticipate and  %* O S i
Estimate Pion S o | N D _
R B i -
Cloud’s Contribution | | &  precisonRosenbluth i
. m  polarization transfer
) . - ¢  polarization transfer -
® All parameters fixed in _ T
e 2 4 6 8 1
other applications ... Not varied. Q° [Gev?

» Agreement with Pol. Trans. data at Q? > 2 GeV?

» Correlations in Faddeev amplitude — quark orbital
angular momentum — essential to that agreement
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® Combine these elements ...

o Dressed-Quark Core

Form Factor Ratio:
GE/GM

2 1 | 1 | 1 | 1 | 1
» Ward-Takahashi I % -
|dentity preserving - " i
Q -
current % 1< eog2,° o 3 ? %
- B HLH HM% -
s Anticipate and  %* O S i
Estimate Pion S o | N D _
R B i -
Cloud’s Contribution | | &  precisonRosenbluth i
. m  polarization transfer
) . - ¢  polarization transfer -
® All parameters fixed in _ T
e 2 4 6 8 1
other applications ... Not varied. Q° [Gev?

» Agreement with Pol. Trans. data at Q? > 2 GeV?

» Correlations in Faddeev amplitude — quark orbital
angular momentum — essential to that agreement

» Predict Zero at Q? ~ 6.5GeV?
| = | | |
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Improved current

® Composite axial-vector diquark correlation

» Electromagnetic current can be complicated
» Limited constraints on large-Q? behaviour
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Improved current

® Composite axial-vector diquark correlation

» Electromagnetic current can be complicated
» Limited constraints on large-Q? behaviour

» Improved performance of code

» Implemented corrections so that large-Q* behaviour of
form factors could be reliably calculated

IG5, Oftice of o EXxposed two weaknesses in rudimentary Ansatz

(e of Muclear py, 5
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Improved current

® Composite axial-vector diquark correlation

» Improved performance of code

» Implemented corrections so that large-Q? behaviour of
form factors could be reliably calculated

» EXxposed two weaknesses in rudimentary Ansatz
s Diquark effectively pointlike to hard probe
¢ Didn’t account for diquark being off-shell in recoill
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® Composite axial-vector diquark correlation

® Minor but material improvements to current
» Introduce form factor: radius 0.8 fm

» Increase recoil mass by 10%
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® Composite axial-vector diquark correlation

» Introduce form factor: radius 0.8 fm

® Minor but material improvements to current
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Faddeev equation_a
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® DCSB exists in QCD.

»# It is manifest in dressed propagators and
vertices

o It predicts, amongst other things, that

s light current-quarks become heavy
constituent-quarks

& pseudoscalar mesons are unnaturally
light

o pseudoscalar mesons couple unnaturally
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® [Form Factors - progress anticipated in near- to medium-term
» Quantifying pseudoscalar meson “cloud” effects

» Locating and explaining the transition from nonp-QCD to
P-QCD in the pion and nucleon electromagnetic form
factors
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» Explaining the high ? behavior of the proton form factor
ratio in the space-like region

» Detailing broadly the role of two-photon exchange
contributions

» EXxplaining relationship between parton properties on the
light-front and rest frame structure of hadrons
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s Qualitative and Quantitative Importance of:
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e — Generation of fermion mass from nothing
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence

» NonPerturbative, Continuum approach to QCD

» Hadrons as Composites of Quarks and Gluons
s Qualitative and Quantitative Importance of:
&5, 9ffice of - Dynamical Chiral Symmetry Breaking
- — Generation of fermion mass from nothing
- Quark & Gluon Confinement
— Coloured objects not detected, not detectable?

(e of Muclear py, "
(o) Co

#® — Understanding InfraRed ( )
AIGOMME v ettt behaviour of as(Q?)

Craig Roberts: Hadron Form Factors



Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence
» NonPerturbative, Continuum approach to QCD

» Hadrons as Composites of Quarks and Gluons
s Qualitative and Quantitative Importance of:

176>, Ufice of - Dynamical Chiral Symmetry Breaking

D

— Generation of fermion mass from nothing
- Quark & Gluon Confinement
— Coloured objects not detected, not detectable?

® Method yields Schwinger Functions = Propagators
Argonne
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Dyson-Schwinger Equations

® Well suited to Relativistic Quantum Field Theory

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence

» NonPerturbative, Continuum approach to QCD

» Hadrons as Composites of Quarks and Gluons

s Qualitative and Quantitative Importance of:
&5, 9ffice of - Dynamical Chiral Symmetry Breaking
SR — Generation of fermion mass from nothing
" | . Quark & Gluon Confinement

— Coloured objects not detected, not detectable?
Cross-Sections built from Schwinger Functions
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Schwinger Functions

# Solutions are Schwinger Functions
(Euclidean Green Functions)

# Not all are Schwinger functions are experimentally
observable but ...

s all are same VEVs measured in numerical
simulations of lattice-regularised QCD

s opportunity for comparisons at
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Schwinger Functions

# Solutions are Schwinger Functions
(Euclidean Green Functions)

# Not all are Schwinger functions are experimentally
observable but ...

s all are same VEVs measured in numerical
simulations of lattice-regularised QCD

s opportunity for comparisons at

Z Ofﬂce of

4 Science pre-experimental level ... cross-fertilisation

o Proving fruitful.
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Persistent Challenge

Infinitely Many Coupled Equations
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Coupling between equations truncation

» Weak coupling expansion —- Perturbation Theory
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» Weak coupling expansion —- Perturbation Theory
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

H.J. Munczek Phys. Rev. D 52 (1995) 4736

Dynamical chiral symmetry breaking, Goldstone’s
theorem and the consistency of the Schwinger-Dyson
and Bethe-Salpeter Equations

A. Bender, C.D. Roberts and L. von Smekal, Phys.
Lett. B 380 (1996) 7

Goldstone Theorem and Diquark Confinement Beyond
Rainbow Ladder Approximation
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Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
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Has Enabled Proof of EXACT Results in QCD
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

Has Enabled Proof of EXACT Results in QCD

And Formulation of Practical Phenomenological Tool to

» lllustrate Exact Results
o) Sciance » Make Predictions with Readily Quantifiable Errors
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Linear extrapolation of lattice data to chiral limit is inaccurate
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Frontiers of Nuclear Science:
Theoretical Advances

Mass from nothing.

In QCD a quark’s effective mass

depends on its momentum. The ' 'Rapid ac('quisition'of s 'is

function describing this can be 04174 __ geffect of gluon cloud 7

calculated and is depicted here. ; Q" ’ i

Numerical simulations of lattice 0.3 ]

QCD (data, at two different bare oo

masses) have confirmed model 9 — m-7oNev }

predictions (solid curves) that the §0-2 —
_ vast bulk of the constituent mass -

ZMA%'Z:E,‘:;’J of a light quark comes from a o1
cloud of gluons that are dragged |
along by the quark as it H
_—

propagates. In this way, a quark 0
that appears to be absolutely
massless at high energies

(m = 0, red curve) acquires a

large constituent mass at low
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Mass from nothing.

In QCD a quark’s effective mass

depends on its momentum. The | 'Rapid ac(']uisition'of e 'is
function describing this can be 0417 __ geffect of gluon cloud 7
calculated and is depicted here. LN S -
- - - - ¢ 4
Numerical simulations of lattice 03 A\ _
. ' ' — m =0 (Chiral limit
QCD (data, at two different bare < LAY e mi)
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vast bulk of the constituent mass - -
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Dimensionless product: r, fx
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Dimensionless product: r, fx

® |mproved rainbow-ladder interaction
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Dimensionless product: r, fx

® |mproved rainbow-ladder interaction

® Repeating F.(Q?) calculation
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Dimensionless product: r, fx

® |mproved rainbow-ladder interaction
® Repeating F.(Q?) calculation

® Great strides towards placing nucleon studies on same
footing as mesons

‘g‘ﬁ Office of
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Dimensionless product:

Tr [

® |[mproved rainbow-ladder interaction
® Repeating F.(Q?) calculation
® Experimentally: r. fr = 0.315 £ 0.005
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Dimensionless product:

Tr [

® |[mproved rainbow-ladder interaction
® Repeating F.(Q?) calculation
® Experimentally: r. fr = 0.315 £ 0.005

0,40 T T T T T L ' T T T
= 035 | -
® DSE prediction _ ]
2K M
0,30 F [ ] -
E [)
PP=" Office of 025 - ]
), T
U.S. DEPARTMENT OF ENERGY 0’20 N -
0,15 | -
Tl
0,10 |} -
0,05 | -
0’00 4 | N ] 4 | N 1 N 1 N ] N
0,0 0,1 02 03 04 05 0,6 07
Araome mélGer
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Dimensionless product:

Tr [

® |[mproved rainbow-ladder interaction
® Repeating F.(Q?) calculation
® Experimentally: r. fr = 0.315 £ 0.005

0,40 T T T T T T v T v T T T
® DSE prediction o ]
. 030 1-;———:_;" -
#® | attice results - ) :
: ) . 0,25 | -
o Shes = James Zanotti [UK QCDYf
0,15 |- -
Tnf
0,10 |- -
0,05 -
0’00 L 1 i | L 1 L 1 L 1 i | L
0.0 01 0,2 0,3 0,4 0,5 0,6 0,7
Argonne m2[GeV?|

Craig Roberts: Hadron Form Factors



Dimensionless product:

Tr [

® |[mproved rainbow-ladder interaction
® Repeating F.(Q?) calculation
® Experimentally: r. fr = 0.315 £ 0.005

0,40 T T : T : T - T : T : T
® DSE prediction T ]
_ 0,30 E ﬁ .
® Lattice results - [ -
= ) . 0,25 | -
o.es = James Zanotti [UK QCDY
e s ]
® Fascinating result: o5 k- |
DSE and Lattice ool Tnf ]
— Experimental value [ ]
obtains independentof ., . ., . . ., . . . ]
’ 0.0 01 0,2 0,3 0,4 0,5 0,6 0,7
Argonne current-quark mass. m2[GeV?|
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Dimensionless product:

Tr [

® |[mproved rainbow-ladder interaction
® Repeating F.(Q?) calculation
® Experimentally: r. fr = 0.315 £ 0.005

0!40 ! I ' | ! I v I ' I ' |
® DSE prediction T ]
_ _ 0.30 = ﬁ -
® [Fascinating result: - ¢
" i i 025 | -
(CDY DSE and Lattice

.ce of Nuclear PR 5
4

ot

— Experimental value
0,15 |- -
obtains independent of | Vefn

0,10 |- -
current-quark mass.
0,05 | -
6 ® Potentially useful e | T S S S S
] ’ 0.0 01 0,2 0,3 0,4 0,5 0,6 0,7
Argonne but must first be understood. m2[GeV?|
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Two-photon Couplings of

Holl, Krassnigg, Matris, et al.,

“Electromagnetic properties of ground and
excited state pseudoscalar mesons,” »y( kz)
nu-th/0503043

v(k1)
7TO 8 . 71-0
rered® Tio (k1 ka) = Zieupokipha G (R, k2)
I . 2 2\ __ 71'2’
» Define: Tro (P, Q%) = G (k1, k2) g

This is a transition form factor.
# Physical Processes described by couplings:

. 2
Irnd~~y +— ng(_mﬂ-gv O)
3
Argonne S, _ 2 Mg, o
e Width: I‘ng—m = Oom 1673 97y

Pseudoscalar Mesons
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Two-photon Couplings:
Holl, Krassnigg, Matris, et al.,
“Electromagnetic properties of ground and GOIdStOne MOde

excited state pseudoscalar mesons,’ v (k2)
nu-th/0503043

v (k1)

71- «a 0
Zégggﬁi. T (kla k2) — Zauupaklpkmr G™o (kla k2)

Chiral limit, model-independent and algebraic result

1 1
. := T o —m =0,0)= ———
Irirs 7= Tng(mming = 0,0= 5 1 |
So long as truncation veraciously preserves chiral symmetry

and the pattern of its dynamical breakdown

ABONNC @  The most widely known consequence of the Abelian anomaly
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Two-photon Couplings:
Holl, Krassnigg, Matris, et al., .-
“Electromagnetic properties of ground andTranSIthn FOrm FaCtOr

excited state pseudoscalar mesons,” v(k2), k
nu-th/0503043

v(k1), k3 = Q?

0 (8% 0

Ly _ . T

Z" Off{cec.. T,_“;L (kla k2) — _Zep,vpaklpkmr G~ (kla k2)
b2l Sclence 7y

e of Muclear py, - ’
(0] 5

So long as truncation preserves chiral symmetry and the
pattern of its dynamical breakdown, and the one-loop
renormalisation group properties of QCD: model-independent
result — Vn:

Tro (P2,Q%) = G™ (K1, k2)

Q2>>£2QCD 472 fﬂ'n
k2=Q2=Fk3 3 Q2
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Two-photon Couplings:
Maris and Tandy, “ Electromagnetic

transition form-factors of light mesons,’ TranSitiOn Form FaCtOr
nucl-th/0201017

10.0 - - ' T ' |
m CELLO
A  CLEO
—— DSE calculation
10
N/-\
o
L
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| | . | |
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Two-photon Couplings:
Maris and Tandy, “ Electromagnetic

transition form-factors of light mesons,’ TranSitiOn FOrm FaCtOr
nucl-th/0201017

10.0p . . . | ; :
m  CELLO
A CLEO
—— DSE calculation
DSE result: Lok
$» normalisation 5
calculated T
755, omce of $® p-meson generated|
-~ 4 Science .
TR dynamically 0.1
W@’ ® pQCDresultaccurat€ oo 10 20 80 40 50
-y Q’ [GeV]
to ~ 20% or better for
Q? > 3GeV?
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Harry Lee
Pions and Form Factors

® Dynamical coupled-channels model ... Analyzed extensive JLab
data ... Completed a study of the A(1236)

$» Meson Exchange Model for 7N Scattering and yN — w /N Reaction, T. Sato
and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)

#® Dynamical Study of the A Excitation in N (e, e’m) Reactions, T. Sato and
T.-S.H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)
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Harry Lee
Pions and Form Factors

® Dynamical coupled-channels model ... Analyzed extensive JLab

data ... Completed a study of the A(1236)

$» Meson Exchange Model for 7N Scattering and yN — w /N Reaction, T. Sato
and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)

#® Dynamical Study of the A Excitation in N (e, e’m) Reactions, T. Sato and
T.-S.H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)

® Pion cloud effects are large in the low Q2 region.
3 . : :

Ratio of the M1 form factor in yN — A
), Thice o transition and proton dipole form factor G p. 5
e, Solid curve is G%,(Q2) /G p (Q?) including
pions; Dotted curve is G/ (Q?)/Gp(Q?)
without pions. 1

Z,

D

Bare ........

2 2
Argonne Q(GeVic)
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Harry Lee
Pions and Form Factors

® Dynamical coupled-channels model ... Analyzed extensive JLab

data ... Completed a study of the A(1236)

$» Meson Exchange Model for 7N Scattering and yN — w /N Reaction, T. Sato
and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)

#® Dynamical Study of the A Excitation in N (e, e’m) Reactions, T. Sato and
T.-S.H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)

® Pion cloud effects are large in the low Q2 region.

3 . . .

Ratio of the M1 form factor in yN — A
(6>, Yhice of transition and proton dipole form factor Gp.
e, Solid curve is G (Q2) /G p(Q?) including
pions; Dotted curve is G/ (Q?)/G p(Q?)
without pions.

Quark Core
® Responsible for only 2/3 of 0 0 1 2 3 4
2
AR result at small @ QX(GeVic)?

® Dominant for Q? >2 — 3GeV?
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Results: Nucleon
and A Masses

ftF You Seg I

ArNYTHIMN G
MYSTER oy |0

Ch ke I Mass-scale parameters (in GeV)

JusT Euvtoy
IT WHiLg

{ vou can (@ for the scalar and axial-vector
' diquark correlations, fixed by
fitting nucleon and A masses

Set A — fit to the actual masses was required; whereas for
Set B — fitted mass was offset to allow for “mr-cloud” contributions

(CD A
' lear p, " Set MN MA m0+ m1+ w0+ wl_i_

A 0.94 1.23| 0.63 0.84| 0.44=1/(0.45fm) 0.59=1/(0.33fm)
B 1.18 1.33| 0.80 0.89| 0.56=1/(0.35fm) 0.63=1/(0.31fm)

N * i+ — oot My =115GeV; My = 1.46GeV
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Results: Nucleon
and A Masses

ftF You Seg I

ArNYTHIMN G
MYSTER oy |0

Ch ke I Mass-scale parameters (in GeV)

JusT Euvtoy
IT WHiLg

{ vou can (@ for the scalar and axial-vector
' diquark correlations, fixed by
fitting nucleon and A masses

Set A — fit to the actual masses was required; whereas for
Set B — fitted mass was offset to allow for “mr-cloud” contributions

(CD A
' lear p, " Set MN MA m0+ m1+ w0+ wl_i_

A 0.94 1.23| 0.63 0.84| 0.44=1/(0.45fm) 0.59=1/(0.33fm)
B 1.18 1.33| 0.80 0.89| 0.56=1/(0.35fm) 0.63=1/(0.31fm)

N * i+ — oot My =115GeV; My = 1.46GeV

Argonne : : : L :
Baxi.  ® Axial-vector diquark provides significant attraction
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Results: Nucleon
and A Masses

JoF You sec

ArNYTHIMN G

MYSTER oy [ MaSS-Scale parameterS (ln Gev)
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JusT EpToy

L0 @ for the scalar and axial-vector
' diquark correlations, fixed by
fitting nucleon and A masses

Set A — fit to the actual masses was required; whereas for
Set B — fitted mass was offset to allow for “mr-cloud” contributions

(D HA
' ear ppy, Set MN MA m0+ m1+ w0+ wl_i_

A 0.94 1.23| 0.63 0.84| 0.44=1/(0.45fm) 0.59=1/(0.33fm)
B 1.18 1.33| 0.80 0.89| 0.56=1/(0.35fm) 0.63=1/(0.31fm)

N * i+ — oot My =115GeV; My = 1.46GeV
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Deep-inelastic scattering
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Deep-inelastic scattering

# Looking for Quarks
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Deep-inelastic scattering
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Deep-inelastic scattering

SCATTERED
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froTen FLECTRUs
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" # Looking for Quarks
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= & |[Signature Experiment | for QCD:

Discovery of Quarks at SLAC
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Deep-inelastic scattering

SCATTERED
THRGET Lows EnEREY
. PaeTed FLECTRun

& S

INCoMm~E
HICR ENERGT e,
ELECTRON ~a JET OF
NEW HAPRNS

# Looking for Quarks

Office of
g 4 Scrence

= & |[Signature Experiment | for QCD:
Discovery of Quarks at SLAC

o Cross-section: Interpreted as Measurement of
Momentum-Fraction Prob. Distribution: ¢(z), g(z)
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Pion’s valence quark distn
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Pion’s valence quark distn

® 7 is Two-Body System: “Easiest” Bound State in QCD

» However, NO 7 Targets!
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Pion’s valence quark distn

7 1S Two-Body System: “Easiest” Bound State in QCD
» However, NO 7 Targets!

® Existing Measurement Inferred from Drell-Yan:
N — utpu~ X
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Pion’s valence quark distn

7 1S Two-Body System: “Easiest” Bound State in QCD

» However, NO 7 Targets!
® Existing Measurement Inferred from Drell-Yan:
N — utpu~ X
® Proposal (Holt & Reiner, ANL, nu-ex/0010004)

(62 SCience e-qov — D25 Gev Collider — Accurate “Measurement”
ot Nuclear b, 115
11
W\/\/\/\//‘< 1.05 :—
Y T 1 p@®00000055§9§$§$%f0
4 0.95
0 /! N 0.9
/ _||||| |||||| ||||||\|||||| |||||‘|||||\|
A > . > 083 0 01 02 03 04 05 06 07 08 09 1
FELINE x,
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Handbag diagrams
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Handbag diagrams
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Handbag diagrams

Bjorken Limit: ¢> — 0o, P-q— —0o0

q2

2P g fixed.

but x := —

Numerous algebraic simplifications
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Extant theory vs. experiment

K. Wjersooriya, P. Reiner and R Holt,
nu- ex/ 0509012 ... Phys. Rev. C (Rapid)
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