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QCD’s Challenges
Understand Emergent Phenomena
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e.g., Lagrangian (pQCD) quark mass is small but . . .
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Lagrangian yet they are the dominant determining
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Current Algebra . . . 1968

The correct understanding of pion observables;
e.g. mass, decay constant and form factors,
requires an approach to contain a

well-defined and valid chiral limit;

and an accurate realisation of
dynamical chiral symmetry breaking.
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What is the
Intranucleon Interaction?

The question must be
rigorously defined, and the
answer mapped out using
experiment and theory.

98% of the volume
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Schwinger Functions

Solutions are Schwinger Functions
(Euclidean Green Functions)

Not all are Schwinger functions are experimentally
observable but . . .

all are same VEVs measured in numerical
simulations of lattice-regularised QCD
opportunity for comparisons at
pre-experimental level . . . cross-fertilisation

Proving fruitful.
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Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme
H.J. Munczek Phys. Rev. D 52 (1995) 4736
Dynamical chiral symmetry breaking, Goldstone’s
theorem and the consistency of the Schwinger-Dyson
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A. Bender, C. D. Roberts and L. von Smekal, Phys.
Lett. B 380 (1996) 7
Goldstone Theorem and Diquark Confinement Beyond
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vanishes with increasing

current-quark mass
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(
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H =
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H)2
mq . . . GMOR relation, a corollary

Heavy-quark + light-quark

⇒ fH ∝ 1
√

mH
and ρH

ζ ∝ √
mH
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. . . QCD Proof of Potential Model result
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“radial” excitation of π-meson, not the ground state, so

m2
πn 6=0

> m2
πn=0

= 0, in chiral limit

⇒ fH = 0

ALL pseudoscalar mesons except π(140) in chiral limit

Dynamical Chiral Symmetry Breaking

– Goldstone’s Theorem –

impacts upon every pseudoscalar meson
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a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1
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he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1
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= 0.078 (93)

Full ALPHA formulation is required to see suppression, because
PCAC relation is at the heart of the conditions imposed for
improvement (determining coefficients of irrelevant operators)Craig Roberts: Hadron Properties and Dyson-Schwinger Equations
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CLEO: τ → π(1300) + ντ
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< 8.4 MeV

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)

The suppression of fπ1
is a useful benchmark that can be used to

tune and validate lattice QCD techniques that try to determine the
properties of excited states mesons.Craig Roberts: Hadron Properties and Dyson-Schwinger Equations
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J = 0 . . . but while E and F are purely L = 0 in the rest

frame, the G and H terms are associated with L = 1. Thus a

pseudoscalar meson Bethe-Salpeter wave function always
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L is significant in

the neighbourhood

of the chiral limit,

and decreases with

increasing

current-quark mass.
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{Fa| a = 0, . . . , N2
f − 1} are the generators of U(Nf )

S = diag[Su, Sd, Ss, Sc, Sb, . . .]

Mab = trF

[

{Fa,M}F b
]

,

M = diag[mu,md,ms,mc,mb, . . .] = matrix of current-quark

bare masses
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5(k;P ) −Aa(k;P )

{Fa| a = 0, . . . , N2
f − 1} are the generators of U(Nf )

S = diag[Su, Sd, Ss, Sc, Sb, . . .]

Mab = trF

[

{Fa,M}F b
]

,

M = diag[mu,md,ms,mc,mb, . . .] = matrix of current-quark

bare masses

The final term in the second line expresses the non-Abelian

axial anomaly.
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Aa(k;P ) = S−1(k+) δa0 AU (k;P )S−1(k−)

AU (k;P ) =

∫
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〉
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Aa(k;P ) = S−1(k+) δa0 AU (k;P )S−1(k−)

AU (k;P ) =

∫

d4xd4y ei(k+·x−k−·y)Nf

〈

F0q(x)Q(0) q̄(y)
〉

Q(x) = i
αs

4π
trC [ǫµνρσFµνFρσ(x)] = ∂µKµ(x)

. . . The topological charge density operator.
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PµΓa
5µ(k;P ) = S−1(k+)iγ5F

a + iγ5F
aS−1(k−)

−2iMabΓb
5(k;P ) −Aa(k;P )

Aa(k;P ) = S−1(k+) δa0 AU (k;P )S−1(k−)

AU (k;P ) =

∫

d4xd4y ei(k+·x−k−·y)Nf

〈

F0q(x)Q(0) q̄(y)
〉

Q(x) = i
αs

4π
trC [ǫµνρσFµνFρσ(x)] = ∂µKµ(x)

. . . The topological charge density operator.

(Trace is over colour indices & Fµν = 1
2λ

aF a
µν .)
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−2iMabΓb
5(k;P ) −Aa(k;P )

Aa(k;P ) = S−1(k+) δa0 AU (k;P )S−1(k−)

AU (k;P ) =

∫

d4xd4y ei(k+·x−k−·y)Nf

〈

F0q(x)Q(0) q̄(y)
〉

Q(x) = i
αs

4π
trC [ǫµνρσFµνFρσ(x)] = ∂µKµ(x)

. . . The topological charge density operator.

Important that only Aa=0 is nonzero.
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PµΓa
5µ(k;P ) = S−1(k+)iγ5F

a + iγ5F
aS−1(k−)

−2iMabΓb
5(k;P ) −Aa(k;P )

Aa(k;P ) = S−1(k+) δa0 AU (k;P )S−1(k−)

AU (k;P ) =

∫

d4xd4y ei(k+·x−k−·y)Nf

〈

F0q(x)Q(0) q̄(y)
〉

Q(x) = i
αs

4π
trC [ǫµνρσFµνFρσ(x)] = ∂µKµ(x)

. . . The topological charge density operator.

NB. While Q(x) is gauge invariant, the associated

Chern-Simons current, Kµ, is not ⇒ in QCD no physical

boson can couple to Kµ and hence no physical states can

contribute to resolution of UA(1) problem.
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Only A0 6≡ 0 is interesting . . . otherwise all pseudoscalar

mesons are Goldstone Modes!
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Anomaly term has structure
A0(k;P ) = F0γ5 [iEA(k;P ) + γ · PFA(k;P )

+γ · kk · PGA(k;P ) + σµνkµPνHA(k;P )]
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AVWTI gives generalised Goldberger-Treiman relations

2f0
η′EBS(k; 0) = 2B0(k

2) − EA(k; 0),

F 0
R(k; 0) + 2f0

η′FBS(k; 0) = A0(k
2) − FA(k; 0),

G0
R(k; 0) + 2f0

η′GBS(k; 0) = 2A′
0(k

2) − GA(k; 0),

H0
R(k; 0) + 2f0

η′HBS(k; 0) = −HA(k; 0),

A0, B0 characterise gap equation’s chiral limit solution.
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2f0
η′EBS(k; 0) = 2B0(k

2) − EA(k; 0),

F 0
R(k; 0) + 2f0

η′FBS(k; 0) = A0(k
2) − FA(k; 0),

G0
R(k; 0) + 2f0

η′GBS(k; 0) = 2A′
0(k

2) − GA(k; 0),

H0
R(k; 0) + 2f0

η′HBS(k; 0) = −HA(k; 0),

A0, B0 characterise gap equation’s chiral limit solution.

Follows that EA(k; 0) = 2B0(k
2) is necessary and

sufficient condition for absence of massless η′ bound-state.
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2)

Discussing the chiral limit

B0(k
2) 6= 0 if, and only if, chiral symmetry is dynamically

broken.

Hence, absence of massless η′ bound-state is only

assured through existence of intimate connection

between DCSB and an expectation value of the

topological charge density.
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EA(k; 0) = 2B0(k
2)

Discussing the chiral limit

B0(k
2) 6= 0 if, and only if, chiral symmetry is dynamically

broken.

Hence, absence of massless η′ bound-state is only

assured through existence of intimate connection

between DCSB and an expectation value of the

topological charge density.

Further highlighted . . . proved
〈q̄q〉0ζ = − lim

Λ→∞
Z4(ζ

2,Λ2) trCD

∫ Λ

q
S0(q, ζ)

= Nf

∫

d4x 〈q̄(x)iγ5q(x)Q(0)〉0 .
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AVWTI ⇒ QCD mass formulae for neutral pseudoscalar mesons

Implications of mass formulae illustrated using elementary
dynamical model, which includes Ansatz for that part of the
Bethe-Salpeter kernel related to the non-Abelian anomaly

Employed in an analysis of pseudoscalar- and vector-meson
bound-states
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Bhagwat, Chang, Liu, Roberts, Tandy
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AVWTI ⇒ QCD mass formulae for neutral pseudoscalar mesons

Implications of mass formulae illustrated using elementary
dynamical model, which includes Ansatz for that part of the
Bethe-Salpeter kernel related to the non-Abelian anomaly

Despite its simplicity, model is elucidative and phenomenologically
efficacious; e.g., it predicts

η–η′ mixing angles of ∼ −15◦ (Expt.: −13.3◦ ± 1.0◦)

π0–η angles of ∼ 1.2◦ (Expt. p d→ 3Heπ0: 0.6◦ ± 0.3◦)

Strong neutron-proton mass difference . . .

∼< 75 % current-quark mass-difference
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New Challenges

Another Direction . . . Also want/need information about

three-quark systems

With this problem . . . current expertise at approximately

same point as studies of mesons in 1995.

Namely . . . Model-building and Phenomenology,

constrained by the DSE results outlined already.
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• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H −M calc

H ]2

[M exp
H ]2

)1/2

= 2%

Craig Roberts: Hadron Properties and Dyson-Schwinger Equations

29 – “Quarks in Hadrons and Nuclei,” Erice, Sicily: 16-24/09/07. . . 38
– p. 30/51

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+key+6076386
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+key+6099696


First Contents Back Conclusion

Nucleon EM Form Factors: A Précis
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• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H −M calc

H ]2

[M exp
H ]2

)1/2

= 2%

(Oettel, Hellstern, Alkofer, Reinhardt: nucl-th/9805054)
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⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H −M calc

H ]2

[M exp
H ]2

)1/2

= 2%

• But is that good?
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⇒ Covariant dressed-quark Faddeev Equation
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Easily obtained:
(

1

NH

∑

H

[M exp
H −M calc

H ]2
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)1/2

= 2%

• But is that good?

• Cloudy Bag: δM
π−loop
+ = −300 to −400 MeV!
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Nucleon EM Form Factors: A Précis
Höll, et al. : nu-th/0412046 & nu-th/0501033

• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H −M calc

H ]2

[M exp
H ]2

)1/2

= 2%

• But is that good?

• Cloudy Bag: δM
π−loop
+ = −300 to −400 MeV!

• Critical to anticipate pion cloud effects

Roberts, Tandy, Thomas, et al., nu-th/02010084
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P

p
q

p
d Γb

Γ−a

p
d

p
q

bΨ
P

q
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Faddeev equation

=
aΨ

P

p
q

p
d Γb

Γ−a

p
d

p
q

bΨ
P

q

Linear, Homogeneous Matrix equation

Yields wave function (Poincaré Covariant Faddeev

Amplitude) that describes quark-diquark relative motion

within the nucleon

Scalar and Axial-Vector Diquarks . . . In Nucleon’s Rest

Frame Amplitude has . . . s−, p− & d−wave correlations
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Diquark correlations

QUARK-QUARK

Same interaction that

describes mesons also

generates three coloured

quark-quark correlations:

blue–red, blue–green,

green–red

Confined . . . Does not

escape from within baryon.

Scalar is isosinglet,

Axial-vector is isotriplet

DSE and lattice-QCD

m[ud]
0+

= 0.74 − 0.82

m(uu)
1+

= m(ud)
1+

= m(dd)
1+

= 0.95 − 1.02
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Pion cloud effects are large in the low Q2 region.
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Quark Core

Responsible for only 2/3 of
result at small Q2

Dominant for Q2 >2 – 3 GeV2
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Observables can be used to explore model realisations

DSEs . . . contemporary tool that describes and explains

these phenomena, and connects them with prediction of
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ρ, m = 0 0.920 0.648 0.782 0.754

ρ, m = 0.011 0.936 0.667 0.798 0.770

• π massless in chiral limit . . . NO Fine Tuning

• π-ρ mass splitting driven by DχSB mechanism
Not constituent-quark-model-like hyperfine splitting

• Extending kernel: NO effect on mπ

For mρ – zeroth order, accurate to 20%
– one loop, accurate to 13%
– two loop, accurate to 4%
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Angular Momentum
Rest Frame

M. Oettel, et al.
nucl-th/9805054
Crude estimate based on

magnitudes ⇒ probability for a

u-quark to carry the proton’s

spin is Pu↑ ∼ 80 %, with

Pu↓ ∼ 5 %, Pd↑ ∼ 5 %,

Pd↓ ∼ 10 %.

Hence, by this reckoning ∼ 30%

of proton’s rest-frame spin is

located in dressed-quark

angular momentum.
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Deep-inelastic scattering

Looking for Quarks

Signature Experiment for QCD:

Discovery of Quarks at SLAC

Cross-section: Interpreted as Measurement of
Momentum-Fraction Prob. Distribution: q(x), g(x)
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Pion’s valence quark distn

π is Two-Body System: “Easiest” Bound State in QCD

However, NO π Targets!

Existing Measurement Inferred from Drell-Yan:

πN → µ+µ−X

Proposal (Holt & Reimer, ANL, nu-ex/0010004)

e−5GeV – p25 GeV Collider → Accurate “Measurement”

p n

πγ
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Wµν(q;P ) =
1

2π
Im
[

T+
µν(q;P ) + T−

µν(q;P )
]

T+
µν(q, P ) = tr

∫

d4k

(2π)4
τ−Γ̄π(k− 1

2

;−P )S(k−0) ieQΓν(k−0, k)

×S(k) ieQΓµ(k, k−0)S(k−0)τ+Γπ(k− 1

2

;P )S(k−−)
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Handbag diagrams

Bjorken Limit: q2 → ∞ , P · q → −∞

but x := −
q2

2P · q
fixed.

Numerous algebraic simplifications
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Extant theory vs. experiment

K. Wijersooriya, P. Reimer and R. Holt,

nu-ex/0509012 ... Phys. Rev. C (Rapid)
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E615 πN Drell−Yan 4GeV
NLO Analysis of E615 ... β=1.87
DSE ... β= 2.61
NJL ... β= 1.27
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Distribution Functions
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Quark
Distribution Functions

DIS
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Three twist-2 parton distributions (k⊥ = 0):

Spin-Independent: q(x)

Helicity: ∆q(x)

Transversity: ∆T q(x)

All distributions have probability interpretation.

By definition, contain essentially non-perturbative

information about a given process.
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Definition and
Sum Rules

Light-cone Fourier transforms :

∆T q(x) = p+

∫

dξ−

2π
ei x p+ξ−〈p, s|ψq(0)γ

+γ1γ5ψq(ξ
−)|p, s〉c

q(x) = 〈γ+〉, ∆q(x) = 〈γ+γ5〉

Related to the nucleon axial & tensor charges via

gA =

∫

dx[∆u(x) − ∆d(x)], gT =

∫

dx[∆Tu(x) − ∆Td(x)],

Must satisfy: positivity constraints and Soffer bound

∆q(x),∆T q(x) 6 q(x), q(x) + ∆q(x) > 2 |∆T q(x)|

Craig Roberts: Hadron Properties and Dyson-Schwinger Equations

29 – “Quarks in Hadrons and Nuclei,” Erice, Sicily: 16-24/09/07. . . 38
– p. 49/51



First Contents Back Conclusion

Ian Cloët
JLab, now ANL
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Ian Cloët
JLab, now ANL

Once more on the one that got away.
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Model predictionsCloët, Bentz, Thomas

arXiv:0708.3246 [hep-ph]
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Model predictionsCloët, Bentz, Thomas

arXiv:0708.3246 [hep-ph]
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Satisfy: Soffer bound, baryon & momentum SRs.
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Satisfy: Soffer bound, baryon & momentum SRs.

Moments at Q2 = 0.16 GeV2:

∆u = 0.97, ∆d = −0.30 =⇒ gA = 1.267

∆Tu = 1.04, ∆T d = −0.24 =⇒ gT = 1.28

Model constraint
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Satisfy: Soffer bound, baryon & momentum SRs.

Moments at Q2 = 0.16 GeV2:

∆u = 0.97, ∆d = −0.30 =⇒ gA = 1.267

∆Tu = 1.04, ∆T d = −0.24 =⇒ gT = 1.28

∆q(x) ∼ ∆T q(x) in valence region for Q2 . 10 GeV2
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