i
al Lo fell
e el

|Inin'g, Styriay Austria, 11-18 March,; 2006 — p. 1/44

|

)

o
w
|

ol

e

8c|h|'ad

r.ntml

cd

g0ry/staffl

hy.anl.goW

http://www.p

ot

i

Aspects of
Hadron Phys

Craig D. Roberts

"



Quarks and Nuclear Physics

| 7 Office of
~ 4 Science

LE. DEFARTMENT OF ENERGY

office ot

ARGONNE

. MNATIONAL LABORATORY

- - - - Schladming, Styria, Austria, 11-18 March, 2006 — p. 2/44



Quarks and Nuclear Physics

Standard Model
of Particle Physics
Six Flavours

(3 (3)
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Quarks and Nuclear Physics

(%] (%) Or nuMerous
char top  good reasons,
much research
also focuses on
accessible

heavy-quarks
(3 (3)

strange bottom

r\)

Real World
Normal Matter ...
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Nevertheless, I Quarks and Nuclear Physics

(%] (%) Or nuMerous
char, top  good reasons,
much research

r\, also focuses on

Real World accessible

Normal Matter ... heavy-quarks
Only Two Light (-3) (3)
avours Active strange bottom

primarily on the
light-quarks.
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Scales in Modern Physics
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Nucleon = Proton and Neutron

® Fermions — two static properties:
proton electric charge = +1; and magnetic moment,
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Nucleon = Proton and Neutron

® Fermions — two static properties:
proton electric charge = +1; and magnetic moment,

® Magnetic Moment discovered by Otto Stern and

collaborators in 1933; Awarded Nobel Prize in 1943

h
» Dirac (1928) — pointlike fermion: p, = ;ﬂ
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Nucleon = Proton and Neutron

Fermions — two static properties:
proton electric charge = +1; and magnetic moment,

® Magnetic Moment discovered by Otto Stern and

collaborators in 1933; Awarded Nobel Prize in 1943

h
» Dirac (1928) — pointlike fermion: p, = :ﬂ
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Nucleon = Proton and Neutron

Fermions — two static properties:
proton electric charge = +1; and magnetic moment,

Magnetic Moment discovered by Otto Stern and

collaborators in 1933; Awarded Nobel Prize in 1943

eh

» Dirac (1928) — pointlike fermion: p, = Y,

® Stern (1933) — p, = (1 + 1.79)-"
He = T 2M
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# Big Hint that Proton is not a point particle
» Proton has constituents

o These are Quarks and Gluons
— the elementary quanta of Quantum Chromo-dynamics
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Nucleon Form Factors

® Electron’s relativistic electromagnetic current:

ju(P,P) = ideti(P)A,(Q, P)uc(P), Q=P —
ieﬂe(Pl> VM(_l) Ue(P)
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Electron’s relativistic electromagnetic current:

Nucleon Form Factors

iete(P YA, (Q,P)u.(P), Q=P — P
ietie(P") v, (—1) ue(P)

® Nucleon’s relativistic electromagnetic current:

-}

Hard scattering

(1)
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Nucleon Form Factors

® Electron’s relativistic electromagnetic current:

ju(P',P) = ietc(P')Au(Q. P)ue(P), Q=P -
ietie(P) v (—1) ue(P)

® Nucleon’s relativistic electromagnetic current:
J(P',P) =iet,(P)A,(Q, P)uy(P), Q=P —

st = den(P) (R(@)+ 51 0w QB(@) n(P)

QQ
AM?

Gp(Q) = F(QY) -5 2(Q%), Gu(Q%) = A(Q)+F(Q?) .
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Nucleon Form Factors

® Electron’s relativistic electromagnetic current:

ju(P',P) = ietc(P')Au(Q. P)ue(P), Q=P -
ietie(P) v (—1) ue(P)

® Nucleon’s relativistic electromagnetic current:
J(P',P) =iet,(P)A,(Q, P)uy(P), Q=P —

st = ien(P) (WR(@) + g ow @ FaA@)) 1y(P)
2
Go(@) = F@)- 13 B(@), Gu(Q) = F(Q)+F(Q).

Point-particle: F» =0 = Gg = Gy
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NSAC Long Range Plan

A central goal of nuclear physics is to understand the structure
and properties of protons and neutrons, and ultimately atomic
nuclel, in terms of the quarks and gluons of QCD
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NSAC Long Range Plan

A central goal of nuclear physics is to understand the structure
and properties of protons and neutrons, and ultimately atomic
nuclel, in terms of the quarks and gluons of QCD

So, what's the problem?
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NSAC Long Range Plan

A central goal of nuclear physics is to understand the structure
and properties of protons and neutrons, and ultimately atomic
nuclel, in terms of the quarks and gluons of QCD

So, what's the problem?

» Confinement

Office of
Science
MENT OF ENE Y

e

0.00000000000016 cyp —— |

Schladming, Styria, Austria, 11-18 March, 2006 — p. 6/44



NSAC Long Range Plan

A central goal of nuclear physics is to understand the structure
and properties of protons and neutrons, and ultimately atomic
nuclel, in terms of the quarks and gluons of QCD

So, what's the problem?

» Confinement

® Weightlessness
— 2004 Nobel Prize in Physigs:
Mass of u— & d—quarks,
each just 5MeV,
Proton Mass is 940 MeV
= No Explanation AppareRif====== 5000000015 e

---- for 98.4 % of Mass SR i Shyrial Al ie: 1115 March: 2008 = p. Erad
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Meson Spectrum
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Modern Miracles in Hadron Physics

® proton = three constituent quarks
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Modern Miracles in Hadron Physics

® proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV
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Modern Miracles in Hadron Physics

proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV

® pion =
constituent quark 4+ constituent antiquark

proton
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Modern Miracles in Hadron Physics

proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV

® pion =
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® guess Mpion = 2 X ~ 700 MeV
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Modern Miracles in Hadron Physics

proton = three constituent quarks

9o Mproton ~ 1GeV

1 GeV
$ guess Mconstituent—quark ~ T ~ 350 MeV

® pion =
constituent quark 4+ constituent antiquark

proton

® guess Mpion = 2 X ~ 700 MeV

Office of
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® WRONG ..o, M pion = 140 MeV

® Another meson
........... M, ="770MeV ........... No Surprises Here
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JLab

Thomas Jefferson National Accelerator Facility
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JLab

Thomas Jefferson National Accelerator Facility

® World’'s Premier Hadron Physics Facility
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JLab

Thomas Jefferson National Accelerator Facility

® World’'s Premier Hadron Physics Facility

® Design goal (4 GeV) experiments began in 1995
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JLab

Thomas Jefferson National Accelerator Facility

® World’'s Premier Hadron Physics Facility

® Design goal (4 GeV) experiments began in 1995

® Electrons accelerated by
repeated journeys along linacs
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JLab

Thomas Jefferson National Accelerator Facility

® World’'s Premier Hadron Physics Facility

® Design goal (4 GeV) experiments began in 1995

® Electrons accelerated by
repeated journeys along linacs

® Once desired energy is
reached, Beam is directed intc
Experimental Halls A, B and C®
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JLab

Thomas Jefferson National Accelerator Facility

® World’'s Premier Hadron Physics Facility

® Design goal (4 GeV) experiments began in 1995

® Electrons accelerated by
repeated journeys along linacs

® Once desired energy is
reached, Beam is directed into
Experimental Halls A, B and C %%
® Current Peak
Electron Beam Energy
Nearly 6 GeV

Office of
Science
MENT OF ENE Y
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JLab Hall-A
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JLab Hall-A

® Measured Ratio of
Proton’s Electric and Magnetic Form Factors
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JLab Hall-A
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JLab Hall-A
Walker et al., Phys.

Rev. D49, 5671 1oL T
(1994). (SLAC) - ; % }
1= o
Jones etal., JLab Hall [ ¥g §§ 5 ¢ ?
. o = 0.8} @
A Collaboration, Phyg I B
Rev. Lett. 84, 1398 %" 0.6F I—ﬁﬁ%
(2000) < a2 SAc —4 ; A
$» Gayou, etal., Phys. | jtab% , % e
S omeeor  REV.C64, 038202 0.2 -
nrﬁ'g:’?e 2001 1 ] 1 ] 1 ] 1 ] 1 ] 1
(2001) 71T 2 3 4 s
Gayou, etal., JLab Hall Q° [Gevz]

A Collaboration, Phys.
Rev. Lett. 88 092301
(2002)
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JLab Hall-A
® If JLab Correct, then

Completely 1.2

Unexpected Result: [z 5 % }
% 532
In the Proton i Eéf g oo %

.. ==08F 4
— On Relativistic 2 Y o
] o W B B |
Domain O 06 I%i
_ Distribution of | [o SLAC T
04-1 o Jab1 —— .
Quark-Charge 02-_ o Jab2 +_
i Science  Not Equal - | | | | |
Distribution of T 2 o3 4 s
[GeV ]

Quark-Current!
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What's the Problem?

® Must calculate the proton’s wave function
— Can’t be done using perturbation theory
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® Must calculate the proton’s wave function
— Can’t be done using perturbation theory

# So what? Same is true of hydrogen atom
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— Can’t be done using perturbation theory

# So what? Same is true of hydrogen atom

® Differences
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What's the Problem?

® Must calculate the proton’s wave function
— Can’t be done using perturbation theory

# So what? Same is true of hydrogen atom

® Differences

o Here relativistic effects are crucial
— virtual particles
Quintessence of Relativistic Quantum Field Theory
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® Must calculate the proton’s wave function
— Can’t be done using perturbation theory

# So what? Same is true of hydrogen atom

® Differences

o Here relativistic effects are crucial
— virtual particles
Quintessence of Relativistic Quantum Field Theory
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24 Science s Interaction between quarks — the Interquark Potential —
Unknown throughout > 98% of the proton’s volume
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What's the Problem?

® Must calculate the proton’s wave function
— Can’t be done using perturbation theory

# So what? Same is true of hydrogen atom

® Differences

o Here relativistic effects are crucial
— virtual particles
Quintessence of Relativistic Quantum Field Theory

O Scionce » Interaction between quarks — the Interquark Potential —

LE. DEFARTMENT OF ENERGY
f

Unknown throughout > 98% of the proton’s volume

® Determination of proton’s wave function requires
ab initio nonperturbative solution
of fully-fledged relativistic quantum field theory

A NATHONAL LABORATORY
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What's the Problem?

Must calculate the proton’s wave function
— Can’t be done using perturbation theory

# So what? Same is true of hydrogen atom

® Determination of proton’s wave function requires
ab initio nonperturbative solution
of fully-fledged relativistic quantum field theory

® Modern Physics & Mathematics
2 %"Sné’ — Still quite some way from being able to do that
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Explanation?
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QCD

® Action, in terms of local Lagrangian density:

ol = [t { FL @ (@) + 50,450 90A3 @) + 3(0) [y Dy + Ml ale) |
1)

N

® Chromomagnetic Field Strength Tensor —
DAL () — By Af () + g P AL () AL (w)

: L A?
#® Covariant Derivative — D, = 0, z'g—Aa ()
( Moy 0 0 - \
0 my 0
® Current-quark Mass matrix: 0 0 m
i S
X0 Scionce

® Understanding JLab Observables means knowing all that this Action predicts.

® Perturbation Theory (asymptotic freedom) is not enough!
® Bound states are not perturbative

® Confinement is not perturbative
® DCSB is not perturbative

- - - - Schladming, Styria, Austria, 11-18 March, 2006 — p. 14/44
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Euclidean Metric

® Almost all nonperturbative studies in relativistic quantum field theory employ a
Euclidean Metric. (NB. Remember the Wick Rotation?)

® [tis possible to view the Euclidean formulation of a quantum field theory as

definitive; e.g.,

® Symanzik, K. (1963) in Local Quantum Theory (Academic, New York) edited
by R. Jost.

® Streater, R.F. and Wightman, A.S. (1980), PCT, Spin and Statistics, and All
That (Addison-Wesley, Reading, Mass, 3rd edition).

® Glimm, J. and Jaffee, A. (1981), Quantum Physics. A Functional Point of View
(Springer-Verlag, New York).

Z‘é} Office of ® Seiler, E. (1982), Gauge Theories as a Problem of Constructive Quantum
-~ SCclence L. . .
e oy Theory and Statistical Mechanics (Springer-Verlag, New York).

® That decision is crucial when a consideration of nonperturbative effects becomes
important. In addition, the discrete lattice formulation in Euclidean space has
allowed some progress to be made in attempting to answer existence questions for
interacting gauge field theories.

® A lattice formulation is impossible in Minkowski space — the integrand is not
AARGONNE non-negative and hence does not provide a probability measure.
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Euclidean Metric:
Transcription Formulae

4
® To make clear our conventions: for 4-vectors a, b: a - b := a, by 6, = Z a; b;
i=1
Hence, a spacelike vector, Q,,, has Q2 > 0.
® Dirac matrices:
#® Hermitian and defined by the algebra {v,.,v} = 26d..;
$ Wwe use 5 1= — y17Y27374, SO that tr [vsvu Vv Ve Vo] = —4€pvpo , €1234 = 1.
® The Dirac-like representation of these matrices is:
~ 0 —iT 0 0
Y= . y V4 = o | (2)
— 1T 0 0O -7
[
.Q_A Scigﬁcoe
0 — 1 0
p— 3 7_3 p—
1 0 0 -1
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Euclidean Metric:
Transcription Formulae

® |tis possible to derive every equation introduced above assuming certain analytic
properties of the integrands. However, the derivations can be sidestepped using
the following transcription rules:

Configuration Space Momentum Space

M E M E
1. / dizM —z’/ d*z¥ 1. / d* kM —>z'/ d*EF

2 ~E . oF 2. f — —inF  kE

3. A — —iyF . AF 3. A — —int . AF

4. A,BH — —AF.BF 4, kgt — —kF . qF
5

5. zHO, — = kyat — —kP . oP

Z > Oftice of ® These rules are valid in perturbation theory; i.e., the correct Minkowski space
e integral for a given diagram will be obtained by applying these rules to the
Euclidean integral: they take account of the change of variables and rotation of the
contour. However, for diagrams that represent DSEs which involve dressed n-point
functions, whose analytic structure is not known a priori, the Minkowski space
equation obtained using this prescription will have the right appearance but it’s
solutions may bear no relation to the analytic continuation of the solution of the
Euclidean equation. Any such differences will be nonperturbative in origin.

Schladming, Styria, Austria, 11-18 March, 2006 — p. 17/44
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What is QCD?

® Gauge Theory:
Interactions Mediated by massless vector bosons

Fernman Jiagram of Quaric Suark Sealtering
A\ Y/
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What is QCD?

® Gauge Theory:
Interactions Mediated by massless vector bosons

Fernman Jiagram of Quaric Suark Sealtering
A\ Y/
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What is QCD?

® Gauge Theory:
Interactions Mediated by massless vector bosons

Fernman Jiagram of Quaric Suark Sealtering G|l-t"|1 I‘JI'.EJ"I]'II-;ilJ.'IE
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® Similar interaction in QED
? m:“f rh’h«

® Special Feature of QCD - gluon self-interactions

Completely Change the Character of the Theory
- - - - Schladming, Styria, Austria, 11-18 March, 2006 — p. 18/44
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QED cf. QCD
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QED cf. QCD

Add three-gluon interaction
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QED cf. QCD
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QED cf. QCD

2004 Nobel Prize in Physics: Gross, Politzer and Wilczek
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Closer look at Spectrum

® Features of the Spectrum:
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Closer look at Spectrum

Features of the Spectrum:
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Closer look at Spectrum

Features of the Spectrum:
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Closer look at Spectrum

Features of the Spectrum:
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Dichotomy of the Pion
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Dichotomy of the Pion

~* ® Pion responsible for long-range part of nucleon-nucleon

potential

| 7 Office of
~ 4 Science

Schladming, Styria, Austria, 11-18 March, 2006 — p. 21/44



Dichotomy of the Pion

2 ~® Pion responsible for long-range part of nucleon-nucleon
potential

1
® Range «

particle

................. Pion better be light for long-range potential
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Dichotomy of the Pion

A Pion responsible for long-range part of nucleon-nucleon
potential

1
® Range «

particle

................. Pion better be light for long-range potential

® How does one make an almost massless particle
............................. from two heavy constituents?
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Dichotomy of the Pion
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Pion responsible for long-range part of nucleon-nucleon
potential

1
® Range «

particle

................. Pion better be light for long-range potential

® How does one make an almost massless particle
............................. from two heavy constituents?

7o), %mceor @  Not Allowed to do it by fine-tuning
That's not an answer, It's a contrivance
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Dichotomy of the Pion

Pion responsible for long-range part of nucleon-nucleon
potential
1

® Range «

particle

................. Pion better be light for long-range potential

® How does one make an almost massless particle
............................. from two heavy constituents?

7o), %mceor @  Not Allowed to do it by fine-tuning
That’s not an answer, it’'s a contrivance
=~ The correct understanding of hadron observables must explain

why the pion is light but the proton is heavy.
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Dichotomy of the Pion

2 ® Pion responsible for long-range part of nucleon-nucleon
potential
1

® Range «

particle

................. Pion better be light for long-range potential

® How does one make an almost massless particle
............................. from two heavy constituents?

60,0 @ Not Allowed to do it by fine-tuning
That's not an answer, it's a contrivance

=~ The correct understanding of hadron observables must explain
why the pion is light but the proton is heavy. SRS
, ® Requires explanation of Connection/b/ej;we’eﬁ/pQCD-é/uark
QDARSONNE  gnd Spectrum/anstitueDt;quark’ B
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QCD’s Emergent Phenomena
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QCD’s Emergent Phenomena

® Complex behaviour arises from apparently simple rules
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QCD’s Emergent Phenomena

® Complex behaviour arises from apparently simple rules

® Quark and Gluon Confinement

» No matter how hard one strikes the proton, one cannot
liberate an individual guark or gluon
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® Complex behaviour arises from apparently simple rules

® Quark and Gluon Confinement

» No matter how hard one strikes the proton, one cannot
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® Dynamical Chiral Symmetry Breaking
gddgfggﬁ:; » Very unnatural pattern of bound state masses
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QCD’s Emergent Phenomena

® Complex behaviour arises from apparently simple rules

® Quark and Gluon Confinement

» No matter how hard one strikes the proton, one cannot
liberate an individual guark or gluon

® Dynamical Chiral Symmetry Breaking

W55, Office of » Very unnatural pattern of bound state masses

~- 4 Science
® Neither of these phenomena is apparent in QCD’s
Lagrangian yet they are the dominant determining

characteristics of real-world QCD.
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FOR, MNOT

QCD’s Emergent Phenomena

® Complex behaviour arises from apparently simple rules

® Quark and Gluon Confinement

» No matter how hard one strikes the proton, one cannot
liberate an individual guark or gluon

® Dynamical Chiral Symmetry Breaking

.@)lgﬂ,ce of » Very unnatural pattern of bound state masses
c:ence

® Neither of these phenomena is apparent in QCD’s
Lagrangian yet they are the dominant determining
characteristics of real-world QCD.

® NSAC - Understanding these phenomena is one of the
greatest intellectual challenges in physics
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Chiral Symmetry

Gauge Theories with Fermions have

CHIRAL SYMMETRY
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Chiral Symmetry

® Helicty Aox J - p
» Projection of Spin onto Direction of Motion

s For massless particles, helicity i1s a Lorentz
Invariant Spin Observable.

s A==+ (|| oranti-| top,)
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Chiral Symmetry

#® Chirality Operator: ;
s Chiral Transformation g(z) — €% ¢(x)
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Chiral Symmetry

Chirality Operator: 5
s Chiral Transformation g(z) — €% ¢(x)

o Chiral Rotation ¢ = g
€ Q=+ 7 =+ =- 7 —{r=-
s Hence, a theory invariant under chiral
transformations can only contain interactions that
are insensitive to a particle’s helicity.
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Chiral Symmetry

#® Chirality Operator: ;
s Chiral Transformation g(z) — €% ¢(x)
o Chiral Rotation ¢ = %

s Composite Particles: J/'=1 « Jr=-
s Equivalent to “Parity Conjugation” Operation
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Chiral Symmetry

#® A Prediction of Chiral Symmetry

s Degeneracy between Parity Partners
N(17,938) = N(L7,1535), m(0~, 140) = ao(0, 980),
p(17,770) = a1 (17, 1260)

#® Doesn’t Look too good

Predictions not Valid — Violations too Large.

PP ==" Office of
,,J Sc:ence

® Appears to suggest quarks are Very Heavy

Schladming, Styria, Austria, 11-18 March, 2006 — p. 23/44



Chiral Symmetry

#® A Prediction of Chiral Symmetry

s Degeneracy between Parity Partners
N(17,938) = N(L7,1535), m(0~, 140) = ao(0, 980),
p(17,770) = a1 (17, 1260)

#® Doesn’t Look too good

Predictions not Valid — Violations too Large.

PP ==" Office of
,,J Sc:ence

® Appears to suggest quarks are Very Heavy

How can pion mass be so small
If quarks are so heavy?!
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Propagators

® Extraordinary Effects in QCD Tied to
Properties of Dressed-Quark and -Gluon Propagators

Quark Gluon

Se(x — y) = (g5 (2)dr(y)) Dy (xz — y) = (Au(z)Au(y))

® Describe in-Medium Propagation Characteristics
of Elementary Particles
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Propagators

® Example: Solid-State Physics
# ~ propagating in a Dense e~ Gas

» Acquires a Debye Mass
1 1

Q2 Q%+ mi
o ~ develops an Effective-mass

2 2.
mDockF.
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Propagators

® Example: Solid-State Physics
# ~ propagating in a Dense e~ Gas

» Acquires a Debye Mass

1 1
Q2 Q%+ mi
o ~ develops an Effective-mass

2 2.
mDockF.

1
» Leads to Screening of the Interaction: » o« ——
mp

Office of

P
©o. 5k @ Quark and Gluon Propagators:
Modified in a similar way -
Momentum Dependent Effective Masses

® The Effect of this is Observable in QCD

- - - - Schladming, Styria, Austria, 11-18 March, 2006 — p. 24/44




=xplicit Chiral Symmetry Breaking
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=xplicit Chiral Symmetry Breaking

® Chiral Symmetry
Can be discussed in terms of Quark Propagator
—iy-p+m
p? + m?

» Free Quark Propagator Sy(p) =
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=xplicit Chiral Symmetry Breaking

® Chiral Symmetry
Can be discussed in terms of Quark Propagator
—iy-p+m
p? + m?

» Free Quark Propagator Sy(p) =

® Chiral Transformation
So(p) — €757Sy(p)es?

—iy P m
% Yoeset = L et
MENT OF ENERGY 2 _|_ m2 2 _l_ m2

o Symmetry Violation xcm
» m=0: Sg(p) — S()(p)
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=xplicit Chiral Symmetry Breaking

® Chiral Symmetry
Can be discussed in terms of Quark Propagator

» Free Quark Propagator So(p) = _ZZ P+ m
p? + m?

®» Quark Condensate

@)= [ PP S / i .

. (2m)° . (2m)t p? 4 m?
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=xplicit Chiral Symmetry Breaking

® Chiral Symmetry

Can be discussed in terms of Quark Propagator

» Free Quark Propagator So(p) = _ZZ P+ m
p? + m?

®» Quark Condensate

A 4 A 4
@u= [ rpels@le [ X T

Office of H ( )4 [ (27‘-)4 p2
KO Science » A Measure of the Chiral Symmetry Violating Term

o Perturbative QCD: Vanishes it m =0
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Dynamical Symmetry Breaking
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Dynamical Symmetry Breaking

Viz,y) = (0? + 7% —1)?

Hamiltonian: 17"+ V, is Rotationally Invariant
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Dynamical Symmetry Breaking

V(.y) = (0% + 72— 1

Hamiltonian: 17"+ V, is Rotationally Invariant
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Dynamical Symmetry Breaking

Viz,y) = (6? + 7% —1)?

Hamiltonian: 17"+ V, is Rotationally Invariant

W5 oficeof  (Ground State?

~ 4 Science

® Ballat (o,7)
- 2 2 _ 0
for which o= 4+ = = 0: UNSTABLE

o Rotationally Invariant
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Dynamical Symmetry Breaking

Viz,y) = (0% + 7% — 1)?

Hamiltonian: T+ V, is Rotationally Invariant

Ground State

1
| 7 Office of 0.5

~d Science .
® Ballatany (o, 7)™
for which 62 + 72 =1

» All Positions have Same (Minimum) Energy

» But not invariant under rotations
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Dynamical Symmetry Breaking

Viz,y) = (0% + 7% — 1)?

Hamiltonian: T+ V, is Rotationally Invariant
Symmetry of Ground State £ Symmetry of Hamiltonian

Ground State

1
| 7 Office of 0.5

~d Science .
® Ballatany (o, 7)™
for which 62 + 72 =1

» All Positions have Same (Minimum) Energy

» But not invariant under rotations
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Dynamics and Symmetries
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Dynamics and Symmetries

» Confinement:
NO quarks or gluons have ever reached a detector alone
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Dynamics and Symmetries

» Confinement:
NO quarks or gluons have ever reached a detector alone

#® Chirality = Projection of spin onto direction of motion
Quarks are either left- or right-handed
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Dynamics and Symmetries

Confinement:
NO quarks or gluons have ever reached a detector alone

#® Chirality = Projection of spin onto direction of motion
Quarks are either left- or right-handed

» Chiral Symmetry:
To classical QCD interactions,
left- and right-handed quarks are IDENTICAL
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Dynamics and Symmetries

Confinement;
NO quarks or gluons have ever reached a detector alone

#® Chirality = Projection of spin onto direction of motion
Quarks are either left- or right-handed

» Chiral Symmetry:
To classical QCD interactions,
left- and right-handed quarks are IDENTICAL

PP ==" Office of
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Challenge — Connect

Dynamical Symmetry Breaking and Confinement
Start with Massless Quarks and

through Interactions Alone, Generate Massive Quarks
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Dynamics and Symmetries

Confinement;
NO quarks or gluons have ever reached a detector alone

#® Chirality = Projection of spin onto direction of motion
Quarks are either left- or right-handed

» Chiral Symmetry:
To classical QCD interactions,
left- and right-handed quarks are IDENTICAL

PP ==" Office of
~ 4 Science

., Challenge — Connect

) Dynamical Symmetry Breaking and Confinement
Start with Massless Quarks and

through Interactions Alone, Generate Massive Quarks
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- - - - Schladming, Styria, Austria, 11-18 March, 2006 — p. 27/44




Dynamics and Symmetries

Very Nonperturbative Problem
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Dyson-Schwinger Equations
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You'il get fert
EH‘- |l1 Pnd !

L5

® A Modern Method for Relativistic Quantum Field Theory

How

wanoEtfi, Dyson-Schwinger Equations
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You'il get fert
behind /

How

% Dyson-Schwinger Equations

® A Modern Method for Relativistic Quantum Field Theory

» NonPerturbative, Continuum approach to QCD
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You'il get fert
behind /

How

% Dyson-Schwinger Equations

® A Modern Method for Relativistic Quantum Field Theory

» NonPerturbative, Continuum approach to QCD

® Simplest level: Generating Tool for Perturbation Theory
.................... Materially Reduces Model Dependence
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% Dyson-Schwinger Equations

® A Modern Method for Relativistic Quantum Field Theory

» NonPerturbative, Continuum approach to QCD

# Hadrons as Composites of Quarks and Gluons
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How

% Dyson-Schwinger Equations

® A Modern Method for Relativistic Quantum Field Theory

» NonPerturbative, Continuum approach to QCD

# Hadrons as Composites of Quarks and Gluons
s Qualitative and Quantitative Importance of:
Dynamical Chiral Symmetry Breaking
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% Dyson-Schwinger Equations

® A Modern Method for Relativistic Quantum Field Theory

» NonPerturbative, Continuum approach to QCD

# Hadrons as Composites of Quarks and Gluons
s Qualitative and Quantitative Importance of:
Dynamical Chiral Symmetry Breaking
- Quark & Gluon Confinement
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% Dyson-Schwinger Equations

® A Modern Method for Relativistic Quantum Field Theory

» NonPerturbative, Continuum approach to QCD

# Hadrons as Composites of Quarks and Gluons
s Qualitative and Quantitative Importance of:
Dynamical Chiral Symmetry Breaking
- Quark & Gluon Confinement
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You'il get fert
EH‘- |l1 Pnd !

How

% Dyson-Schwinger Equations

® A Modern Method for Relativistic Quantum Field Theory

» NonPerturbative, Continuum approach to QCD

# Hadrons as Composites of Quarks and Gluons
s Qualitative and Quantitative Importance of:
- Dynamical Chiral Symmetry Breaking
- Quark & Gluon Confinement
s = Understanding InfraRed (long-range)
................................. behaviour of as(Q?)
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L5, DEFARTMENT OF K

® Method yields Schwinger Functions = Propagators

Cross-Sections built from Schwinger Functions
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Perturbative Dressed-quark
Propagator
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Perturbative Dressed-quark
Propagator

GapEquation
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Perturbative Dressed-quark

Propagator
5 D
) > ==
S r
# dressed-quark propagator Gap Equation
1

S(p) =

i - p A(p?) + B(p?)
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Perturbative Dressed-quark

Propagator
5 D
) > ==
S r
# dressed-quark propagator Gap Equation
1
S(p) =

iy - pA(p?) + B(p?)
#® \Veak Coupling Expansion
Reproduces Every Diagram in Perturbation Theory
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Perturbative Dressed-quark

Propagator
5 D
=@ =
S r
# dressed-quark propagator Gap Equation

°(p) = iy - p A(p?) + B(p?)

#® \Veak Coupling Expansion
Reproduces Every Diagram in Perturbation Theory

~ & Butin Perturbation Theory

2

B(pz):m<1—%ln [22] | ) m30 )
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Perturbative Dressed-quark
Propagator

D

;
O
Y S

S(p>:w-p+M(p2) ~O= 3

# dressed-quark propagator Gap Equation

1 No-DCSB
>p) = iy -pAlp?) + B(p?) /é;e!\

#® \Veak Coupling Expansion
Reproduces Every Diagram in Perturbation Theory
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~ & Butin Perturbation Theory

B(p?) :m<1—%ln [:;] | )
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Nambu—Jona-Lasinio Model

® Recall the Gap Equation:

S™Hp) =iy -pA(P?) +B(p?) =iv-p +m

T R R s : ety @
(2myd 9 TP T Ay + B2y v

)\CL
® NIL: T (k, p)bare = Vu -
2 1 2 )2
9" Dy (p—€) = bpv —5 0(A” — £7) (5)
re
r,ﬁ%ﬁiﬁ%ég # Model is not renormalisable
g = regularisation parameter (A) plays a dynamical role.
® NJIL Gap Equation
: 2 2
iy - p A(p”) + B(p?)
, 4 1 d*¢ —ivy - LA(L2) + B(¢?
— 27p+m+__2 40(‘/\2_62)7,“ 2 A2 2( ) 2(2)’7/«’4

(6)
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Solving NJL Gap Equation

® Multiply Eq. (6) by (—i - p); trace over Dirac indices:

8 1 d4s

2 2 2

p°A(p°) =p° + - —-
3mZ J (2m)*

A(0?)
(2 A2(02) + B2(£2)

O(A% —0%)p -4 (7)

® Angular integral vanishes, therefore
A(p2) =1. (8)

This owes to the the fact that NJL model is defined by four-fermion contact
interaction in configuration space, entails momentum-independence of interaction

P Office of in momentum space.
\Q.A] Science _ _ o
U.J.IBIFAI’TMIN‘!OF:NEW? ’ Traclng Over DIraC IndICeS; uSe qu @):

16 1 d*l B(£?)
B(p?) = I (A% — 02
(p ) m + 3 m2G / (271')4 ( )£2 _|_BQ(£2) ; 9)

# Integral is p?-independent.
® Therefore B(p?) = constant = M is the only solution.
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NJL Mass Gap

Evaluate integrals; Eq. (9) becomes

1 1
M = m+M-— —C(M? A?), (10)
372 m2G
C(M? A%) = A*—M?*In[1+A%/M?]. (11)

®  defines model’s mass-scale. Henceforth set| A = 1 |. Then all other
dimensioned quantities are given in units of this scale, in which case the gap

equation can be written 1 1
M:m—l—M——2C(M2,1) (12)
312 mg,
- » Chiral limit 0| nr =L 2 C(M?1)
Office of : — — -
Z.Ai Scigﬁcoe m ’ 372 m2G ’

® Solvedif M =0
... This is the | perturbative result |: start with no mass, end up with no mass.

® Suppose M #0

1 1
& Solvediff |1 = — — C(M?3,1)|.
32 m%;
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NJL Dynamical Mass

. 1 1
® Canonesatisfy| 1= — — C(M?1)[?
312 mg,

® C(M?*1)=1—M?In[1+1/M?]
® Monotonically decreasing function of M
® Maximum value at M = 0: C(0,1) = 1.

® Consequently 3 M # 0 solution iff | — — > 1

® Typical scale for hadron physics A ~ 1 GeV.

2

o A
$ M # 0 solution iff | m¢, < 55 =02 GeV)?
T

PP ==" Office of
~ 4 Science

LE. DEFARTMENT OF ENERGY

: : . 1

® nteraction Strength is proportional to —
m

G
® When interaction is strong enough,

one can start with no mass but end up with a massive quark.
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NJL Dynamical Mass

. 1 1
® Canonesatisfy| 1= — — C(M?1)[?
3m2 mZ

® C(M?*1)=1—M?In[1+1/M?]
® Monotonically decreasing function of M
® Maximum value at M = 0: C(0,1) = 1.

® Consequently 3 M # 0 solution iff | — — > 1

® Typical scale for hadron physics A ~ 1 GeV.

. A2
— & M # 0 solution iff | m¢, < — ~ (0.2GeV)?
ice o
.C.Ai Science 37

L5, DEFARTMENT OF EN

office ¢ of Nuclear py, -

: : . 1

® nteraction Strength is proportional to —
m

G
® When interaction is strong enough,

one can start with no mass but end up with a massive quark.

A\ ARGONNE Dynamical Chiral Symmetry Breaking
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Solve

>

’Z =" Office of

4 Science

LE. DEFARTMENT OF ENERGY

MNATIONAL LABORATORY

1 1
M=m0+M3— —2C(M2,1)

NJL Dynamical Mass

2
™ mg NJL Mass Gap
Weak coupling:
< mg large 04l _
M ~ mg &—o Complete Solution
_ —~ m.=0.186
- ~= G —
Strong coupling: — mg=001
< mea small
0.3F -
M > mo
Thisisthe _ | -
O
essential £
.S
characteristic 0-2f~ ]
of DCSB
0.1+ -
S ————— = - o
0 T | | T | I | I |
0.1 0.2 0.3 0.4 0.5 0.6
mG

CEs | fomers | Coam— |0
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NJL Model and Confinement?

® Confinement - no free-particle-like quarks

| 7 Office of
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NJL Model and Confinement?

® Confinement - no free-particle-like quarks

® Fully-dressed NJL propagator

S(p)™t = — ] - Tt Mg

PP ==" Office of
~ 4 Science
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NJL Model and Confinement?

® Confinement - no free-particle-like quarks

® Fully-dressed NJL propagator

1 -y p+ M
iv-plA(p?) = 1]+ [B(p?) = M]  p*+ M?

S(p)Nt = (17)

® This is merely a free-particle-like propagator with a shifted mass:

p® + M? =0 = Minkowski-space mass = M. (18)

Office of
Science
MENT OF ENE Y
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NJL Model and Confinement?

Confinement — no free-particle-like quarks

Fully-dressed NJL propagator

1 —1y-p+ M

IS NJL _ . _ (19)

P = A = U+ B = M] | PP
This is merely a free-particle-like propagator with a shifted mass:

p? + M? = 0 = Minkowski-space mass = M. (20)

Hence, while NJL Model certainly contains DCSB,
It does not exhibit confinement
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Munczek-Nemirovsky Model

Munczek, H.J. and Nemirovsky, A.M. (1983), “The Ground State
qgq Mass Spectrum In QCD,” Phys. Rev. D 28, 181.

a A?
o F,u(kap)bare = Tu ?’

2D (k) — (27)* G S (k) [(sw _ %] 1)

Here G defines the model's mass-scale.

& J-function in momentum space
cf. NJL, which has d-function in configuration space.

Office of
Science
MENT OF ENE Y

Gap equation

—iy - p A(p*) + B(p?)
p*A?%(p?) + B*(p?)

iv-p A(p*)+B(p°) = iv-p+m+Gry, Y. (22)
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MN Model’s Gap Equation

® The gap equation yields the following two coupled equations (set
the mass-scale G = 1):

A(p®)
Alp?) = 1+2 23
(") " p*A%(p?) + B*(p?) &

B(p?)
B(p?) = m+4 , 24
#) TR A (?) + B2(p?) &4

#® Consider the chiral limit equation for B(p?):

P Soce B(p2

MENT OF ENERGY B(pQ) — 4 (p ) (25)

PR+ B

# Obviously, B = 0 is a solution.
® Is there another?
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DCSB in MN Model

® The existence of a B # 0 solution; i.e., a solution that dynamically breaks chiral
symmetry, requires (in units of )

p*A*(p®) + B*(p®) = 4. (26)
® Substituting this identity into equation Eqg. (23), one finds

1
Ap*) —1=S AP = AP*) =2, (27)

which in turn entails

B(p?) =241 —p2. (28)

® Physical requirement: quark self energy is real on the spacelike domain =
complete chiral-limit solution —

’Z =" Office of

4 Science
LS. DEPARTMENT OF ENERGY (
At = {7 Pl
p?) = _ (29)
%(1+\/1+8/p2) ;P >1
( 2 2
I—p*; p°<1
B(p?) = | , (30)
0; p°>1.
\

AARGONNE ® NB. Dressed-quark self-energy is momentum dependent, as is the case in QCD.
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Confinement in MN Model

Solution is continuous and defined for all p?,
even p? < 0; namely, timelike momenta.

Examine the propagator’'s denominator:
p* A*(p*) + B*(p®) > 0, Vp°. (31)

This is positive definite ... there are no zeros

This is nothing like a free-particle propagator. It can be interpreted
P as describing a confined degree-of-freedom

Sc:ence

i, Note that, in addition there is no critical coupling: the nontrivial
solution exists so long as G > 0.

Conjecture: All confining theories exhibit DCSB
» NJL model demonstrates that converse is not true.
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Massive Solution in MN Model

® In the chirally asymmetric case the gap equation yields

Alp®) = mQEg?(z;) , (32)

4Im + B(p?)]”

BWw’) = mt pontm s BodE 42

(33)

# Second is a quartic equation for B(p?).

# Can be solved algebraically with four solutions, available in a

2 Yeronce closed form.

o » Only one has the correct p* — oo limit: B(p?) — m.

# NB. The equations and their solutions always have a smooth
m — 0 limit, a result owing to the persistence of the DCSB

solution.
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MN Dynamical Mass

Large s. — M(s) Munczek-Nemirovsky :
M(s) ~ mo — M(s) =0.015
$ Smalls — M(s) = |s| %, s<0 _
M > mg 1 -
This is the — _
essential S |
characteristic ]
- ; of DCSB )
o Yrenct . -

u.a,.unnrmnrasmnur 9 p2_dependent
mass function is
quintessential
feature of QCD.

’ NO SOIUUOn Of O 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
s + M(5)2 -0 -2 -1 0 1 2 3 4 5
confinement . S
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9°D(Q?) = 4w

» Go)<1:
M (s) = 0is only
solution for m = 0.

G(0) > 1

M(s) #0is
possible and
energetically
favoured: DCSB.

M(0)#0isa
new, dynamically
generated
mass-scale. If it is
large enough, it
can explain how a

theory that is
apparently massless (in the Lagrangian) possesses the spectrum of a massive theory.
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Real World Alternatives
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Overview

® Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

| 7 Office of
~ 4 Science

Schladming, Styria, Austria, 11-18 March, 2006 — p. 44/44



Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

Understanding requires Nonperturbative Solution of Fully-Fledged
Relativistic Quantum Field Theory
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Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

Understanding requires Nonperturbative Solution of Fully-Fledged
Relativistic Quantum Field Theory

» Mathematics and Physics still far from being able to
accomplish that

Office of
.g | Sc:ence
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Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

Understanding requires Nonperturbative Solution of Fully-Fledged
Relativistic Quantum Field Theory

Confinement and DCSB are expressed in QCD’s propagators and
vertices
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Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

® Understanding requires Nonperturbative Solution of Fully-Fledged
Relativistic Quantum Field Theory

® Confinement and DCSB are expressed in QCD’s propagators and
vertices

# Nonperturbative modifications should have observable
consequences
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Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

® Understanding requires Nonperturbative Solution of Fully-Fledged
Relativistic Quantum Field Theory

® Confinement and DCSB are expressed in QCD’s propagators and
vertices

® Dyson-Schwinger Equations are a useful analytical and numerical
tool for nonperturbative study of relativistic quantum field theory
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Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

® Understanding requires Nonperturbative Solution of Fully-Fledged
Relativistic Quantum Field Theory

® Confinement and DCSB are expressed in QCD’s propagators and
vertices

® Dyson-Schwinger Equations are a useful analytical and numerical
tool for nonperturbative study of relativistic quantum field theory

X6 Sciance
e @ Simple models (NJL) can exhibit DCSB
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Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

Understanding requires Nonperturbative Solution of Fully-Fledged
Relativistic Quantum Field Theory

Confinement and DCSB are expressed in QCD’s propagators and
vertices

Dyson-Schwinger Equations are a useful analytical and numerical
tool for nonperturbative study of relativistic quantum field theory

Simple models (NJL) can exhibit DCSB
» DCSB # Confinement
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Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

Understanding requires Nonperturbative Solution of Fully-Fledged
Relativistic Quantum Field Theory

Confinement and DCSB are expressed in QCD’s propagators and
vertices

Dyson-Schwinger Equations are a useful analytical and numerical
tool for nonperturbative study of relativistic quantum field theory

Simple models (NJL) can exhibit DCSB
» DCSB # Confinement

Simple models (MN) can exhibit Confinement
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Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

Understanding requires Nonperturbative Solution of Fully-Fledged
Relativistic Quantum Field Theory

Confinement and DCSB are expressed in QCD’s propagators and
vertices

Dyson-Schwinger Equations are a useful analytical and numerical
tool for nonperturbative study of relativistic quantum field theory

Simple models (NJL) can exhibit DCSB
» DCSB # Confinement

Simple models (MN) can exhibit Confinement
# Confinement = DCSB
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Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

Understanding requires Nonperturbative Solution of Fully-Fledged
Relativistic Quantum Field Theory

Confinement and DCSB are expressed in QCD'’s propagators and
vertices

Dyson-Schwinger Equations are a useful analytical and numerical
tool for nonperturbative study of relativistic quantum field theory

Simple models (NJL) can exhibit DCSB
» DCSB # Confinement

Simple models (MN) can exhibit Confinement
# Confinement = DCSB

What'’s the story in QCD?
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