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Relativistic Quantum Field Theory

A theoretical understanding of the phenomena of Hadron Physics requires the use
of the full machinery of relativistic quantum field theory. Relativistic quantum field
theory is the ONLY way to reconcile quantum mechanics with special relativity.

® Relativistic quantum field theory is based on the relativistic quantum mechanics of
Dirac.

® Relativistic quantum mechanics predicts the existence of antiparticles; i.e., the
equations of relativistic quantum mechanics admit negative energy solutions.
However, once one allows for particles with negative energy, then particle number
conservation is lost:

Esystem — Esystem _|_ (Epl + Eﬁl) _|_ e ad Inflnltum
Z‘ orfice of M However, this is a fundamental problem for relativistic quantum mechanics — Few
~ 4 Science

i particle systems can be studied in relativistic guantum mechanics but the study of
S (infinitely) many bodies is difficult. No general theory currently exists.

Not all Poincaré transformations commute with the Hamiltonian. Hence, a
Poincaré transformation from one frame to another can change the number of
particles. Therefore a solution of the N body problem in one frame is generally
insufficient to study the typical scattering process encountered at JLab.
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Relativistic Quantum Field Theory

Relativistic quantum field theory is an answer. The fundamental entities are fields,
which can simultaneously represent an uncountable infinity of particles.

3 . .
e.g., neutral scalar: ¢(x) :/ ( @k [a(k)e_“‘“’w + aT(k)ezk'w] (1)

277)32wk
Hence, the nonconservation of particle number is not a problem. This is crucial
because key observable phenomena in hadron physics are essentially connected
with the existence of virtual particles.

Relativistic quantum field theory has its own problems, however. For the
mathematician, the question of whether a given relativistic quantum field theory is
rigorously well defined is unsolved.

All relativistic quantum field theories admit analysis in perturbation theory.
Perturbative renormalisation is a well-defined procedure and has long been used
in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD).

A rigorous definition of a theory, however, means proving that the theory makes
sense nonperturbatively. This is equivalent to proving that all the theory’s
renormalisation constants are nonperturbatively well-behaved.

First | [ Contents
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Relativistic Quantum Field Theory

Hadron Physics involves QCD. While it makes excellent sense perturbatively:
Gross, Politzer, Wilczek — Nobel Prize 2004 — Asymptotic Freedom. It is not known
to be a rigorously well-defined theory. Hence it cannot truly be said to be THE
theory of the strong interaction (hadron physics).

Nevertheless, physics does not wait on mathematics. Physicists make
assumptions and explore their consequences. Practitioners assume that QCD is
(somehow) well-defined and follow where that leads us.

Experiment: explore and map the hadron physics landscape with well-understood
probes, such as the electron at JLab.

Theory: employ established mathematical tools, and refine and invent others in
order to use the Lagangian of QCD to predict what should be observable
real-world phenomena.

A key current aim of the worlds’ hadron physics programmes in experiment and
theory is to determine whether there are any obvious contradictions with what we
can actually prove in QCD. Hitherto, there are none.

Interplay between Experiment and Theory is the engine of discovery and progress.
The Discovery Potential of both is high. Much learnt in the last five years and |
expect that many surprises remain in Hadron Physics.
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Relativistic Quantum Field Theory

® |In modern approaches to relativistic quantum field theory the primary elements are
Green Functions or Schwinger Functions. These are the objects that naturally
arise in the Functional Integral formulation of a theory.

® Introduce this concept via the Green function of the Dirac operator from relativistic
guantum mechanics. To do this we’re going to need some background on notation
and conventions in relativistic quantum mechanics.

NB. Spin-% particles do not have a classical analogue. Pauli, in his paper on the
exclusion principle: Quantum Spin is a “classically nondescribable
two-valuedness.” Problem: Configuration space of quantum spin is quite different
to that accessible with a classical spinning top.
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Notation

® contravariant four-vector:
zh = (¥, 2t 2%, 23) = (¢, z,y, 2) . (2)
c = 1 = h, and the conversion between length and energy is just:

1fm = 1/(0.197327 GeV) = 5.06773 GeV ! . (3)

® covariant four-vector is obtained by changing the sign of the spatial components of
the contravariant vector:

rggg::gﬁco; Tp = (33‘0, L1, X2, 563) = (t? -, Y, _Z) - gMVxV ) (4)

LE. DEFARTMENT OF ENERGY

where the metric tensor is

(1 0 o 0
s — 0 -1 0 0 5
0 1 0
0 0 0 -1
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Contracted product of two four-vectors is
(a,b) := gura*b” = a,b";

l.e, a contracted product of a covariant and contravariant four-vector. The

Poincaré-invariant length of any vector is | 22 := (z,2) = t* — 2 |

Momentum vectors are similarly defined:

p,u — (E7p937py7pz) — (E,ﬁ)

and

| 7 gff{ce of
~d Science - 77
5. DEPARTMENT OF ENERGY (Z)7 k) pumm— pl'l’ kll’ prm— Ep Ek; - p ° k .

Likewise, a mixed coordinate-momentum contraction:

MNATIONAL LABORATORY

Notation

(6)

(7)

(8)

9)
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Notation

Momentum operator

transforms as a contravariant four-vector. Poincaré invariant analogue of the
Laplacian is

o 0

9% = —ptp, = — — .
PPy Oz, OxH

Contravariant four-vector associated with the electromagnetic field:

At(z) = (2(x), A(2)).

Electric and magnetic field strengths obtained from | F#Y = 9¥ A# — 9H A¥;
for example,

Similarly, B* = ¢¥9*Fik j k=1,2,3.
Analogous definitions hold in QCD for the chromomagnetic field strengths.

(10)

(11)

(12)

(13)
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Dirac Matrices

® The Dirac matrices are indispensable in a manifestly Poincaré covariant
description of particles with spin (intrinsic angular momentum).

® The Dirac matrices are defined by the Clifford Algebra (an identity matrix is implicit
on the r.h.s.)

{47} =AY AR =297, (14)

® One common 4 x 4 representation is [each entry represents a 2 x 2 matrix]

v = , V= ~ : (15)
0o —1 —co 0
PP =5" Office of 5 . .
.CA‘J Science where & are the usual Pauli matrices:
0 1 0 —1 1 0
ol = , 0% = , 0% = : (16)
1 0 ) 0 0o -1

and 1 := diag[1, 1]. Clearly: 'y(]; — ~p; and 47 = —7. NB. These properties are not
specific to this representation; e.g., v1v! = —144, for any representation of the

I Clifford algebra.
(| | [ ||
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Dirac Matrices

In discussing spin, two combinations of Dirac matrices frequently appear:

oh” = %[V“m”] =

1
5 (Y =77) v = iy 2y = s (17)

NB. | v oHV = % e"VP? 7,0, | With e#P7 the completely antisymmetric Levi-Civita

tensor: 9123 — 41, ¢, 00 = —€HVPT,
pvp

The Dirac matrix 5 plays a special role in the discussion of parity and chiral
symmetry, two key aspects of the Standard Model. In the representation we're
using,

P = . (18)
Furthermore +
{757} =0 =79 ==y & 75 =75 (19)

Parity, Chiral Symmetry, and the relation between them, each play a special role in
Hadron Physics.
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Dirac Matrices

® The “slash” notation is a frequently used shorthand:

A, = A=~"4A" — - A, (20)

Ypu = p=7"E—-7-p, (21)

v p =: iVZiﬁ:ivog—i—ﬁ’-ﬁziv“i. (22)
K o ot oxH

trys =0,

trap = 4(a, b),

trgh...an =0, fornodd,
tr V591 g2 g3ga= dicagys a®bPcd’

Tudpy" = 4(a, b),

® The following identities are important in evaluating the cross-sections.

trl1 =4, (23)
trg19g293g4= 4[(a1,a2)(as,as) (24)

—(a1,a3)(a2,a4) + (a1,a4)(az,as3)],

trysgp =0, (25)
Yudy" = =24, (26)
Yudpty" = —2¢pd (27)

All follow from the fact that the Dirac matrices satisfy the Clifford algebra.
Exercises: Prove these relations using Eq. (14) and exploiting tr AB = tr BA.
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Relativistic Quantum Mechanics

Unification of special relativity (Poincaré covariance) and quantum mechanics took
some time. Questions still remain as to a practical implementation of an
Hamiltonian formulation of the relativistic quantum mechanics of interacting
systems.

Poincaré group has ten generators: the six associated with the Lorentz
transformations (rotations and boosts) and the four associated with translations.

Quantum mechanics describes the time evolution of a system with interactions.
That evolution is generated by the Hamiltonian.

However, if the theory is formulated with an interacting Hamiltonian then boosts
will fail to commute with the Hamiltonian. Hence, the state vector calculated in one
momentum frame will not be kinematically related to the state in another frame.
That makes a new calculation necessary in every frame.

Hence the discussion of scattering, which takes a state of momentum p to another
state with momentum p’, is problematic. (See, e.g., B.D. Keister and W.N. Polyzou
(1991), “Relativistic Hamiltonian dynamics in nuclear and particle physics,” Adv.
Nucl. Phys. 20, 225.)
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Dirac Equation

® Dirac equation is starting point for Lagrangian formulation of quantum field theory

for fermions. For a noninteracting fermion

[i —m]y =0, (28)

where ¢ (x) is the fermion’s “spinor” — a four component column vector, with each
component spacetime dependent.

In an external electromagnetic field the fermion’s wave function obeys

[id —ef —m]y =0, (29)

obtained, as usual, via “minimal substitution:” p# — p# — eA* in Eq. (28).
The Dirac operator is a matrix-valued differential operator.

These equations have a manifestly Poincaré covariant appearance. A proof of
covariance is given in the early chapters of: Bjorken, J.D. and Drell, S.D. (1964),
Relativistic Quantum Mechanics (McGraw-Hill, New York).
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Free Particle Solutions

Insert plane waves in free particle Dirac equation:
(@) = 7B u(k), ¢ (@) = T ) u(k),
and thereby obtain ...

(K —m)u(k) =0, (F +m)ov(k) = 0. (30)

Here there are two qualitatively different types of solution, corresponding to
positive and negative energy: k & —k. (Appreciation of physical reality of negative
energy solutions led to prediction of antiparticles.)

Assume particle’s mass is nonzero; work in rest frame:

(7" = 1) u(m,0) =0, (v* + 1) v(m,0) =0. (31)

There are clearly (remember the form of ~9) two linearly-independent solutions of

each equation: [ 1 \ ( 0 \ ( 0\ [ o)
0 1 0 °

uM ) (m, 0) = , , (13 (m, 0) = , . (32
0 0

\o /) \o) \o ) \ 1)
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Positive Energy Free Particle

® Solution in arbitrary frame can be obtained via a Lorentz boost. However, simpler
to observe that

(k—m)(k—l—m):k2—m220, (33)

(The last equality is valid for real, on-shell particles.)
It follows that for arbitrary k# and positive energy (E > 0), the canonically
normalised spinor is

—

2m

2m(m + E) a o-k (. 0
v V2m(m + E) #%(m, 0)

u(®) (k) ) = <E+m)1/2 ¢*(m, 0)

PP ==" Office of
.Q_Al Science

DEFARTMENT OF E

(34)

with the two-component spinors, obviously to be identified with the fermion’s spin
in the rest frame (the only frame in which spin has its naive meaning)

1 0
oM = , (2 = . (35)
0 1
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Negative Energy Free Particle

® For negative energy: £ = —E > 0,

o - k' - —
\/ R X (m7 O)
_ . 2 E
IR — T BN ,
” E+m -
Jonio+ B (£m)" s

(36)

with (@) obvious analogues of ¢(%) in Eq. (35).

® NB.Fork~0 (rest frame) the lower component of the positive energy spinor is
ZQI Office of small, as is the upper component of the negative energy spinor = Poincarée

A il covariance, which requires the four component form, becomes important with

> increasing |k|; indispensable for |k| ~ m.

NB. Solving k # 0 equations this way works because it is clear that there are two, and
only two, linearly-independent solutions of the momentum space free-fermion Dirac
equations, Egs. (30), and, for the homogeneous equations, any two covariant solutions
Aﬁﬁggﬂﬂgwith the correct limit in the rest-frame must give the correct boosted form.

- - - - Schladming, Styria, Austria, 11-18 March, 2006 — p. 17/57
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Conjugate Spinor

® |n quantum field theory, as in quantum mechanics, one needs a conjugate state to
define an inner product.

For fermions in Minkowski space that conjugate is | 1(x) := ¢ (x)y° | and

(i § +m)=0. (37)

® This yields the following free particle spinors in momentum space (using
vO(y#)T40 = 4*#, relation that is particularly important in the discussion of intrinsic

parity)

_ m
dO%) = @@ m,0) ﬂfi s )
. —K+m
ORI G j(wtwy )
® Orthonormalisation
a(®) (k) uB) (k) = 5,5 () (k) v®) (k) =0 )

D) (k) v (k) = =805 T)(k) ulD (k) = 0
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Green-Functions/Propagators

The Dirac equation is a partial differential equation.
A general method for solving such equations is to use a Green function, which is
the inverse of the differential operator that appears in the equation.

The analogy with matrix equations is obvious and can be exploited heuristically.

® Dirac equation, Eq. (29): | [i@. — eA(z) — m](x) = 0, |yields the wave function
for a fermion in an external electromagnetic field.

® Consider the operator obtained as a solution of the following equation

(i, —ed(z)) —m]S(z',z) =16*(z’ —x). (41)

w—omice of ® Obviously if, at a given spacetime point x, v(x) is a solution of Eq. (29), then
.g_dﬂl Science

P(a') = / oS!, z) p(x) )

is a solution of ... [i@, —eA(z) —m]y(z’) =0; (43)
l.e., S(z’, x) has propagated the solution at x to the point z’.
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Green-Functions/Propagators

The Dirac equation is a partial differential equation.

A general method for solving such equations is to use a Green function, which is
the inverse of the differential operator that appears in the equation.

The analogy with matrix equations is obvious and can be exploited heuristically.

Dirac equation, Eq. (29): | [i@» — eA(x) — m](x) = 0, |yields the wave function
for a fermion in an external electromagnetic field.

Consider the operator obtained as a solution of the following equation

(i@, —eA(x)) —m]S(z',z) =1 54 (' — ). (44)
P>==" Office of Obviously if, at a given spacetime point x, 1(x) is a solution of Eq. (29), then
\g.aﬂl Sci?::tfe
ve)i= [ da S o) v(o) )
is a solution of ... [i@, —eA(z) —m]y(z’) =0; (46)

l.e., S(z’, x) has propagated the solution at x to the point z’.
Analogue of Huygens Principle in Wave Mechanics

L ARATORY
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Green-Functions/Propagators

This approach is practical because all physically reasonable external fields can
only be nonzero on a compact subdomain of spacetime.

® Therefore the solution of the complete equation is transformed into solving for the
Green function, which can then be used to propagate the free-particle solution,
already found, to arbitrary spacetime points.

® However, obtaining the exact form of S(z’, z) is impossible for all but the simplest
cases
(see, e.g., Dittrich, W. and Reuter, M. (1985), Effective Lagrangians in Quantum
Electrodynamics (Springer Verlag, Berlin); Dittrich, W. and Reuter, M. (1985),
Selected Topics in Gauge Theories (Springer Verlag, Berlin).)

r: orfice of M This is where and why perturbation theory so often rears its not altogether
~ 4 Science
5. DEFARTMENT OF ENERGY handsome head.
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Free Fermion Propagator

In the absence of an external field the Green Function equation, Eq. (41), becomes
(id, —m]S(z',z) =16(" —x). (47)

® Assume a solution of the form:

d* Y
So(z',z) = Sp(z' —x) = / P o—ilpa’—a) So(p), (48)
(2m)*
So that substituting yields
: p+m
: . —m)So(p)=1; ie., So(p) = ———=. (49)
Zﬁlggienc; Y ) So() o () p? — m?

LE. DEFARTMENT OF ENERGY

® To obtain the result in configuration space one must adopt a prescription for
handling the on-shell singularities in S(p) at p?> = m?2.

#® That convention is tied to the boundary conditions applied to Eq. (47).

® An obvious and physically sensible definition of the Green function is that it
should propagate positive-energy-fermions and -antifermions forward in time
but not backwards in time, and vice versa for negative energy states.

- - - - Schladming, Styria, Austria, 11-18 March, 2006 — p. 21/57
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Feynman’s Fermion Propagator
® The wave function for a positive energy free-fermion is
) (2) = u(p)e ") (50)

The wave function for a positive-energy antifermion is the charge-conjugate of the
negative-energy fermion solution (C' = iv2~° and (-)* denotes matrix transpose):

P (z) = €40 (,U(p) ez’(p,x)) _ Co(p)T e iPa) (51)

® Follows from properties of spinors and projection operators that our physically
sensible Syo(z’ — x) must contain only positive-frequency components for

O Yhea el z)) — xo > 0; i.e., in this case it must be proportional to A (p).

LE. DEFARTMENT OF ENERGY

® | Exercise: Verify this.

® Can ensure this via a small modification of the denominator of Eq. (49), with
1 — 0T at the end of all calculations:

So(p)zfﬂ_mﬁ ptm
p2 — m?2 p2 —m2 +in

(52)

A\ ARGONNE
(This prescription defines the Feynman propagator.)
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Green Function: Interacting Theory

® Eq. (41), Green function for a fermion in an external electromagnetic field:
(id, —eA(z’) —m]S(z',x) =16%a" — x), (53)

A closed form solution of this equation is impossible in all but the simplest field
configurations. Is there, nevertheless, a way to construct an approximate solution
that can systematically be improved?

® One Answer: Perturbation Theory — rewrite the equation:

(i@, —m]S(z',z) =16*a' —x) +ed(z') S(z', x), (54)
Z.A] Scianes which, as is easily seen by substitution (| Verify This |), is solved by
S@a) = So(e'—a)+e [ dysue’ 1) AW S

So(x' —z) +e / d*y So(a’ — ) A(y) So(y — =)

+e2 /d4y1 / d*y2 So(z" — y1)A(y1) So(y1 — y2)A(y2) So(y2 — z)
+... (55,
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Green Function: Interacting Theory

® This perturbative expansion of the full propagator in terms of the free propagator
provides an archetype for perturbation theory in quantum field theory.

® One obvious application is the scattering of an electron/positron by a
Coulomb field, which is an example explored in Sec. 2.5.3 of ltzykson, C. and
Zuber, J.-B. (1980), Quantum Field Theory (McGraw-Hill, New York).

® Equation (55) is a first example of a Dyson-Schwinger equation.

® This Green function has the following interpretation
1. It creates a positive energy fermion (antifermion) at spacetime point x;
2. Propagates the fermion to spacetime point z’; i.e., forward in time;
3. Annihilates this fermion at z’.

e, Mce o The process can equally well be viewed as
1. The creation of a negative energy antifermion (fermion) at spacetime point z’;

2. Propagation of the antifermion to the spacetime point z; i.e., backward in time;
3. Annihilation of this antifermion at .

Other propagators have similar interpretations.
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Anything Troubling You?

[ve been such Don't Lg fo
a ."'ﬂ'l"'l"‘,-":l|1‘-_ll nl”l-lr Ldr.-f en ?#uri‘r.'tf.
l'\fi .ﬂ'ﬁ .ﬂfrfﬁﬂlg th “‘ Eﬂﬁfd' Ekl!’ a
H Sensittize and birth defect.

fa.rm’..

Office of
Science
MENT OF ENE Y

Ltun'j'j

Schladming, Styria, Austria, 11-18 March, 2006 — p. 25/57




Functional Integrals

® [ocal gauge theories are the keystone of contemporary hadron and high-energy
physics. QCD is a local gauge theory. Such theories are difficult to quantise
because the gauge dependence is an extra non-dynamical degree of freedom that
must be dealt with. The modern approach is to quantise the theories using the
method of functional integrals. Good references:

® ltzykson, C. and Zuber, J.-B. (1980), Quantum Field Theory (McGraw-Hill,
New York);

® Pascual, P. and Tarrach, R. (1984), Lecture Notes in Physics, Vol. 194, QCD:
Renormalization for the Practitioner (Springer-Verlag, Berlin).

Functional Integration replaces canonical second-quantisation. NB. In general
: _ mathematicians do not regard local gauge theory functional integrals as
Z Office of )

~_d Science well-defined.

LE. DEFARTMENT OF ENERGY
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Dyson-Schwinger Equations

It has long been known that, from the field equations of quantum field theory, one
can derive a system of coupled integral equations interrelating all of a theory’s
Green functions:

® Dyson, FJ. (1949), “The S Matrix In Quantum Electrodynamics,” Phys. Rev. 75,
1736.

® Schwinger, J.S. (1951), “On The Green’s Functions Of Quantized Fields: 1
and 2,” Proc. Nat. Acad. Sci. 37 (1951) 452; ibid 455.

® This collection of a countable infinity of equations is called the complex of
Dyson-Schwinger equations (DSES).

® (tis an intrinsically nonperturbative complex, which is vitally important in proving
Z‘éﬂ Office of the renormalisability of quantum field theories, and at its simplest level the

s cience . . .
complex provides a generating tool for perturbation theory.

In the context of quantum electrodynamics (QED) we will illustrate a
nonperturbative derivation of two equations in this complex. The derivation of
others follows the same pattern.
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Photon Vacuum Polarisation

NB. This is one part of the Lamb Shift

® Action for QED with N flavours of electomagnetically active fermions:

Ny
0 n . 1 v 1 v
] :/ dtz ; ! <za— mi +eg§A) Wi — T Fu 1 — o O A, (z) 8 Ay (z)

(56)
® Manifestly Poincaré covariant action:

® o (x), ¢S (x) are elements of Grassmann algebra that describe the fermion

degrees of freedom;
o mg are the fermions’ bare masses and eg, their charges;
=S Offi f . . .
ZJ Science #® and A, (x) describes the gauge boson [photon] field, with

st Fu, =0,A, — 0, A,, and \g the bare gauge fixing parameter.
(NB. To describe an electron the physical charge e; < 0.)
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QED Generating Functional

The Generating Functional is defined via the QED action

WJ,, 6,8 = / 'DA,] DYDY

X exp { / iy {—iF’“’(x) Fo () — i 9" A, (z) 8" Ay (z)
Ny
+ 3 o (i9 - m{ +efA) !
=1

IR @) A (@) + € (@) (@) + &fmsf(a:)] } , )

Office of
.g | Sc:ence

L5, DEFARTMENT OF K

® simple interaction term: | ¢/ e/ Ay?

O“& e of Nuclear r Ph -

& J, is an external source for the electromagnetic field

® ¢f €7 are external sources for the fermion field that, of course, are elements
in the Grassmann algebra.

. MNATIONAL LABORATORY
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Functional Field Equations

Advantageous to work with the generating functional of connected Green
functions; i.e., Z[J,, &, €] defined via

W(Ju, & & = exp {iZ[Ju, & €]} . (58)

® Derivation of a DSE follows simply from observation that the integral of a total
derivative vanishes, given appropriate boundary conditions; e.g.,

5 z’(S[Au,wnZ]Jrf o [EQHEWMAMJM
e
6A,(z)

)

0 = [PA DU

_ 0S
S [eaear {5 )

L5, DE

XeXP{i(S[Amw,IZ]Jr/ d'z [Ef£f+§_f¢f+z4ﬂjﬂ])}
55 [§ 6 4 )
- {5Au($) L’(SJ’ iag’_&] +Jl"(w)}W[Jm§7f]> (59)

where the last line has meaning as a functional differential operator acting on the
A‘“RGO""E generating functional.
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Functional Field Equations

® Differentiate Eq. to obtain

05 1 _
6Au(z) [apapgu,, - (1 - A_o) 8“8”] A%(@) + Ef: ) ¥ (@ (@), 60

® Equation then becomes

1 0Z
)= [ - (1- ) 0,0 2L

Zf: ( 55fo) “65@) 5§f5(sc) [”“5551"—(2@])

Offi f
Z - Sc:gﬁcoe (61)

L5, DEFARTMENT OF EN

O“& e of Nuclear r Ph -

where we have divided through by W[J,, £, £].

® Equation represents a compact form of the nonperturbative equivalent of
Maxwell's equations.

. MNATIONAL LABORATORY
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One-particle Irreducible Green
Function

® Introduce generating functional for one-particle-irreducible (1PI) Green functions:
I'[A,,,]. Obtained from Z[J,, £, €] via a Legendre transformation; namely,

Z[Jus &5 €] =F[Au,¢,$]+/ d*z [Ef£f+€f¢f+ApJ“] - (62)

® One-particle-irreducible n-point function or “proper vertex” contains no
contributions that become disconnected when a single connected m-point Green
function is removed; e.g., via functional differentiation.
® No diagram representing or contributing to a given proper vertex separates
into two disconnected diagrams if only one connected propagator is cut.
ZJ Office of (Detailed explanatign: ltzykson, C. and Zuber, J.-B. (1980), Quantum Field
. oepurruen or e Theory (McGraw-Hill, New York), pp. 289-294.)
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Implications of Legendre
Transformation

It is plain from the definition of the Generating Functional, Eq. (57), that

07 87 57 _
sIr(z) Aul2), 5E(x) (), @) —p(x), (63)

where here the external sources are nonzero.

Hence I' in Eqg. (62) must satisfy

or L or f or ¢
(NB. Since the sources are not zero then, e.g.,
~ dA
Ap(@) = Ay [T 6.8) = S50 20, ©

with analogous statements for the Grassmannian functional derivatives.)

NB. It is easy to see that setting ¢ = 0 = ) after differentiating I" gives zero unless
there are equal numbers of ¢ and v derivatives. (Integrand is odd under ¢y — —1).)
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Green Function’s Inverse

® Consider the operator and matrix product (with spinor labels r, s, t)

—/d4z 5 521: B (66)
5l (2)El (2) SYP ()P (y)| €=E=0
b= =0

® Using Egs. (63), (64), this simplifies as follows:
— /d4 5¢t (Z) 5€S (y) ~ _ 5€§(y) — 57“3 5fg 54(56 y)
5&}(33) pi(z)| €=E&= 6&i () =1 =0
=19 =
Office of (67)

Science
MENT Q|

® Backin Eq. (61), setting £ = 0 = £ one obtains

1 :
= [apang — <1 — )\_0) 8,,,8,,] AY(x) — i Z egtr {vqu(as,zc; [A,,,])} :
=0 f
(68)

2z 8z
06f ()&l (x)  8€F (2)€F (y)
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(no summation on f), (69)
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Green Function’s Inverse

As a direct consequence of Eq. (66) the inverse of this Green function is given by

52T

Fw,y; [A]) L = P '
ST (x,y; [A]) P ()69 (y) | y—5—0

(70)

General property: functional derivatives of the generating functional for 1Pl Green
functions are related to the associated propagator’s inverse.

Clearly the vacuum fermion propagator or connected fermion 2-point function is
ST (x,y) == ST (z,y; [Au = 0)). (71)

ZA] Yreas: Such vacuum Green functions are keystones in quantum field theory.
- cience

DEFARTMENT OF E

To continue, differentiate Eq. (68) with respectto A, (y) and set J,,(x) = 0:

52T
SAH(z)SAY(y)| A, =0

1
— {8p8pg,w — (1 — >\_0> 8u8,,] 54(56 — )

—iz el tr Y L 52P_ - (72)
= 0 AL \ ol (@69 (@) [y _gg '
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Inverse of Photon Propagator

® |hs.is easily understood — Egs. (70), (71) define the inverse of the fermion

propagator: 52T

(D—l)uv (x,y) = 514#(3:)5141/ (y) AM _ 0 . (73)

b=T=0

® r.h.s., however, must be simplified and interpreted. First observe that

1
B ) = (74)
=0

1
E=0> |

¢ 52T
5AL(y) \ opf(x)df (x) |,

4 52 | s 52T 52
%’:::3:3” ST (@30T (@) | y_5m0) 34w (g) 50T ()60 (w) \ 507 (w)od (@) |,

® Analogue of result for finite dimensional matrices:

XT —1 XT
d(i [A(x)A™ (@) =1I] =0= %ﬁ;) A7 (z) + A(z) dAd—x()
dA=1(x) dA(as) _
= T AT T AT,

(75)
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Proper Fermion-Photon Vertex

Equation (74) involves the 1Pl 3-point function (no summation on f)

fI‘\f( ) 0 6T (76)
(& r,Yy,z) .= = .
ORI 54, (=) 6T ()59 (y)
This is the proper fermion-gauge-boson vertex.
® Atleading order in perturbation theory
MY (z,y;2) = v 6*(z — 2) 6% (y — 2),, (77)

Result can be obtained via explicit calculation of functional derivatives in Eq. (76).

PP ==" Office of
~ 4 Science
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Photon Vacuum Polarisation

Define the gauge-boson vacuum polarisation:

o (2,5) = i 32 (eh)? [ d'ar dtza tr 3 (0,200 (o1, 23)S7 (22,2)]
f
(78)

Gauge-boson vacuum polarisation, or “photon self-energy,”

® Describes modification of the gauge-boson’s propagation characteristics due
to the presence of virtual particle-antiparticle pairs in quantum field theory.
#® In particular, the photon vacuum polarisation is an important element in the
description of process such as p° — ete™.
Z- Office of Eq. (72) may now be expressed as
| Sc:entfe

1
(D_l)“”/(as,y) = {8p8pg,,,,/ — (1 — >\_0> 8u8y] 54(33 —y)+ 1 (z,y). (79

The propagator for a free gauge boson is [use II,,, (x,y) = 0 in Eq. (79)]

MV W v 2 : W v
DI (g) = =9 +(@""/la” +im)) _\  a'q” 0)
q2 +in (g2 + in)?
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DSE for Photon Propagator

Then Eq. (79) can be written iD = i¢Dg + ¢Dg 117 D.
® Theis a Dyson-Schwinger Equation

a) ’\I\/O/\I\/ p—
® In presence of interactions; IS
i.e., for IT,, # 0in Eq. (79), b) W@ = A + ~
iD 0 'Y in D
v —gH? + Hq¥ 2 —I—’I, 1 Haqv
DHv(g) = =9 (q2 q /[q 1)) PV (G
q° + in 1+ 11(g?) (g% +1n)
Z’_ gy, Qe o Used the “Ward-Takahashi identity:” ¢, I1,,, (¢) = 0 = I1,.(q) qv,

= 11" (q) = (—g""¢* + ¢"¢") 11(¢?). (82)

® 11(4?) is the polarisation scalar. Independent of the gauge parameter, \q, in QED.

® )\ = 1is called “Feynman gauge.” Useful in perturbative calculations
because it simplifies the I1(¢?) = 0 gauge boson propagator enormously.

ARGONNE # In nonperturbative applications, however, Ao = 0, “Landau gauge,” is most
9 MNATIONAL LABORATORY
useful because it ensures that the gauge boson propagator is itself transverse.
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Ward-Takahashi ldentities

Ward-Takahashi identities (WTIs) are relations satisfied by n-point Green
functions, relations which are an essential consequence of a theory’s local gauge
invariance; i.e., local current conservation.

They can be proved directly from the generating functional and have physical
implications. For example, EqQ. ensures that the photon remains massless in
the presence of charged fermions.

A discussion of WTIs can be found in

® Bjorken, J.D. and Drell, S.D. (1965), Relativistic Quantum Fields (McGraw-Hlill,
New York), pp. 299-303,

® ltzykson, C. and Zuber, J.-B. (1980), Quantum Field Theory (McGraw-Hill,
Z‘ Office of New York), pp. 407-411,

—~4 Science

DEFARTMENT OF ENERGY

Their generalisation to non-Abelian theories as “Slavnov-Taylor” identities is
described in

Pascual, P. and Tarrach, R. (1984), Lecture Notes in Physics, Vol. 194, QCD:
Renormalization for the Practitioner (Springer-Verlag, Berlin), Chap. 2.
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Vacuum Polarisation in Momentum
Space

In absence of external sources, Eq. (78) can easily be represented in momentum
space, because then the 2- and 3-point functions appearing therein must be
translationally invariant and hence they can be simply expressed in terms of
Fourier amplitudes; i.e., we have

4
M (a) = — S [ (jwfd tr(i7,0) (18T ()T (¢, £+ 9)) GS(C + )] . (89
f

The reduction to a single integral makes momentum space representations most
widely used in continuum calculations.

_ ® QED: the vacuum polarisation is directly related to the running coupling constant,
Z.ﬂd_ﬂ Scianes which is a connection that makes its importance obvious.

® QCD: connection not so direct but, nevertheless, the polarisation scalar is a key
component in the evaluation of the strong running coupling.

® Observed: second derivatives of the generating functional, T'[A4,,, v, 4], give the
inverse-fermion and -photon propagators; third derivative gave the proper
photon-fermion vertex. In general, all derivatives of I'[A,,, 1, 4], higher than two,

AARGONNE produce a proper vertex, number and type of derivatives give the number and type

f proper Green functions that it can connect.
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Functional Dirac Equation

Equation IS a nonperturbative generalisation of Maxwell’'s equation in quantum
field theory. Its derivation provides the model by which one can obtain an
equivalent generalisation of Dirac’s equation:

Z(S[Au’w"LZ]—FI d*x [Eg€g+£_g¢g+f4uj“])

@

0 = [IPAJ AP 57

- / [DAL] [DY][Dy] {&;fs(a;) +€f(x)}

xexp{z- (S[Au,w,&] + / d'z [§769 4 €0y +AN“D}

58 [ 5 5 6 ] ; } )
- ey B /y ; S +77 x WiJ 7§7€ (84)
Lo Science \sor Loy e ) @) W8

.ce of Nuclear pp,, 5 6 —
o Sic, O — f . . f f I ) _ ] W J .

The last line furnishes a nonperturbative functional equivalent of Dirac’s equation.
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Functional Green Function

® Nextstep ... afunctional derivative with respect to ¢/: §/6¢7 (y), yields

54z — y)WJ,] — <z’é9 —ml + el > W[Ju] ST (z,y; [AL]) =0, (86)

10 JH(x)
after setting ¢/ = 0 = £/, where W[J,,] := W[J,,0,0] and S(z,y; [A,]) is
defined in Eq. (69).

® Now, using Egs. (58), (64), this can be rewritten

o

m) ST (z,y;[Au]) =0, (87

54 —y) — (w — i 4 el A []) + el

Z' Office of
E=d Sclencs which defines the nonperturbative connected 2-point fermion Green function

L5, DEFARTMENT OF K

ofice of Nuclear py, o

#® NB. This is clearly the functional equivalent of Eq. (53):
(id, —eA(z’) —m]S(z',z) =16*a' — ). (88)

namely, Differential Operator Green Function for the Interacting Dirac Theory.
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DSE for Fermion Propagator

The electromagentic four-potential vanishes in the absence of an external source;
e, A, (z;[J=0]) =0

® Remains only to exhibit the content of the remaining functional differentiation in
Eq. (87), which can be accomplished using Eq. (74):

—1
J 0AL 4] 52T
—— ST (z,y; [AL]) = /d4z : (2) _ |
10 JH (x) i0JH(x) §AL(2) \ ovf(x)dyf () Y=D=0
AL
= —eg / d*z d*u d*w ﬁ ST (z,u) Ty (u, w; 2) S(w, y)
10J ()
P75 Office of SE— / d*z d*ud*w iDyy, (x — 2) ST (2, u) T (u, w; 2) S(w, y)
KO scionce " " | A

office of Nuclear py, S, (89)
In the last line, we have set J = 0 and used Eq. (73).

® Hence in the absence of external sources Eq. (87) is equivalent to

64z —y) = (ip—m}) ' (@.y)
—1 (65)2 / d*z d*u d*w DM (z, 2) v, S(z,uw) Ty (u, w; 2) S(w, y) . (90)
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Fermion Self Energy

Photon vacuum polarisation was introduced to re-express the DSE for the gauge
boson propagator, Eq. (78). Analogue, one can define a fermion self-energy:

> (x, 2) = i(eg)2 / d*ud*w DMV (z, 2) v, S(z,u) Ty (u, w; 2), (91)
so that Eg. (90) assumes the form
/d4z [(z@m — mg) 6z — 2) — Ef(x,z)} S(z,y) =6*(z —y). (92)

Using property that Green functions are translationally invariant in the absence of
external sources:

Py o dy2 B P
~i(0) = (6f)? [ Sg D (o= O] ] 7 (O) T (e.p)]. 09

Now follows from Eq. (92) that connected fermion 2-point function in momentum

space is
1
ST (p) = : (94)
¥ —ml —SF (p) +int
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Gap Equation

® Equation is the exact Gap Equation.

positive-energy continuum

e bound states

negative-energy continuum

® Describes manner in which propagation characteristics of a fermion moving
through ground state of QED (the QED vacuum) is altered by the repeated
emission and reabsorption of virtual photons.

PP ==" Office of y
.g,.»_al Science -z 'D
LS. DEFARTMENT OF ENERGY
a) >—Q>— j—
o :
i @—
P P ——rl 4 Y 1S 1T

® Equation can also describe the real process of Bremsstrahlung. Furthermore,
ARGONNE solution of analogous equation in QCD provides information about dynamical
chiral symmetry breaking and also quark confinement.
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Perturbative Calculation of Gap

® Keystone of strong interaction physics is dynamical chiral symmetry breaking
(DCSB). In order to understand DCSB one must first come to terms with explicit
chiral symmetry breaking. Consider then the DSE for the quark self-energy in
QCD:
d*¢
(2m)

. 1% Z a T
—i%(p) = —gp D* (p = £) S A"y S(0) iT5(4, p). (95)

where the flavour label is suppressed.

® Form is precisely the same as that in QED, Eq. (93) but . ..

#® colour (Gell-Mann) matrices: {\¢;a =1, ..., 8} at the fermion-gauge-boson
vertex
W76, %fice of ® DH¥(¢) is the connected gluon 2-point function
~ 4 Science _
Ty ® T2(¢,0") is the proper quark-gluon vertex

One-loop contribution to quark’s self-energy obtained by evaluating r.h.s. of
Eq. (95) using the free quark and gluon propagators, and the quark-gluon vertex:

. 1
12 0y = 5)&‘% . (96)
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Explicit Leading-Order Calculation

4 M LV 1
7 1 )
X —A¢ , A%y, . (97)
2" MR p—mo+int 27

® To proceed, first observe that Eq. (97) can be re-expressed as

d*k 1 1
2m)* (k+p)2 —m2 +int k2 +in™t

2@ (p) = —gZ C2(R) / :

k,
L Kt o o) = (1= 20) (K = ot o) = 2(1 = 20) g0}
k2 +int
‘ i (98)
02, Sionce
O‘&‘Ce of Nuclear py, - 1 i 1 . NCQ B 1 |
where we have used 5)\ 5)\ =Co(R)I.; Co(R) = N , with N, the

number of colours (V. = 3 in QCD), and I. is the identity matrix in colour space.
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Explicit Leading-Order Calculation

® Now note that 2 (k, p) = [(k + p)? — m3] — [k?] — [p®> — mZ] and hence

dtk 1 1
2m)4 (k+p)2 — m2 +int k2 +int

_in®(p) = g2 Ca(R) / (

{Wu(k+1zj+mo)’yp,+(1—>\0)(15—m0)

+ (1 —Xo) (p* — mg) ﬁ
— (1= 20) [(k+p)* —mf] ﬁ} : (99)

(60 Yhceof @ Focus on the last term:

ofice of Nuclear py, o

dk 1 1 (4 p)? 9 ¥

— m
@m)% (k+p)2 —m2 +in* K2+ int b 002 4 int
A4k 1 7

(2m)4 k2 +int k2 +int
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Explicit Leading-Order Calculation

dtk 1 1
2m)4 (k+p)2 —m2 +int k2 +int

® s @p) = g2 Cs(R) / :

{’Y“(%Jrﬁero)w+(1—>\0)(I?5—m0)+(1—>\0)(l>2—mg)ﬁ}-

® Consider the second term:

d*k 1 1
2m)4 (k4 p)2 —m2 +int k2 +int
0

(1—>\0)(¢—m0)/

In particular, focus on the behaviour of the integrand at large k2:

| 7 ,J Office of
~ 4 Science
LS. DEFARTMENT OF ENERGY 1 1 k:2 —):tm 1
ce of Nuclear py, - Y (10 1)

(k+p)2 — m2 +int k2 +int (k2 —m2 +inT) (k2 +int)
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Wick Rotation

® Integrand has poles in the second and fourth quadrant of the complex-kq-plane but
vanishes on any circle of radius R — oo in this plane. That means one may rotate
the contour anticlockwise to find

/oodko !
0 (k2 —m2 +int) (k2 4+ int)

100 1
/ dkP - -

0 ([k0]2 — k2 — md + int)([k0]2 — k2 +int)
0_; e 1
kT2 z/ dka _ .

0 (—k2 — k2 —m2) (k3 — k2?)

(102)

Z.A] Seloncs B Performing a similar analysis of the ffoo part, one obtains the complete result:

L5, DEFARTMENT OF ENERG

d*k 1
(2m)* (k2 —mg +int) (k2 +int)
[ A3k [ dky 1
= ! 3 > 2 0N (_i2 _ 1.2 (103)
(2m)? Jooo 2 (—k2 — k3 —m2) (—k2 — k3)

These two steps constitute what is called a Wick rotation.
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Euclidean Integral

The integral on the r.h.s. is defined in a four-dimensional Euclidean space; i.e.,
k? := k% + k2 + k2 + k2 > 0, with k2 nonnegative.

® A general vector in this space can be written in the form:
(k) = |k| (cos ¢ sin 0 sin 3, sin ¢ sin 6 sin (3, cos @ sin 3, cos () ; (104)

i.e., using hyperspherical coordinates, and clearly k? = |k|?.

® In this Euclidean space using these coordinates the four-vector measure factor is

[ bk k)

PP =5" Office of

76,9 1 [oo m m 2T

M Sciancs = 5 / dk? k? / dg sin?f / df sin 0 / do f(k,3,0,9).
o , 0 0 0 0

(105)
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Euclidean Integral

® Returning to Eq. and making use of the material just introduced, the large k2
behaviour of the integral can be determined via

d4k 1 1
(2m)* (k+p)2 — md +int k2 +int

Y
Y

1 /oode 1
1672 Jg (k2 + md)

. A? 1
_ lim dr ———
16712 A—oo 0 T + m%
= —— lim In(14+A2/m2) — oo; (106)

2 A
PP ==" Office of 167 e

~ 4 Science
O After all this work, the result is meaningless: the one-loop contribution to the
quark’s self-energy is divergent!
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Regularisation and Renormalisation

Such “ultraviolet” divergences, and others which are more complicated, arise
whenever loops appear in perturbation theory. (The others include “infrared”
divergences associated with the gluons’ masslessness; e.g., consider what would
happen in Eq. (106) with mg — 0.)

In a renormalisable quantum field theory there exists a well-defined set of rules
that can be used to render perturbation theory sensible.

® First, however, one must regularise the theory; i.e., introduce a cutoff, or use
some other means, to make finite every integral that appears. Then each step
in the calculation of an observable is rigorously sensible.

® Renormalisation follows; i.e, the absorption of divergences, and the
redefinition of couplings and masses, so that finally one arrives at S-matrix

Z' Office of
b Sclencs amplitudes that are finite and physically meaningful.

The regularisation procedure must preserve the Ward-Takahashi identities (the
Slavnov-Taylor identities in QCD) because they are crucial in proving that a theory
can be sensibly renormalised.

A theory is called renormalisable if, and only if, number of different types of
divergent integral is finite. Then only finite number of masses & couplings need to
be renormalised; i.e., a priori the theory has only a finite number of undetermined

--mat must be fixed through comparison with, eXRELIMENTS . yarch 2006 - p. 55757




Renormalised One-Loop Result

® Don't have time to explain and illustrate the procedure. Interested?
Read ... Pascual, P. and Tarrach, R. (1984), Lecture Notes in Physics, Vol. 194,
QCD: Renormalization for the Practitioner (Springer-Verlag, Berlin).

® Answer, in Momentum Subtraction Scheme:
2(2) — 2(2) 2 2(2) 2 1
R (]5) VR(p )154‘ SR(p ) D>

=207 = S0 § ) {-m?©) (o + )

(-5 (i) - () m (e )

K02 Sciance S5r(®?5¢?) = m(Q) @ £ O { B

LE. DEFARTMENT OF ENERGY 4

2 2 2 2
0= m(-meg) -0 ) ()|
p m?(¢) ¢ m*(¢)
where the renormalised quantities depend on the point at which the

renormalisation has been conducted;
e.g., a(() is the running coupling, m(¢) is the running quark mass.

A NATHONAL LABORATORY
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Observations on Quark Self Energy

® QCD is Asymptotically Free. Hence, at some large spacelike p? = ¢? the
propagator is exactly the free propagator except that the bare mass is replaced by
the renormalised mass.

® At one-loop order, the vector part of the dressed self energy is proportional to the
running gauge parameter. In Landau gauge, that parameter is zero. Hence, the
vector part of the renormalised dressed self energy vanishes at one-loop order in
perturbation theory.

® The scalar part of the dressed self energy is proportional to the renormalised
current-quark mass.

® This is true at one-loop order, and at every order in perturbation theory.

Z‘éﬂ Office of ® Hence, if current-quark mass vanishes, then X gr = 0 in perturbation theory.
- cience . . . . .

R AL S That means if one starts with a chirally symmetric theory, one ends up with a
S chirally symmetric theory: NO DCSB in perturbation theory.
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