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Our research addresses the five key questions that comprise the
Nation’s scientific agenda. We place heavy emphasis on the prediction
of phenomena accessible at Argonne’s ATLAS facility, at JLab, and at
other laboratories around the world; and on anticipating and planning
for RIA. Additional research in the Group focuses on atomic physics,
neutron physics, fundamental quantum mechanics and quantum
computing. The pioneering development and use of massively parallel
numerical simulations using hardware at Argonne and elsewhere is a
major component of the Group’s research.
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Relativistic Quantum Field Theory

A theoretical understanding of the phenomena of Hadron Physics requires the use
of the full machinery of relativistic quantum field theory. Relativistic quantum field
theory is the ONLY way to reconcile quantum mechanics with special relativity.

Relativistic quantum field theory is based on the relativistic quantum mechanics of
Dirac.

Relativistic quantum mechanics predicts the existence of antiparticles; i.e., the
equations of relativistic quantum mechanics admit negative energy solutions.
However, once one allows for particles with negative energy, then particle number
conservation is lost:
Esystem = Esystem + (Ep1 + Ep̄1 ) + . . . ad infinitum

However, this is a fundamental problem for relativistic quantum mechanics – Few
particle systems can be studied in relativistic quantum mechanics but the study of
(infinitely) many bodies is difficult. No general theory currently exists.

Not all Poincaré transformations commute with the Hamiltonian. Hence, a
Poincaré transformation from one frame to another can change the number of
particles. Therefore a solution of the N body problem in one frame is generally
insufficient to study the typical scattering process encountered at JLab.
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Relativistic Quantum Field Theory
Relativistic quantum field theory is an answer. The fundamental entities are fields,
which can simultaneously represent an uncountable infinity of particles.

e.g., neutral scalar: φ(x) =

∫

d3k

(2π)32ωk

[

a(k)e−ik·x + a†(k)eik·x
]

(1)

Hence, the nonconservation of particle number is not a problem. This is crucial
because key observable phenomena in hadron physics are essentially connected
with the existence of virtual particles.

Relativistic quantum field theory has its own problems, however. For the
mathematician, the question of whether a given relativistic quantum field theory is
rigorously well defined is unsolved.

All relativistic quantum field theories admit analysis in perturbation theory.
Perturbative renormalisation is a well-defined procedure and has long been used
in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD).

A rigorous definition of a theory, however, means proving that the theory makes
sense nonperturbatively. This is equivalent to proving that all the theory’s
renormalisation constants are nonperturbatively well-behaved.
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Relativistic Quantum Field Theory

Hadron Physics involves QCD. While it makes excellent sense perturbatively:
Gross, Politzer, Wilczek – Nobel Prize 2004 – Asymptotic Freedom. It is not known
to be a rigorously well-defined theory. Hence it cannot truly be said to be THE
theory of the strong interaction (hadron physics).

Nevertheless, physics does not wait on mathematics. Physicists make
assumptions and explore their consequences. Practitioners assume that QCD is
(somehow) well-defined and follow where that leads us.

Experiment: explore and map the hadron physics landscape with well-understood
probes, such as the electron at JLab.

Theory: employ established mathematical tools, and refine and invent others in
order to use the Lagangian of QCD to predict what should be observable
real-world phenomena.

A key current aim of the worlds’ hadron physics programmes in experiment and
theory is to determine whether there are any obvious contradictions with what we
can actually prove in QCD. Hitherto, there are none.

Interplay between Experiment and Theory is the engine of discovery and progress.
The Discovery Potential of both is high. Much learnt in the last five years and I
expect that many surprises remain in Hadron Physics.
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Relativistic Quantum Field Theory

In modern approaches to relativistic quantum field theory the primary elements are
Green Functions or Schwinger Functions. These are the objects that naturally
arise in the Functional Integral formulation of a theory.

Introduce this concept via the Green function of the Dirac operator from relativistic
quantum mechanics. To do this we’re going to need some background on notation
and conventions in relativistic quantum mechanics.

NB. Spin- 1
2

particles do not have a classical analogue. Pauli, in his paper on the
exclusion principle: Quantum Spin is a “classically nondescribable
two-valuedness.” Problem: Configuration space of quantum spin is quite different
to that accessible with a classical spinning top.
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Notation
contravariant four-vector:

xµ := (x0, x1, x2, x3) ≡ (t, x, y, z) . (2)

c = 1 = ~, and the conversion between length and energy is just:

1 fm = 1/(0.197327 GeV) = 5.06773 GeV−1 . (3)

covariant four-vector is obtained by changing the sign of the spatial components of
the contravariant vector:

xµ := (x0, x1, x2, x3) ≡ (t,−x,−y,−z) = gµνx
ν , (4)

where the metric tensor is

gµν =















1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1















. (5)
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Notation
Contracted product of two four-vectors is

(a, b) := gµνa
µbν = aµb

µ ; (6)

i.e, a contracted product of a covariant and contravariant four-vector. The

Poincaré-invariant length of any vector is x2 := (x, x) = t2 − ~x2 .

Momentum vectors are similarly defined:

pµ = (E, px, py, pz) = (E, ~p) (7)

and

(p, k) = pµk
µ = EpEk − ~p · ~k . (8)

Likewise, a mixed coordinate-momentum contraction:

(x, p) = tE − ~x · ~p . (9)
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Notation
Momentum operator

pµ := i
∂

∂xµ
= (i

∂

∂t
,
1

i
~∇) =: i∇µ (10)

transforms as a contravariant four-vector. Poincaré invariant analogue of the
Laplacian is

∂2 := −pµpµ =
∂

∂xµ

∂

∂xµ
. (11)

Contravariant four-vector associated with the electromagnetic field:

Aµ(x) = (Φ(x), ~A(x)). (12)

Electric and magnetic field strengths obtained from Fµν = ∂νAµ − ∂µAµ;

for example,

~Ei = F 0i ; i.e. ~E = −~∇Φ− ∂

∂t
~A . (13)

Similarly, Bi = ǫijkF jk, j, k = 1, 2, 3.
Analogous definitions hold in QCD for the chromomagnetic field strengths.
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Dirac Matrices
The Dirac matrices are indispensable in a manifestly Poincaré covariant
description of particles with spin (intrinsic angular momentum).

The Dirac matrices are defined by the Clifford Algebra (an identity matrix is implicit
on the r.h.s.)

{γµ, γν} = γµγν + γνγµ = 2 gµν , (14)

One common 4× 4 representation is [each entry represents a 2× 2 matrix]

γ0 =





1 0

0 −1



 , ~γ =





0 ~σ

−~σ 0



 , (15)

where ~σ are the usual Pauli matrices:

σ1 =





0 1

1 0



 , σ2 =





0 −i
i 0



 , σ3 =





1 0

0 −1



 , (16)

and 1 := diag[1, 1]. Clearly: γ†0 = γ0; and ~γ† = −~γ. NB. These properties are not
specific to this representation; e.g., γ1γ1 = −14×4, for any representation of the
Clifford algebra.
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Dirac Matrices
In discussing spin, two combinations of Dirac matrices frequently appear:

σµν =
i

2
[γµ, γν ] =

i

2
(γµγν − γνγµ) , γ5 = iγ0γ1γ2γ3 = γ5 . (17)

NB. γ5 σµν =
i

2
ǫµνρσ σρσ , with ǫµνρσ the completely antisymmetric Lèvi-Civita

tensor: ǫ0123 = +1, ǫµνρσ = −ǫµνρσ .

The Dirac matrix γ5 plays a special role in the discussion of parity and chiral
symmetry, two key aspects of the Standard Model. In the representation we’re
using,

γ5 =





0 1

1 0



 . (18)

Furthermore
{γ5, γµ} = 0 ⇒ γ5γ

µ = −γµγ5 & γ†5 = γ5 . (19)

Parity, Chiral Symmetry, and the relation between them, each play a special role in
Hadron Physics.
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Dirac Matrices
The “slash” notation is a frequently used shorthand:

γµAµ =: A/ = γ0A0 − ~γ · ~A , (20)

γµpµ =: p/ = γ0E − ~γ · ~p , (21)

γµpµ =: i∇/ ≡ i∂/ = iγ0 ∂

∂t
+ i~γ · ~∇ = iγµ

∂

∂xµ
. (22)

The following identities are important in evaluating the cross-sections.

tr γ5 = 0 , tr1 = 4 , (23)

tr a/b/ = 4(a, b) , tr a1/ a2/ a3/ a4/ = 4 [(a1, a2)(a3, a4) (24)

−(a1, a3)(a2, a4) + (a1, a4)(a2, a3)] ,

tr a1/ . . . an/ = 0 , for n odd , tr γ5a/ b/ = 0 , (25)

tr γ5a1/ a2/ a3/ a4/ = 4iǫαβγδ a
αbβcγdδ , γµa/γ

µ = −2a/ , (26)

γµa/b/γ
µ = 4(a, b) , γµa/b/c/γ

µ = −2c/b/a/ , (27)

All follow from the fact that the Dirac matrices satisfy the Clifford algebra.
Exercises: Prove these relations using Eq. (14) and exploiting trAB = trBA.
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Relativistic Quantum Mechanics
Unification of special relativity (Poincaré covariance) and quantum mechanics took
some time. Questions still remain as to a practical implementation of an
Hamiltonian formulation of the relativistic quantum mechanics of interacting
systems.

Poincaré group has ten generators: the six associated with the Lorentz
transformations (rotations and boosts) and the four associated with translations.

Quantum mechanics describes the time evolution of a system with interactions.
That evolution is generated by the Hamiltonian.

However, if the theory is formulated with an interacting Hamiltonian then boosts
will almost always fail to commute with the Hamiltonian. Hence, the state vector
calculated in one momentum frame will not be kinematically related to the state in
another frame. That makes a new calculation necessary in every frame.

Hence the discussion of scattering, which takes a state of momentum p to another
state with momentum p′, is problematic. (See, e.g., B.D. Keister and W.N. Polyzou
(1991), “Relativistic Hamiltonian dynamics in nuclear and particle physics,” Adv.
Nucl. Phys. 20, 225.)
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Dirac Equation

Dirac equation is starting point for Lagrangian formulation of quantum field theory
for fermions. For a noninteracting fermion

[i∂/ −m]ψ = 0 , (28)

where ψ(x) is the fermion’s “spinor” – a four component column vector, with each
component spacetime dependent.

In an external electromagnetic field the fermion’s wave function obeys

[i∂/ − eA/ −m]ψ = 0 , (29)

obtained, as usual, via “minimal substitution:” pµ → pµ − eAµ in Eq. (28).
The Dirac operator is a matrix-valued differential operator.

These equations have a manifestly Poincaré covariant appearance. A proof of
covariance is given in the early chapters of: Bjorken, J.D. and Drell, S.D. (1964),
Relativistic Quantum Mechanics (McGraw-Hill, New York).
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Free Particle Solutions
Insert plane waves in free particle Dirac equation:

ψ(+)(x) = e−i(k,x) u(k) , ψ(−)(x) = e+i(k,x) v(k) ,

and thereby obtain . . .

(k/ −m)u(k) = 0 , (k/ +m) v(k) = 0 . (30)

Here there are two qualitatively different types of solution, corresponding to
positive and negative energy: k & −k. (Appreciation of physical reality of negative
energy solutions led to prediction of antiparticles.)

Assume particle’s mass is nonzero; work in rest frame:

(γ0 − 1)u(m,~0) = 0 , (γ0 + 1) v(m,~0) = 0 . (31)

There are clearly (remember the form of γ0) two linearly-independent solutions of
each equation:

u(1),(2)(m,~0) =















1

0

0

0















,















0

1

0

0















, v(1),(2)(m,~0) =















0

0

1

0















,















0

0

0

1















. (32)
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Positive Energy Free Particle

Solution in arbitrary frame can be obtained via a Lorentz boost. However, simpler
to observe that

(k/ −m) (k/ +m) = k2 −m2 = 0 , (33)

(The last equality is valid for real, on-shell particles.)
It follows that for arbitrary kµ and positive energy (E > 0), the canonically
normalised spinor is

u(α)(k) =
k/ +m

√

2m(m+ E)
u(α)(m,~0) =









(

E +m

2m

)1/2

φα(m,~0)

σ · k
√

2m(m+ E)
φα(m,~0)









,

(34)

with the two-component spinors, obviously to be identified with the fermion’s spin
in the rest frame (the only frame in which spin has its naive meaning)

φ(1) =





1

0



 , φ(2) =





0

1



 . (35)
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Negative Energy Free Particle

For negative energy: Ê = −E > 0,

v(α)(k) =
−k/ +m

√

2m(m+ Ê)

v(α)(m,~0) =













σ · k
√

2m(m+ Ê)
χα(m,~0)

(

Ê +m

2m

)1/2

χα(m,~0)













,

(36)

with χ(α) obvious analogues of φ(α) in Eq. (35).

NB. For ~k ∼ 0 (rest frame) the lower component of the positive energy spinor is
small, as is the upper component of the negative energy spinor ⇒ Poincaré
covariance, which requires the four component form, becomes important with
increasing |~k|; indispensable for |~k| ∼ m.

NB. Solving ~k 6= 0 equations this way works because it is clear that there are two, and
only two, linearly-independent solutions of the momentum space free-fermion Dirac
equations, Eqs. (30), and, for the homogeneous equations, any two covariant solutions
with the correct limit in the rest-frame must give the correct boosted form.
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Conjugate Spinor

In quantum field theory, as in quantum mechanics, one needs a conjugate state to
define an inner product.

For fermions in Minkowski space that conjugate is ψ̄(x) := ψ†(x)γ0 , and

ψ̄(i
←

∂/ +m) = 0 . (37)

This yields the following free particle spinors in momentum space (using
γ0(γµ)†γ0 = γµ, relation that is particularly important in the discussion of intrinsic
parity)

ū(α)(k) = ū(α)(m,~0)
k/ +m

√

2m(m+ E)
(38)

v̄(α)(k) = v̄(α)(m,~0)
−k/ +m

√

2m(m+ E)
, (39)

Orthonormalisation

ū(α)(k)u(β)(k) = δαβ ū(α)(k) v(β)(k) = 0

v̄(α)(k) v(β)(k) = −δαβ v̄(α)(k)u(β)(k) = 0
. (40)
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Positive Energy Projection Operator

Can now construct positive energy projection operators. Consider

Λ+(k) :=
∑

α=1,2

u(α)(k)⊗ ū(α)(k) . (41)

Plain from the orthonormality relations, Eqs. (40), that

Λ+(k)u(α)(k) = u(α)(k) , Λ+(k) v(α)(k) = 0 . (42)

Now, since
∑

α=1,2

u(α)(m,~0)⊗ ū(α)(m,~0) =





1 0

0 0



 =
1 + γ0

2
, then

Λ+(k) =
1

2m(m+ E)
(k/ +m)

1 + γ0

2
(k/ +m) . (43)

Noting that for k2 = m2; i.e., on shell,
(k/ +m) γ0 (k/ +m) = 2E (k/ +m), (k/ +m) (k/ +m) = 2m (k/ +m),

one finally arrives at the simple closed form:

Λ+(k) =
k/ +m

2m
. (44)
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Negative Energy Projection Operator

The negative energy projection operator is

Λ−(k) := −
∑

α=1,2

v(α)(k)⊗ v̄(α)(k) =
−k/ +m

2m
. (45)

The projection operators have the following characteristic and important properties:

Λ2
±(k) = Λ±(k) , (46)

tr Λ±(k) = 2 , (47)

Λ+(k) + Λ−(k) = 1 . (48)
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Green-Functions/Propagagors

The Dirac equation is a partial differential equation.
A general method for solving such equations is to use a Green function, which is
the inverse of the differential operator that appears in the equation.
The analogy with matrix equations is obvious and can be exploited heuristically.

Dirac equation, Eq. (29): [i∂/x − eA/(x) −m]ψ(x) = 0 , yields the wave function

for a fermion in an external electromagnetic field.

Consider the operator obtained as a solution of the following equation

[i∂/x′ − eA/(x′) −m]S(x′, x) = 1 δ4(x′ − x) . (49)

Obviously if, at a given spacetime point x, ψ(x) is a solution of Eq. (29), then

ψ(x′) :=

∫

d4xS(x′, x)ψ(x) (50)

is a solution of . . . [i∂/x′ − eA/(x′) −m]ψ(x′) = 0 ; (51)

i.e., S(x′, x) has propagated the solution at x to the point x′.

HUGS 2005, 31/May–17/June 2005 – p. 23/103
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Green-Functions/Propagagors

The Dirac equation is a partial differential equation.
A general method for solving such equations is to use a Green function, which is
the inverse of the differential operator that appears in the equation.
The analogy with matrix equations is obvious and can be exploited heuristically.

Dirac equation, Eq. (29): [i∂/x − eA/(x) −m]ψ(x) = 0 , yields the wave function

for a fermion in an external electromagnetic field.

Consider the operator obtained as a solution of the following equation

[i∂/x′ − eA/(x′) −m]S(x′, x) = 1 δ4(x′ − x) . (52)

Obviously if, at a given spacetime point x, ψ(x) is a solution of Eq. (29), then

ψ(x′) :=

∫

d4xS(x′, x)ψ(x) (53)

is a solution of . . . [i∂/x′ − eA/(x′) −m]ψ(x′) = 0 ; (54)

i.e., S(x′, x) has propagated the solution at x to the point x′.
Analogue of Huygens Principle in Wave Mechanics
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Green-Functions/Propagagors

This approach is practical because all physically reasonable external fields can
only be nonzero on a compact subdomain of spacetime.

Therefore the solution of the complete equation is transformed into solving for the
Green function, which can then be used to propagate the free-particle solution,
already found, to arbitrary spacetime points.

However, obtaining the exact form of S(x′, x) is impossible for all but the simplest
cases
(see, e.g., Dittrich, W. and Reuter, M. (1985), Effective Lagrangians in Quantum
Electrodynamics (Springer Verlag, Berlin); Dittrich, W. and Reuter, M. (1985),
Selected Topics in Gauge Theories (Springer Verlag, Berlin).)

This is where and why perturbation theory so often rears its not altogether
handsome head.
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Free Fermion Propagator

In the absence of an external field the Green Function equation, Eq. (49), becomes

[i∂/x′ −m]S(x′, x) = 1 δ4(x′ − x) . (55)

Assume a solution of the form:

S0(x′, x) = S0(x′ − x) =

∫

d4p

(2π)4
e−i(p,x

′−x) S0(p) , (56)

so that substituting yields

(p/ −m)S0(p) = 1 ; i.e., S0(p) =
p/ +m

p2 −m2
. (57)

To obtain the result in configuration space one must adopt a prescription for
handling the on-shell singularities in S(p) at p2 = m2.

That convention is tied to the boundary conditions applied to Eq. (55).

An obvious and physically sensible definition of the Green function is that it
should propagate positive-energy-fermions and -antifermions forward in time
but not backwards in time, and vice versa for negative energy states.
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Feynman’s Fermion Propagator

The wave function for a positive energy free-fermion is

ψ(+)(x) = u(p) e−i(p,x) . (58)

The wave function for a positive-energy antifermion is the charge-conjugate of the
negative-energy fermion solution (C = iγ2γ0 and (·)T denotes matrix transpose):

ψ
(+)
c (x) = C γ0

(

v(p) ei(p,x)
)∗

= C v̄(p)T e−i(p,x) , (59)

Follows from properties of spinors and projection operators that our physically
sensible S0(x′ − x) must contain only positive-frequency components for
x′0 − x0 > 0; i.e., in this case it must be proportional to Λ+(p).

Exercise: Verify this.

Can ensure this via a small modification of the denominator of Eq. (57), with
η→ 0+ at the end of all calculations:

S0(p) =
p/ +m

p2 −m2
→ p/ +m

p2 −m2 + iη
. (60)

(This prescription defines the Feynman propagator.)
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Feynman’s Fermion Propagator

To demonstrate (Energy ω(~p) =
√

~p 2 +m2):

S0(x
′ − x) =

∫

d3p

(2π)3
ei~p·(~x

′−~x) 1

2ω(~p)

∫ ∞

−∞

dp0

2π

×
[

e−ip
0(x′0−x0) p/ +m

p0 − ω(~p) + iη
− e−ip

0(x′0−x0) p/ +m

p0 + ω(~p)− iη

]

, (61)

Use Cauchy’s Theorem; focus on first term of the sum inside the square brackets:

Integrand has a pole in the fourth quadrant of the complex p0-plane.

x′0 − x0 > 0 . . . evaluate p0 integral by considering a contour closed by a
semicircle of radius R→∞ in the lower half of the complex p0-plane

The closed contour is oriented clockwise so that

∫ ∞

−∞

dp0

2π
e−ip

0(x′0−x0) p/ +m

p0 − ω(~p) + iη+
= (−) i e−ip

0(x′0−x0)(p/ +m)
∣

∣

∣

p0=ω(~p)−iη+

= −i e−iω(~p)(x′0−x0) (γ0ω(~p)− γ · ~p+m)

= −i e−iω(~p)(x′0−x0) 2m Λ+(p) . (62)
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Feynman’s Fermion Propagator

x′0 − x0 < 0:
Contour must be closed in the upper half plane but therein the integrand is analytic
and hence the result is zero.

Thus . . .
∫ ∞

−∞

dp0

2π
e−ip

0(x′0−x0) i
p/ +m

p0 − ω(~p) + iη+

= θ(x′0 − x0) e−iω(~p)(x′0−x0) 2mΛ+(~p) . (63)

NB. Projection operator is truly only a function of ~p because p0 = ω(~p).

Second term in the brackets (similar reasoning):

∫ ∞

−∞

dp0

2π
e−ip

0(x′0−x0) −i p/ +m

p0 + ω(~p)− iη+
= θ(x0 − x′0) e+iω(~p)(x′0−x0) 2mΛ−(−~p) .

(64)

Complete result [changing variables ~p→ −~p in Eq. (64) & (p̃µ) := (ω(~p), ~p)]

iS0(x
′−x) =

∫

d3p

(2π)3
m

ω(~p)

[

θ(x′0 − x0) e−i(p̃,x
′−x) Λ+(~p) + θ(x0 − x′0) ei(p̃,x

′−x)Λ−(~p)
]

(65)
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Feynman’s Propagator: Alternative
Representation

Another useful representation is obtained merely by observing that

∫ ∞

−∞

dp0

2π
e−ip

0(x′0−x0) p/ +m

p0 − ω(~p) + iη+
=

∫ ∞

−∞

dp0

2π
e−ip

0(x′0−x)
γ0ω(~p)− ~γ · ~p+m

p0 − ω(~p) + iη+

=

∫ ∞

−∞

dp0

2π
e−ip

0(x′0−x) 2mΛ+(~p)
1

p0 − ω(~p) + iη+
, (66)

∫ ∞

−∞

dp0

2π
e−ip

0(x′0−x0) p/ +m

p0 + ω(~p)− iη+
=

∫ ∞

−∞

dp0

2π
e−ip

0(x′0−x)
−γ0ω(~p)− ~γ · ~p+m

p0 + ω(~p)− iη+

=

∫ ∞

−∞

dp0

2π
e−ip

0(x′0−x) 2mΛ−(−~p) 1

p0 + ω(~p)− iη+
, (67)

Hence, S0(x′ − x) =

∫

d4p

(2π)4
e−i(p,x

′−x) S0(p),

S0(p) =
m

ω(~p)

[

Λ+(~p)
1

p0 − ω(~p) + iη
− Λ−(−~p) 1

p0 + ω(~p)− iη

]

, (68)

This representation provides single Fourier amplitude for S0(x′0 − x0); i.e., an alternative
to Eq. (60): indispensable in making connection between covariant and time-ordered
perturbation theory – the second term generates the Z-diagrams in loop integrals.

HUGS 2005, 31/May–17/June 2005 – p. 29/103



First Contents Back Conclusion

Green Function: Interacting Theory

Eq. (49), Green function for a fermion in an external electromagnetic field:

[i∂/x′ − eA/(x′) −m]S(x′, x) = 1 δ4(x′ − x) , (69)

A closed form solution of this equation is impossible in all but the simplest field
configurations. Is there, nevertheless, a way to construct an approximate solution
that can systematically be improved?

One Answer: Perturbation Theory – rewrite the equation:

[i∂/x′ −m]S(x′, x) = 1 δ4(x′ − x) + eA/(x′)S(x′, x) , (70)

which, as is easily seen by substitution ( Verify This ), is solved by

S(x′, x) = S0(x′ − x) + e

∫

d4y S0(x′ − y)A/(y)S(y, x)

= S0(x′ − x) + e

∫

d4y S0(x′ − y)A/(y)S0(y − x)

+e2
∫

d4y1

∫

d4y2 S0(x
′ − y1)A/(y1)S0(y1 − y2)A/(y2)S0(y2 − x)

+ . . . (71)
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Green Function: Interacting Theory

This perturbative expansion of the full propagator in terms of the free propagator
provides an archetype for perturbation theory in quantum field theory.

One obvious application is the scattering of an electron/positron by a
Coulomb field, which is an example explored in Sec. 2.5.3 of Itzykson, C. and
Zuber, J.-B. (1980), Quantum Field Theory (McGraw-Hill, New York).

Equation (71) is a first example of a Dyson-Schwinger equation.

This Green function has the following interpretation

1. It creates a positive energy fermion (antifermion) at spacetime point x;

2. Propagates the fermion to spacetime point x′; i.e., forward in time;

3. Annihilates this fermion at x′.

The process can equally well be viewed as

1. The creation of a negative energy antifermion (fermion) at spacetime point x′;

2. Propagation of the antifermion to the spacetime point x; i.e., backward in time;

3. Annihilation of this antifermion at x.

Other propagators have similar interpretations.
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Exercises
Prove these relations for on-shell fermions:

(k/ +m) γ0 (k/ +m) = 2E (k/ +m) ,

(k/ +m) (k/ +m) = 2m (k/ +m) .

Obtain the Feynman propagator for the free-field Klein Gordon equation:

(∂2
x +m2)φ(x) = 0 ,

in forms analogous to Eqs. (65), (68).
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Anything Troubling You?
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Functional Integrals

Local gauge theories are the keystone of contemporary hadron and high-energy
physics. QCD is a local gauge theory. Such theories are difficult to quantise
because the gauge dependence is an extra non-dynamical degree of freedom that
must be dealt with. The modern approach is to quantise the theories using the
method of functional integrals. Good references:

Itzykson, C. and Zuber, J.-B. (1980), Quantum Field Theory (McGraw-Hill,
New York);

Pascual, P. and Tarrach, R. (1984), Lecture Notes in Physics, Vol. 194, QCD:
Renormalization for the Practitioner (Springer-Verlag, Berlin).

Functional Integration replaces canonical second-quantisation. NB. In general
mathematicians do not regard local gauge theory functional integrals as
well-defined.

As a background, we’ll review a path integral formulation of quantum mechanics.
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Path Integral in Quantum Mechanics

Begin with a state (q1, q2, . . . , qN ) at time t. Probability of obtaining state
(q′1, q

′
2, . . . , q

′
N ) at time t′ is (remember, the time evolution operator in quantum

mechanics is exp[−iHt], where H is the system’s Hamiltonian):

〈q′1, q′2, . . . , q′N ; t′|q1, q2, . . . , qN ; t〉 = lim
n→∞

N
∏

α=1

∫ n
∏

i=1

dqα(ti)

∫ n+1
∏

i=1

dpα(ti)

2π

× exp



iǫ

n+1
∑

j=1

{

pα(tj)
1

ǫ
[qα(tj)− qα(tj−1)]−H(p(tj),

qtj + qtj−1

2
)

}



 ,(72)

where tj = t+ jǫ, ǫ = (t′ − t)/(n+ 1), t0 = t, tn+1 = t′.

A compact notation is commonly introduced to represent this expression:

〈q′t′|qt〉J =

∫

[dq]

∫

[dp] ei
∫

t′

t
dτ [p(τ)q̇(τ)−H(τ)+J(τ)q(τ)] (73)

where J(t) is a classical external “source.” NB. The J = 0 exponent is nothing but

the Lagrangian: L = pq̇ −H . This representation of the Green function for a

quantum mechanical system owes to Feynman. Details may be found in Feynman,
R.P. and Hibbs, A.R., Quantum Mechanics and Path Integrals (McGraw-Hill, New
York, 1965). It is also described in modern textbooks.
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Path Integral in Quantum Mechanics

Heisenberg’s formulation of quantum mechanics: operators evolve in time, not the
state vectors, whose values are fixed at a given initial time. It follows from the
previous formulae that the time-ordered product of n Heisenberg position
operators can be expressed

〈q′t′|T{Q(t1) . . . Q(tn)}|qt〉

=

∫

[dq]

∫

[dp] q(t1) q(t2) . . . q(tn) ei
∫

t′

t
dτ [p(τ)q̇(τ)−H(τ)] (74)

NB. The time-ordered product ensures that the operators appear in
chronological order, right to left.

NB. Q(ti) are operators. q(ti) are c-numbers.

Any expectation value measurable in quantum mechanics can be written in this
way.
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Path Integral in Quantum Mechanics

Consider a source that “switches on” at ti and “switches off” at tf ,
t < ti < tf < t′, then

〈q′t′|qt〉J =

∫

dqidqf 〈q′t′|qf tf 〉 〈qf tf |qiti〉J 〈qiti|qt〉 . (75)

Alternative: introduce a complete set of energy eigenstates to resolve the
Hamiltonian and write

〈q′t′|qt〉J =
∑

n

〈q′|φn〉 e−iEn(t′−t) 〈φn|q〉
t′→−i∞
t→i∞

= 〈q′|φ0〉 e−iE0(t′−t) 〈φ0|q〉 ;

(76)

i.e., in these limits the transition amplitude is dominated by the ground state.

It follows from Eqs. (75), (76) that the object

W [J ] := lim
t′→−i∞
t→i∞

〈q′t′|qt〉J
e−iE0(t′−t) 〈q′|φ0〉 〈φ0|q〉

=

∫

dqidqf 〈φ0|qf tf 〉 〈qf tf |qiti〉J 〈qiti|φ0〉

(77)

i.e., it is the ground-state to ground-state transition amplitude (survival probability)
in the presence of the external source J . Plainly W [J = 0] = 1.
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Functional Derivative

Functional Derivative:
δ

δJ(t)
, is defined analogously to the derivative of a function.

It means: write J(t)→ J(t) + ǫ(t); expand the functional in ǫ(t); and identify the
leading order coefficient in the expansion as the functional derivative. Thus for

Hn[J ] =

∫

dt′ J(t′)n , (78)

δHn[J ] = δ

∫

dt′ J(t′)n =

∫

dt′ [J(t′) + ǫ(t′)]n −
∫

dt′ J(t′)n

=

∫

dt′ nJ(t′)n−1 ǫ(t′) + [. . .] (79)

⇒ δHn[J ]

δJ(t)
= nJ(t)n−1 . (80)

One employs the definition δJ(t)

δJ(t′)
= δ(t− t′) . (81)

Eq. (80) is the “product rule.” Plainly, there is a very close analogy between
functional and ordinary differentiation. With a little care, the functional
differentiation of complicated functionals is straightforward.

HUGS 2005, 31/May–17/June 2005 – p. 38/103



First Contents Back Conclusion

Path Integral in Quantum Mechanics

W [J ] is called a Generating Functional.

Apparent now that, with tf > t1 > t2 > . . . > tm > ti,

δmW [J ]

δJ(t1) . . . δJ(t1)

∣

∣

∣

∣

J=0

= im
∫

dqidqf 〈φ0|qf tf 〉 〈qf tf |T{Q(t1) . . . Q(tn)}|qiti〉 〈qiti|φ0〉, (82)

is the ground state (vacuum) expectation value of a time ordered product of
Heisenberg position operators.

The analogues of these expectation values in quantum field theory are the Green
functions.
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Scalar Quantum Field
Consider a scalar field φ(t, x). This is customary because it reduces the number
of indices that must be carried through the calculation.

Suppose that a large but compact domain of space is divided into N cubes of
volume ǫ3 and label each cube by an integer α.

Define the coordinate and momentum via

qα(t) := φα(t) =
1

ǫ3

∫

Vα

d3xφ(t, x) , q̇α(t) := φ̇α(t) =
1

ǫ3

∫

Vα

d3x
∂φ(t, x)

∂t
;

(83)

i.e., as the spatial averages over the cube denoted by α.

Classical dynamics of the field φ is described by a Lagrangian:

L(t) =

∫

d3xL(t, x)→
N
∑

α=1

ǫ3 Lα(φ̇α(t), φα(t), φα±s(t)) , (84)

where the dependence on φα±s(t); i.e., the coordinates in the neighbouring cells,
is necessary in order to express spatial derivatives in the Lagrangian density, L(x).

Define canonical conjugate momentum as in classical field theory

pα(t) :=
∂L

∂φ̇α(t)
= ǫ3

∂Lα

∂φ̇α(t)
=: ǫ3πα(t) , (85)
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Scalar Quantum Field
Hamiltonian: H =

∑

α

pα(t) q̇α(t)− L(t) =:
∑

α

ǫ3Hα , (86)

Hα(πα(t), φα(t), φα±s(t)) = πα(t) φ̇α(t)− Lα . (87)

Field theoretical equivalent of quantum mechanical transition amplitude, Eq. (72):

∫

[Dφ]

∫

[Dπ] exp

{

i

∫ t′

t
dτ

∫

d3x

[

π(τ, ~x)
∂φ(τ, ~x)

∂τ
−H(τ, ~x)

]

}

:= lim
n→∞,ǫ→0+

N
∏

α=1

∫ n
∏

i=1

dφα(ti)

∫ n
∏

i=1

ǫ3
dπα(ti)

2π

× exp



i

n+1
∑

j=1

ǫ
∑

α

ǫ3
{

πα(tj)
φα(tj)− φα(tj−1)

ǫ

−Hα
(

πα(tj),
φα(tj) + φα(tj−1)

2
,
φα±s(tj) + φα±s(tj−1)

2

)}



(88)

As classically, π(t, ~x) = ∂L(t, ~x)/∂φ̇(t, ~x) and its average over a spacetime cube
is just πα(t). Equation (88): amplitude describing transition from initial field
configuration φα(t0) := φα(t) to a final configuration φα(tn+1) := φα(t′).

HUGS 2005, 31/May–17/June 2005 – p. 41/103



First Contents Back Conclusion

Generating Functional: Scalar
Quantum Field

In quantum field theory all physical quantities can be obtained from Green
functions, which are vacuum-to-vacuum transition amplitudes.

The physical or interacting vacuum is the analogue of the true ground state in
quantum mechanics.

As in quantum mechanics, the fundamental quantity is the generating functional:

W [J ] :=
1

N

∫

[Dφ][Dπ] e
i

∫

d4x [π(x)φ̇(x)−H(x) +
1

2
iηφ2(x) + J(x)φ(x)]

, (89)

where N is chosen so that W [0] = 1, and a real-time limit is implemented and
made meaningful by adding the η → 0+ term.

It is immediately apparent that (Schwinger, 1951)

G(x1, x2, . . . , xn) :=
1

in
δnW [J ]

δJ(x1)δJ(x2) . . . δJ(xn)

∣

∣

∣

∣

J=0

=
〈0̃|T{φ̂(x1)φ̂(x2) . . . φ̂(xn)}|0̃〉

〈0̃|0̃〉
,

(90)

where |0̃〉 is the physical vacuum. G(x1, x2, . . . , xn) is the complete n-point
Green function for the scalar quantum field theory: “complete” means
G(x1, x2, . . . , xn) includes contributions from products of lower-order Green
functions; i.e., disconnected diagrams.
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Connected Green Functions
Useful to have systematic procedure for a priori elimination of disconnected parts
from n-point Green function because recalculation of m < n-point Green
functions, is inefficient. A connected n-point Green function is given by

Gc(x1, x2, . . . , xn) = (−i)n−1 δnZ[J ]

δJ(x1)δJ(x2) . . . δJ(xn)

∣

∣

∣

∣

J=0

, (91)

where generating functional for connected Green functions, Z[J ], defined via

W [J ] =: exp{iZ[J ]} . (92)

Illustration for simple case:

Gc(x1, x2) = (−i) δ2Z[J ]

δJ(x1) δJ(x2)

∣

∣

∣

∣

J=0

= − δ2lnW [J ]

δJ(x1) δJ(x2)

∣

∣

∣

∣

J=0

= − δ

δJ(x1)

[

1

W [J ]

δW [J ]

δJ(x2)

]∣

∣

∣

∣

J=0

= +
1

W 2[J ]

δW [J ]

δJ(x1)

δW [J ]

δJ(x2)

∣

∣

∣

∣

J=0

− 1

W [J ]

δ2W [J ]

δJ(x1) δJ(x2)

∣

∣

∣

∣

J=0

= i
〈0̃|φ̂(x1)|0̃〉
〈0̃|0̃〉

i
〈0̃|φ̂(x2)|0̃〉
〈0̃|0̃〉

− i2 〈0̃|T{φ̂(x1)φ̂(x2)}|0̃〉
〈0̃|0̃〉
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Lagrangian Formulation

Double functional integral employed above
∫

[Dφ]
∫

[Dπ] is cumbersome,
especially since it involves the field variable’s canonical conjugate momentum.
Consider therefore a Hamiltonian density of the form

H(x) =
1

2
π2(x) + f [φ(x), ~∇φ(x)] . (94)

In this case Eq. (89) involves
∫

[Dπ] ei
∫

d4x [− 1
2
π2(x)+π(x)φ̇(x)] = e

i

∫

d4x [φ̇(x)]2 ∫

[Dπ] e
− i

2

∫

d4x [π(x)− φ̇(x)]2

= e
{i
∫

d4x [φ̇(x)]2}
× N ,← simply a constant (95)

NB. Only Gaussian integral can be evaluated exactly. Hence, with Eq. (94),

W [J ] =
N

N

∫

[Dφ] e
i

∫

d4x [L(x) +
1

2
iηφ2(x) + J(x)φ(x)]

(96)

Classical Lagrangian density for a scalar field is L(x) = L0(x) + LI(x)

L0(x) =
1

2
[∂µφ(x) ∂µφ(x)−m2φ2(x)] , (97)

with LI(x) some functional of φ(x) (usually independent of derivatives of the field).
Matches Eq. (94)⇒ Eq. (96) can be used to define the quantum field theory.
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QFT: Free Scalar Field
Free scalar field: LI ≡ 0, L0(x) given in Eq. (97), so that the generating functional
is formally

W0[J ] =
1

N̄

∫

[Dφ] e
i

∫

d4x
[

L0(x) + iηφ2(x)] + J(x)φ(x)
]

(98)

Explicitly, this means

W0[J ] = lim
ǫ→0+

1

N̄

∫

∏

α

dφα exp







i
∑

α

ǫ4
∑

β

ǫ4
1

2
φαKαβ φβ +

∑

α

ǫ4 Jαφα







,

(99)

α, β label spacetime hypercubes of volume ǫ4, Kαβ is any matrix satisfying

lim
ǫ→0+

Kαβ = [−∂2 −m2 + iη] δ4(x− y) , (100)

where α
ǫ→0+

→ x, β
ǫ→0+

→ y and
∑

α ǫ
4 ǫ→0+

→
∫

d4x; i.e., Kαβ is any matrix whose
continuum limit is the inverse of the Feynman propagator for a free scalar field.
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QFT: Free Scalar Field
Recall now that for matrices whose real part is positive definite

∫

Rn

n
∏

i=1

dxi exp{−1

2

n
∑

i,j=1

xi Aij xj +
n
∑

i=1

bi xi} =
(2π)n/2√

detA
exp{1

2

n
∑

i,j=1

bi (A
−1)ij bj}

=
(2π)n/2√

detA
exp

{

1

2
btA−1b

}

. (101)

Hence Eq. (99) yields

W0[J ] = lim
ǫ→0+

1

N̄ ′
1√

detA
exp{1

2

∑

α

ǫ4
∑

β

ǫ4 Jα
1

iǫ8
(K−1)αβ Jβ} , (102)

where, obviously,
∑

γ

Kαγ (K−1)γβ = δαβ . (103)

Almost as obviously, consistency of limits requires

lim
ǫ→0+

1

ǫ4
δαβ = δ4(x− y) , lim

ǫ→0+

∑

α

ǫ4 =

∫

d4x (104)
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QFT: Free Scalar Field

Define O(x, y) := lim
ǫ→0+

1

ǫ8
(K−1)αβ

Then continuum limit of Eq. (103) can be understood:

lim
ǫ→0+

∑

γ

ǫ4Kαγ
1

ǫ8
(K−1)γβ = lim

ǫ→0+

1

ǫ4
δαβ

⇒
∫

d4w [−∂2
x −m2 + iη] δ4(x− w)O(w, y) = δ4(x− y)

·· · [−∂2
x −m2 + iη]O(x, y) = δ4(x− y) . (105)

Hence O(x, y) = ∆0(x− y); i.e., the Feynman propagator for a free scalar field:

∆0(x− y) =

∫

d4p

(2π)4
e−i(q,x−y)

1

q2 −m2 + iη
. (106)

(NB. This makes plain the fundamental role of the “iη+” prescription in Eq. (60): it
ensures convergence of the expression defining the functional integral.)

Combining all, the continuum limit of Eq. (102) is

W [J ] =
1

N̂
e
− i

2

∫

d4x

∫

d4y J(x)∆0(x− y) J(y)
. (107)
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QFT: Self-interacting Scalar Field

LI [φ(x)] 6= 0 provides for a self-interacting scalar field theory (we subsequently
omit the constant, nondynamical normalisation factor):

W [J ] =

∫

[Dφ] exp

{

i

∫

d4x [L0(x) + LI(x) + J(x)φ(x)]

}

= exp

[

i

∫

d4xLI

(

δ

iδJ(x)

)] ∫

[Dφ] exp

{

i

∫

d4x [L0(x) + J(x)φ(x)]

}

= exp

[

i

∫

d4xLI

(

δ

iδJ(x)

)]

exp

{

− i
2

∫

d4x

∫

d4y J(x) ∆0(x− y) J(y)

}

,

where
exp

[

i

∫

d4xLI

(

δ

iδJ(x)

)]

:=
∞
∑

n=0

in

n!

[

LI

(

δ

iδJ(x)

)]n

. (108)

Equation (108) is the basis for a perturbative evaluation of all possible Green
functions for the theory.

Example: complete 2-point Green function in the theory defined by

LI(x) = − λ
4!
φ4(x) .
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QFT: Self-interacting Scalar Field

At leading-order, the generating functional yields

W [0] =

{

1− i λ
4!

∫

d4x

(

δ

δJ(x)

)4
}

exp

{

− i
2

∫

d4u

∫

d4v J(u)∆0(u− v) J(v)

}
∣

∣

∣

∣

J=0

⇒W [0] = 1− i λ
4!

∫

d4x 3 [i∆0(0)]2 . (109)

The 2-point function is

δ2W [J ]

δJ(x1) δJ(x2)
= −i∆0(x1 − x2) + i

λ

8

∫

d4x [i∆0(0)]
2[i∆0(x1 − x2)]

+i
λ

2

∫

d4x [i∆0(0)][i∆0(x1 − x)][i∆0(x− x2)] .

(110)

Now using, Eq. (90), and restoring the normalisation we find

G(x1, x2) =
1

i2
1

W [0]

δ2W [J ]

δJ(x1) δJ(x2)

= i∆0(x1 − x2)− i λ
2

∫

d4x [i∆0(0)][i∆0(x1 − x)][i∆0(x− x2)] (111)
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Note on the Perturbative Vacuum
In obtaining Eq. (111) we used

〈0̃|φ̂(x)|0̃〉
〈0̃|0̃〉

:= G(x)|J=0 =
1

i

δW [J ]

δJ(x)

∣

∣

∣

∣

J=0

= 0 (112)

(You can easily verify this.)

Equation (112) means that the vacuum is trivial in perturbation theory.

That is the reason why the complete 2-point Green function in Eq. (111) does not
contain any disconnected parts.

NB. Equation (112) is the simplest demonstration of the fact that dynamical
symmetry breaking is a phenomenon inaccessible in perturbation theory.
The vacuum has no structure in perturbation theory.
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Fermions in Quantum Field Theory

Fermionic fields do not have a classical analogue: classical physics does not
contain anticommuting fields. In order to treat fermions using functional integrals
one must employ Grassmann variables.

The standard source for a rigorous discussion of Grassmann algebras is
Berezin, F.A. (1966), The Method of Second Quantization (Academic Press, New
York).
Here we will only review some necessary ideas.

The Grassmann algebra GN is generated by the set of N elements, θ1 , . . . , θN ,
which satisfy the anticommutation relations

{θi, θj} = 0 , i, j = 1, 2, . . . , N . (113)

Clearly, θ2i = 0 for i = 1, . . . , N .

Moreover, the elements {θi} provide the source for the basis vectors of a
2n-dimensional space, spanned by the monomials:

1, θ1, . . . , θN , θ1θ2, . . . θN−1θN , . . . , θ1θ2 . . . θN ; (114)

i.e., GN is a 2N -dimensional vector space.
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Fermions in Quantum Field Theory

Obviously, any element f(θ) ∈ GN can be written

f(θ) = f0 +
∑

i1

f1(i1) θi1 +
∑

i1,i2

f2(i1, i2) θi1θi2 + . . .

+
∑

i1,i2,...,iN

fN (i1, i2, . . . , iN ) θ1θ2 . . . θN , (115)

fp(i1, i2, . . . , ip) are unique if chosen to be fully antisymmetric for p ≥ 2.

Both “left” and “right” derivatives are defined on GN . They are linear operators.
Hence it suffices to specify their operation on the basis elements:

∂

∂θs
θi1θi2 . . . θip = δsi1θi2 . . . θip − δsi2θi1 . . . θip + . . .+ (−)p−1δsipθi1θi2 . . . θip−1

(116)

θi1θi2 . . . θip

←

∂

∂θs

= θi1 . . . θip−1
− δsip−1

θi1 . . . θip−2
θip + . . .+ (−)p−1δsi1θi2θip (117)

The operation on a general element, f(θ) ∈ GN , is easily obtained.

Obviously,
∂

∂θ1

∂

∂θ2
f(θ) = − ∂

∂θ2

∂

∂θ1
f(θ).
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Fermions in Quantum Field Theory

A definition of integration requires the introduction of Grassmannian line elements:
dθi, i = 1, . . . , N . These elements also satisfy Grassmann algebras:

{dθi, dθj} = 0 = {θi, dθj} , i, j = 1, 2, . . . N . (118)

The integral calculus is completely defined by the following two identities:

∫

dθi = 0 ,

∫

dθi θi = 1 , i = 1, 2, . . . , N . (119)

For example, it is straightforward to prove, using Eq. (115),

∫

dθN . . . dθ1 f(θ) = N ! fN (1, 2, . . . , N) . (120)
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Fermions in Quantum Field Theory

In standard integral calculus a change of integration variables is often used to
simplify an integral. That operation can also be defined in the present context.
Consider a nonsingular matrix (Kij), i, j = 1, . . . , N , and define new Grassmann
variables ξ1, . . . , ξN via

θi =

N
∑

i=j

Kij ξj . (121)

With the definition dθi =
N
∑

j=1

(K−1)ji dξj

one guarantees
∫

dθi θj = δij =

∫

dξi ξj .

It follows immediately that

θ1θ2 . . . θN = (detK) ξ1ξ2 . . . ξN (122)

dθNdθN−1 . . . dθ1 = (detK−1) dξNdξN−1 . . . dξ1 , (123)

NB. This is inverted w.r.t. c-numbers.

Hence
∫

dθN . . . dθ1 f(θ) = (detK−1)

∫

dξN . . . dξ1 f(θ(ξ)) . (124)
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Fermion Gaussian Integral

In analogy with scalar field theory, for fermions one expects to encounter integrals
of the type

I :=

∫

dθN . . . dθ1 exp







N
∑

i,j=1

θiAijθj







, (125)

where (Aij) is an antisymmetric matrix. NB. Any symmetric part of the matrix, A,
cannot contribute. (Exercise: Verify.)

Assume for the moment that A is a real matrix. Then there is an orthogonal matrix
S (SSt = I) for which

StAS =



















0 λ1 0 0 . . .

−λ1 0 0 0 . . .

0 0 0 λ2 . . .

0 0 −λ2 0 . . .

. . . . . . . . . . . . . . .



















=: Ã . (126)

Consequently, applying transformation θi =
∑N
i=1 Sij ξj and using Eq. (124):

I =

∫

dξN . . . dξ1 exp







N
∑

i,j=1

ξiÃijξj







. (127)
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Fermion Gaussian Integral

It is now plain that

I =



























∫

dξN . . . dξ1 exp
{

2 [λ1ξ1ξ2 + λ2ξ3ξ4 + . . .+ λN/2ξN−1ξN ]
}

= 2N/2λ1λ2 . . . λN , N even
∫

dξN . . . dξ1 exp
{

2 [λ1ξ1ξ2 + λ2ξ3ξ4 + . . .+ λ(N−1)/2ξN−2ξN−1]
}

= 0 , N odd

(128)

i.e., since detA = det Ã,

I =
√

det 2A . (129)

Equation (129) is valid for any real matrix, A.
Hence, by the analytic function theorem, it is also valid for any complex matrix A.
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Grassmann Algebra with Involution

Lagrangian density associated with the Dirac equation involves a field ψ̄, which
plays the role of a conjugate to ψ.

If ψ is vector in GN , then need a conjugate space in which ψ̄ is defined.

Hence it is necessary to define θ̄1, θ̄2, . . . , θ̄N such that the operation θi ↔ θ̄i
is an involution of the algebra onto itself with the following properties:

i) (θ̄i) = θi ii) (θiθj) = θ̄j θ̄i iii) λ θi = λ∗ θ̄i , λ ∈ C . (130)

Elements of Grassmann algebra with involution: θ1, θ2, . . ., θN , θ̄1, θ̄2 . . ., θ̄N ,
each anticommuting with every other.

Defining integration via obvious analogy with Eq. (119)⇒ for any matrix B:
∫

dθ̄NdθN . . . dθ̄1dθ1 exp







−
N
∑

i,j=1

θ̄iBijθj







= detB , (131)

cf. Analogous result for commuting real numbers, Eq. (101):
∫

RN

N
∏

i=1

dxi exp{−π
N
∑

i,j=1

xi Aij xj} =
1√

detA
. (132)
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Fermions in Quantum Field Theory

To describe a fermionic quantum field the preceding analysis must be generalised
to the case of infinitely many generators. We’ll just review a plausible description.

Suppose functions {un(x) , n = 0, . . . ,∞} are a complete, orthonormal set that
span a given Hilbert space. Consider the Grassmann function

θ(x) :=
∞
∑

n=0

un(x) θn , (133)

where {θn} are Grassmann variables. Clearly {θ(x), θ(y)} = 0.

Elements θ(x) are the generators of the “Grassman algebra” G. In complete
analogy with Eq. (115), any element of G can be written uniquely as

f =
∞
∑

n=0

∫

dx1dx2 . . . dxN θ(x1)θ(x2) . . . θ(xN ) fn(x1, x2, . . . , xN ) . (134)

fn(x1, x2, . . . , xN ) are fully antisymmetric functions of their arguments.
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Fermions in Quantum Field Theory

Another analogy, the left-functional-derivative is defined (cf. Eq. (116).):

δ

δθ(x)
θ(x1)θ(x2) . . . θ(xn) =

δ(x− x1) θ(x2) . . . θ(xn)− . . .+ (−)n−1δ(x− xn) θ(x1) . . . θ(xn−1)

Straightforward analogy for right-functional-derivative.

Moreover, one can extend the definition of integration.
Denoting [Dθ(x)] := lim

N→∞
dθN . . . dθ2dθ1, consider the Gaussian integral

I :=

∫

[Dθ(x)] exp

{∫

dxdy θ(x)A(x, y)θ(y)

}

(135)

where, clearly, only the antisymmetric part of A(x, y) can contribute. Define

Aij :=

∫

dxdy ui(x)A(x, y)uj(y) , (136)

then I = lim
N→∞

∫

dθN . . . dθ2dθ1 exp

{

N
∑

i=1

θiAijθj

}
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Fermions in Quantum Field Theory

Now, using Eq. (129),

I = lim
N→∞

√

det 2AN ,

where AN is the N ×N matrix in Eq. (136).

This provides a definition for the formal result:

I =

∫

[Dθ(x)] exp

{∫

dxdy θ(x)A(x, y)θ(y)

}

=
√

Det 2A , (137)

NB. We will subsequently identify functional equivalents of matrix operations as
proper nouns; e.g., “det→ Det.”

The result is independent of the basis vectors since all such vectors are unitarily
equivalent and the determinant is cylic.

This means that a new basis is always related to another basis via u′ = Uu,
with UU† = I. Transforming to a new basis therefore introduces a modified
exponent, now involving the matrix UAU†, but the result is unchanged
because detUAU† = detA.
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Fermion Fields and Involution
In quantum field theory one employs a Grassmann algebra with an involution. In
this case, defining the functional integral via

[Dθ̄(x)][Dθ(x)] := lim
N→∞

dθ̄NdθN . . . dθ̄2dθ2 dθ̄1dθ1 , (138)

one arrives immediately at a generalisation of Eq. (131)

∫

[Dθ̄(x)][Dθ(x)] exp

{

−
∫

dxdy θ̄(x)B(x, y) θ(x)

}

= DetB . (139)

The relation

ln detB = tr lnB , (140)

is valid for any nonsingular, finite dimensional matrix. It has a generalisation often
used in analysing quantum field theories with fermions. It enables a representation
of the fermionic determinant as part of the quantum field theory’s action via

DetB = exp {TrLnB} . (141)
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Observations on Functionals
We note that for an integral operator O(x, y)

TrO(x, y) :=

∫

d4x trO(x, x) , (142)

which is an obvious analogy to the definition for finite-dimensional matrices.

Moreover, a functional of an operator, whenever it is well-defined, is obtained via
the function’s power series; i.e., if

f(x) = f0 + f1 x+ f2 x
2 + [. . .] , (143)

then

f [O(x, y)] = f0 δ
4(x− y) + f1 O(x, y) + f2

∫

d4wO(x, w)O(w, y) + [. . .] . (144)
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Generating Functional: Free Dirac
Fields

The Lagragian density for the free Dirac field is

Lψ0 (x) =

∫

d4x ψ̄(x) (i∂/ −m)ψ(x) . (145)

Consider therefore the functional integral

W [ξ̄, ξ] =

∫

[Dψ̄(x)][Dψ(x)] e
i

∫

d4x
[

ψ̄(x)
(

i∂/ −m+ iη+
)

ψ(x) + ψ̄(x)ξ(x) + ξ̄(x)ψ(x)
]

.

(146)

ψ̄(x), ψ(x) are identified with generators of G. NB. Minor additional complication:
spinor degree-of-freedom is implicit; i.e., to be explicit, one should write

4
∏

r=1

[Dψ̄r(x)]
4
∏

s=1

[Dψs(x)]. (147)

Only adds a finite matrix degree-of-freedom to the problem, so that “DetA” will
mean both a functional and a matrix determinant. In Eq. (146) we have also
introduced anticommuting sources: ξ̄(x), ξ(x), which are also elements in the
Grassmann algebra, G.
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Generating Functional: Free Dirac
Fields

To evaluate free-field generating functional Gaussian integral, write

O(x, y) = (i∂/ −m+ iη+)δ4(x− y) (148)

and observe that the solution of
∫

d4wO(x,w)P (w, y) = I δ4(x− y) i.e., the

inverse of operator O(x, y) is (see Eq. 55) precisely free-fermion propagator:

P (x, y) = S0(x− y) . (149)

Hence we can rewrite Eq. (146) in the form

W [ξ̄, ξ] =

∫

[Dψ̄(x)][Dψ(x)] e
i

∫

d4xd4y
[

ψ̄′(x)O(x, y)ψ′(y)− ξ̄(x)S0(x− y)ξ(y)
]

, (150)

where ψ̄′(x) := ψ̄(x) +
∫

d4w ξ̄(w)S0(w − x) ,
ψ(x) := ψ(x) +

∫

d4wS0(x− w) ξ(w) .
(151)
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Generating Functional: Free Dirac
Fields

Clearly, ψ̄′(x) and ψ′(x) are still in G and hence related to original variables by
unitary transformation. Thus changing to “primed” variables introduces unit
Jacobian and so

W [ξ̄, ξ] = e
−i
∫

d4xd4y ξ̄(x)S0(x− y) ξ(y)

×
∫

[Dψ̄′(x)][Dψ′(x)] e
i

∫

d4xd4y ψ̄′(x)O(x, y)ψ′(y)

= Det[−iS−1
0 (x− y)] e

−i
∫

d4xd4y ξ̄(x)S0(x− y) ξ(y)

W [ξ̄, ξ] =
1

Nψ′
e
−i
∫

d4xd4y ξ̄(x)S0(x− y) ξ(y)
, (152)

where Nψ0 := Det[iS0(x− y)].

Clearly: Nψ0 W [ξ̄, ξ]
∣

∣

ξ̄=0=ξ
= 1.
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Complete 2-point Free Green
Function

The 2 point Green function for the free-fermion quantum field theory is now easily
obtained:

δ2W [ξ̄, ξ]

iδξ̄(x) (−i)δξ(y)

∣

∣

∣

∣

ξ̄=0=ξ

=
〈0|T{ψ̂(x) ˆ̄ψ(y)}|0〉

〈0|0〉

=

∫

[Dψ̄(x)][Dψ(x)]ψ(x)ψ̄(y) e
i

∫

d4x ψ̄(x)
(

i∂/ −m+ iη+
)

ψ(x)

The functional differentiation of Eq. (152) is straightforward so that

δ2W [ξ̄, ξ]

iδξ̄(x) (−i)δξ(y)

∣

∣

∣

∣

ξ̄=0=ξ

= i S0(x− y) ; (153)

i.e., the inverse of the Dirac operator, with exactly the Feynman boundary
conditions.

As for scalar quantum field theory, the generating functional for connected n-point
Green functions is Z[ξ̄, ξ], defined via:

W [ξ̄, ξ] =: exp
{

iZ[ξ̄, ξ]
}

. (154)
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Fermion Determinant
What is meant by “DetO,” where O is an integral operator?

Consider a translationally invariant operator

O(x, y) = O(x− y) =

∫

d4p

(2π)4
O(p) e−i(p,x−y). (155)

Then, for f as in Eq. (144),

f [O(x− y)] =

∫

d4p

(2π)4

{

f0 + f1 O(p) + f2 O
2(p) + [. . .]

}

e−i(p,x−y)

=

∫

d4p

(2π)4
f(O(p)) e−i(p,x−y) . (156)

Apply this to Nψ0 := Det[iS0(x− y)].
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Fermion Determinant
Observe: Eq. (141) means one can begin by considering TrLn iS0(x− y). Writing

S0(p) = m∆0(p2)

[

1 +
p/

m

]

, ∆0(p
2) =

1

p2 −m2 + iη+
, (157)

⇒ S0(x− y) =

∫

d4wm∆0(x− w)F(w − y) , (158)

with ∆0(x− y) given in Eq. (106) and

F(x− y) =

∫

d4p

(2π)4

[

1 +
p/

m

]

e−i(p,x−y) . (159)

It follows (lnAB = lnA+ lnB) that

TrLn iS0(x− y) = Tr
{

Ln im∆0(x− y) + Ln
[

δ4(x− y) + F(x− y)
]}

. (160)

HUGS 2005, 31/May–17/June 2005 – p. 68/103



First Contents Back Conclusion

Fermion Determinant
Using Eqs. (142), (156), the second term is

TrLn
[

δ4(x− y) + F(x− y)
]

=

∫

d4x

∫

d4p

(2π)4
tr ln [1 + F(p)]

=

∫

d4x

∫

d4p

(2π)4
2 ln

[

1− p2

m2

]

(161)

Applying the same equations, the first term is

TrLn im∆0(x− y) =

∫

d4x

∫

d4p

(2π)4
2 ln

[

im∆0(p2)
]2
, (162)

where in both cases
∫

d4x measures the (infinite) spacetime volume.

Combining these results one obtains

LnNψ0 = TrLn iS0(x− y) =

∫

d4x

∫

d4p

(2π)4
2 ln∆0(p2)

The factor 2 reflects the spin-degeneracy of the free-fermion’s eigenvalues.

Including a “colour” degree-of-freedom, this would become “2Nc ,” where Nc
is the number of colours.
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Gauge Fields

Generating Function for Gauge Fields (photons, gluons, etc.) can be constructed.

Differs from scalar field case because of gauge degree of freedom.

One has to carefully implement gauge fixing.

That problem is not fully resolved. It involves the so-called Faddeev-Popov
Determinant, which introduces so-called ghost fields.

We’re going to omit this discussion.

Details are available on pp. 37-49 in
http://www.phy.anl.gov/theory/ztfr/LecNotes.pdf
which also lists many references.

This omission is not crucial for our development. At this point, the basic ideas of
the Functional Integral formulation of Quantum Field Theory are in mind.
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Exercises
Repeat the derivation of Eq. (93) for Gc(x1, x2, x3).

Prove Eq. (108).

Derive Eq. (110).

Prove Eq. (112).

Verify Eq. (120).

Verify Eqs. (122), (123).

Verify Eqs. (128), (129).

Verify Eqs. (131).

Verify Eq. (140).

Verify Eq. (153).

Verify Eq. (161).
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Any Questions?
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Dyson-Schwinger Equations

It has long been known that, from the field equations of quantum field theory, one
can derive a system of coupled integral equations interrelating all of a theory’s
Green functions:

Dyson, F.J. (1949), “The S Matrix In Quantum Electrodynamics,” Phys. Rev. 75,
1736.

Schwinger, J.S. (1951), “On The Green’s Functions Of Quantized Fields: 1
and 2,” Proc. Nat. Acad. Sci. 37 (1951) 452; ibid 455.

This collection of a countable infinity of equations is called the complex of
Dyson-Schwinger equations (DSEs).

It is an intrinsically nonperturbative complex, which is vitally important in proving
the renormalisability of quantum field theories, and at its simplest level the
complex provides a generating tool for perturbation theory.

In the context of quantum electrodynamics (QED) we will illustrate a
nonperturbative derivation of two equations in this complex. The derivation of
others follows the same pattern.
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Photon Vacuum Polarisation
NB. This is one part of the Lamb Shift

Action for QED with Nf flavours of electomagnetically active fermions:

S[Aµ, ψ, ψ̄] =

∫

d4x





Nf
∑

f=1

ψ̄f
(

i 6∂ −mf0 + ef0 6A
)

ψf − 1

4
FµνF

µν − 1

2λ0
∂µAµ(x) ∂νAν(x)



 .

(163)

Manifestly Poincaré covariant action:

ψ̄f (x), ψf (x) are elements of Grassmann algebra that describe the fermion
degrees of freedom;

mf0 are the fermions’ bare masses and ef0 , their charges;

and Aµ(x) describes the gauge boson [photon] field, with
Fµν = ∂µAν − ∂νAµ, and λ0 the bare gauge fixing parameter.
(NB. To describe an electron the physical charge ef < 0.)
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QED Generating Functional

The procedure outlined previously can be followed to obtain

W [Jµ, ξ, ξ̄] =

∫

[DAµ] [Dψ][Dψ̄]

× exp

{

i

∫

d4x

[

−1

4
Fµν(x)Fµν(x)−

1

2λ0
∂µAµ(x) ∂νAν(x)

+

Nf
∑

f=1

ψ̄f
(

i 6∂ −mf0 + ef0 6A
)

ψf

+ Jµ(x)Aµ(x) + ξ̄f (x)ψf (x) + ψ̄f (x)ξf (x)

]}

, (164)

simple interaction term: ψ̄fef0 6Aψf

Jµ is an external source for the electromagnetic field

ξf , ξ̄f are external sources for the fermion field that, of course, are elements
in the Grassmann algebra.
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Functional Field Equations

Advantageous to work with the generating functional of connected Green
functions; i.e., Z[Jµ, ξ̄, ξ] defined via

W [Jµ, ξ, ξ̄] =: exp
{

iZ[Jµ, ξ, ξ̄]
}

. (165)

Derivation of a DSE follows simply from observation that the integral of a total
derivative vanishes, given appropriate boundary conditions; e.g.,

0 =

∫

[DAµ] [Dψ][Dψ̄]
δ

δAµ(x)
e
i

(

S[Aµ,ψ,ψ̄]+
∫

d4x

[

ψ
f
ξf +ξ̄fψf +AµJ

µ

])

=

∫

[DAµ] [Dψ][Dψ̄]

{

δS

δAµ(x)
+ Jµ(x)

}

× exp

{

i

(

S[Aµ, ψ, ψ̄] +

∫

d4x
[

ψ
f
ξf + ξ̄fψf + AµJ

µ
]

)}

=

{

δS

δAµ(x)

[

δ

iδJ
,
δ

iδξ̄
,− δ

iδξ

]

+ Jµ(x)

}

W [Jµ, ξ, ξ̄] , (166)

where the last line has meaning as a functional differential operator acting on the
generating functional.
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Functional Field Equations

Differentiate Eq. (163) to obtain

δS

δAµ(x)
=

[

∂ρ∂
ρgµν −

(

1− 1

λ0

)

∂µ∂ν

]

Aν(x) +
∑

f

ef0 ψ
f
(x)γµψ

f (x) , (167)

Equation (166) then becomes

−Jµ(x) =

[

∂ρ∂
ρgµν −

(

1− 1

λ0

)

∂µ∂ν

]

δZ

δJν(x)

+
∑

f

ef0

(

− δZ

δξf (x)
γµ

δZ

δξ̄f (x)
+

δ

δξf (x)

[

γµ
δ iZ

δξ̄f (x)

])

,

(168)

where we have divided through by W [Jµ, ξ, ξ̄].

Equation (168) represents a compact form of the nonperturbative equivalent of
Maxwell’s equations.
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One-particle Irreducible Green
Function

Introduce generating functional for one-particle-irreducible (1PI) Green functions:
Γ[Aµ, ψ, ψ̄]. Obtained from Z[Jµ, ξ, ξ̄] via a Legendre transformation; namely,

Z[Jµ, ξ, ξ̄] = Γ[Aµ, ψ, ψ̄] +

∫

d4x
[

ψ
f
ξf + ξ̄fψf +AµJ

µ
]

. (169)

One-particle-irreducible n-point function or “proper vertex” contains no
contributions that become disconnected when a single connected m-point Green
function is removed; e.g., via functional differentiation.

No diagram representing or contributing to a given proper vertex separates
into two disconnected diagrams if only one connected propagator is cut.
(Detailed explanation: Itzykson, C. and Zuber, J.-B. (1980), Quantum Field
Theory (McGraw-Hill, New York), pp. 289-294.)
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Implications of Legendre
Transformation

A simple generalisation of the analysis beginning on page 43 yields

δZ

δJµ(x)
= Aµ(x) ,

δZ

δξ̄(x)
= ψ(x) ,

δZ

δξ(x)
= −ψ̄(x) , (170)

where here the external sources are nonzero.

Hence Γ in Eq. (169) must satisfy

δΓ

δAµ(x)
= −Jµ(x) ,

δΓ

δψ̄f (x)
= −ξf (x) ,

δΓ

δψf (x)
= ξ̄f (x) . (171)

(NB. Since the sources are not zero then, e.g.,

Aρ(x) = Aρ(x; [Jµ, ξ, ξ̄]) ⇒
δAρ(x)

δJµ(y)
6= 0 , (172)

with analogous statements for the Grassmannian functional derivatives.)

NB. It is easy to see that setting ψ̄ = 0 = ψ after differentiating Γ gives zero unless
there are equal numbers of ψ̄ and ψ derivatives. (This is analogous to the result for
scalar fields in Eq. (112).)
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Green Function’s Inverse
Consider the operator and matrix product (with spinor labels r, s, t)

−
∫

d4z
δ2Z

δξfr (x)ξ̄ht (z)

δ2Γ

δψht (z)ψ
g
s(y)

∣

∣

∣

∣

∣ ξ = ξ̄ = 0

ψ = ψ = 0

. (173)

Using Eqs. (170), (171), this simplifies as follows:

=

∫

d4z
δψht (z)

δξfr (x)

δξgs (y)

δψht (z)

∣

∣

∣

∣

∣ ξ = ξ̄ = 0

ψ = ψ = 0

=
δξgs (y)

δξfr (x)

∣

∣

∣

∣

∣

ψ = ψ = 0

= δrs δ
fg δ4(x− y) .

(174)

Back in Eq. (168), setting ξ̄ = 0 = ξ one obtains

δΓ

δAµ(x)

∣

∣

∣

∣

ψ=ψ=0

=

[

∂ρ∂
ρgµν −

(

1− 1

λ0

)

∂µ∂ν

]

Aν(x)− i
∑

f

ef0 tr
[

γµS
f (x, x; [Aµ])

]

,

(175)

Identification: Sf (x, y; [Aµ]) = − δ2Z

δξf (y)ξ̄f (x)
=

δ2Z

δξ̄f (x)ξf (y)
(no summation on f) , (176)

HUGS 2005, 31/May–17/June 2005 – p. 80/103



First Contents Back Conclusion

Green Function’s Inverse
As a direct consequence of Eq. (173) the inverse of this Green function is given by

Sf (x, y; [A])−1 =
δ2Γ

δψf (x)δψ̄f (y)

∣

∣

∣

∣

ψ=ψ=0

. (177)

General property: functional derivatives of the generating functional for 1PI Green
functions are related to the associated propagator’s inverse.

Clearly the vacuum fermion propagator or connected fermion 2-point function is

Sf (x, y) := Sf (x, y; [Aµ = 0]) . (178)

Such vacuum Green functions are keystones in quantum field theory.

To continue, differentiate Eq. (175) with respect to Aν(y) and set Jµ(x) = 0:

δ2Γ

δAµ(x)δAν(y)

∣

∣

∣

∣ Aµ = 0

ψ = ψ = 0

=

[

∂ρ∂
ρgµν −

(

1− 1

λ0

)

∂µ∂ν

]

δ4(x− y)

−i
∑

f

ef0 tr



γµ
δ

δAν(y)

(

δ2Γ

δψf (x)δψ̄f (x)

∣

∣

∣

∣

ψ=ψ=0

)−1


 .(179)
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Inverse of Photon Propagator

l.h.s. is easily understood – Eqs. (177), (178) define the inverse of the fermion
propagator:

(D−1)µν(x, y) :=
δ2Γ

δAµ(x)δAν(y)

∣

∣

∣

∣ Aµ = 0

ψ = ψ = 0

. (180)

r.h.s., however, must be simplified and interpreted. First observe that

− δ

δAν(y)

(

δ2Γ

δψf (x)δψ̄f (x)

∣

∣

∣

∣

ψ=ψ=0

)−1

= (181)

∫

d4ud4w

(

δ2Γ

δψf (x)δψ̄f (w)

∣

∣

∣

∣

ψ=ψ=0

)−1
δ

δAν(y)

δ2Γ

δψf (u)δψ̄f (w)

(

δ2Γ

δψf (w)δψ̄f (x)

∣

∣

∣

∣

ψ=ψ=0

)−1

,

Analogue of result for finite dimensional matrices:

d

dx

[

A(x)A−1(x) = I
]

= 0 =
dA(x)

dx
A−1(x) +A(x)

dA−1(x)

dx

⇒ dA−1(x)

dx
= −A−1(x)

dA(x)

dx
A−1(x) .

(182)
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Proper Fermion-Photon Vertex

Equation (181) involves the 1PI 3-point function (no summation on f )

ef0Γfµ(x, y; z) :=
δ

δAν(z)

δ2Γ

δψf (x)δψ̄f (y)
. (183)

This is the proper fermion-gauge-boson vertex.

At leading order in perturbation theory

Γfν (x, y; z) = γν δ
4(x− z) δ4(y − z) , (184)

Result can be obtained via explicit calculation of functional derivatives in Eq. (183).
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Photon Vacuum Polarisation
Define the gauge-boson vacuum polarisation:

Πµν(x, y) = i
∑

f

(ef0 )2
∫

d4z1 d
4z2 tr

[

γµS
f (x, z1)Γfν (z1, z2; y)Sf (z2, x)

]

,

(185)

Gauge-boson vacuum polarisation, or “photon self-energy,”

Describes modification of the gauge-boson’s propagation characteristics due
to the presence of virtual particle-antiparticle pairs in quantum field theory.

In particular, the photon vacuum polarisation is an important element in the
description of process such as ρ0 → e+e−.

Eq. (179) may now be expressed as

(D−1)µν(x, y) =

[

∂ρ∂
ρgµν −

(

1− 1

λ0

)

∂µ∂ν

]

δ4(x− y) + Πµν(x, y) . (186)

The propagator for a free gauge boson is [use Πµν(x, y) ≡ 0 in Eq. (186)]

Dµν0 (q) =
−gµν + (qµqν/[q2 + iη])

q2 + iη
− λ0

qµqν

(q2 + iη)2
, (187)
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DSE for Photon Propagator

Then Eq. (186) can be written iD = iD0 + iD0 iΠ iD.

The is a Dyson-Schwinger Equation
Π

i

=

i

i

i

i

i

i

i
=

Πi i

a)

b) +
00

Γ

D

γ

S

S

D D D

In presence of interactions;
i.e., for Πµν 6= 0 in Eq. (186),

Dµν(q) =
−gµν + (qµqν/[q2 + iη])

q2 + iη

1

1 + Π(q2)
− λ0

qµqν

(q2 + iη)2
, (188)

Used the “Ward-Takahashi identity:” qµ Πµν(q) = 0 = Πµν(q) qν ,

⇒ Πµν(q) =
(

−gµνq2 + qµqν
)

Π(q2) . (189)

Π(q2) is the polarisation scalar. Independent of the gauge parameter, λ0, in QED.

λ0 = 1 is called “Feynman gauge.” Useful in perturbative calculations
because it simplifies the Π(q2) = 0 gauge boson propagator enormously.

In nonperturbative applications, however, λ0 = 0, “Landau gauge,” is most
useful because it ensures that the gauge boson propagator is itself transverse.
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Ward-Takahashi Identities
Ward-Takahashi identities (WTIs) are relations satisfied by n-point Green
functions, relations which are an essential consequence of a theory’s local gauge
invariance; i.e., local current conservation.

They can be proved directly from the generating functional and have physical
implications. For example, Eq. (189) ensures that the photon remains massless in
the presence of charged fermions.

A discussion of WTIs can be found in

Bjorken, J.D. and Drell, S.D. (1965), Relativistic Quantum Fields (McGraw-Hill,
New York), pp. 299-303,

Itzykson, C. and Zuber, J.-B. (1980), Quantum Field Theory (McGraw-Hill,
New York), pp. 407-411;

Their generalisation to non-Abelian theories as “Slavnov-Taylor” identities is
described in
Pascual, P. and Tarrach, R. (1984), Lecture Notes in Physics, Vol. 194, QCD:
Renormalization for the Practitioner (Springer-Verlag, Berlin), Chap. 2.
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Vacuum Polarisation in Momentum
Space

In absence of external sources, Eq. (185) can easily be represented in momentum
space, because then the 2- and 3-point functions appearing therein must be
translationally invariant and hence they can be simply expressed in terms of
Fourier amplitudes; i.e., we have

iΠµν(q) = −
∑

f

(ef0 )2
∫

d4ℓ

(2π)d
tr[(iγµ)(iSf (ℓ))(iΓf (ℓ, ℓ+q))(iS(ℓ+q))] . (190)

The reduction to a single integral makes momentum space representations most
widely used in continuum calculations.

QED: the vacuum polarisation is directly related to the running coupling constant,
which is a connection that makes its importance obvious.

QCD: connection not so direct but, nevertheless, the polarisation scalar is a key
component in the evaluation of the strong running coupling.

Observed: second derivatives of the generating functional, Γ[Aµ, ψ, ψ̄], give the
inverse-fermion and -photon propagators; third derivative gave the proper
photon-fermion vertex. In general, all derivatives of Γ[Aµ, ψ, ψ̄], higher than two,
produce a proper vertex, number and type of derivatives give the number and type
of proper Green functions that it can connect.
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Functional Dirac Equation

Equation (168) is a nonperturbative generalisation of Maxwell’s equation in
quantum field theory. Its derivation provides the model by which one can obtain an
equivalent generalisation of Dirac’s equation:

0 =

∫

[DAµ] [Dψ][Dψ̄]
δ

δψ̄f (x)
e
i
(

S[Aµ,ψ,ψ̄]+
∫

d4x
[

ψ
g
ξg+ξ̄gψg+AµJ

µ
])

=

∫

[DAµ] [Dψ][Dψ̄]

{

δS

δψ̄f (x)
+ ξf (x)

}

× exp

{

i

(

S[Aµ, ψ, ψ̄] +

∫

d4x
[

ψ
g
ξg + ξ̄gψg +AµJ

µ
]

)}

=

{

δS

δψ̄f (x)

[

δ

iδJ
,
δ

iδξ̄
,− δ

iδξ

]

+ ηf (x)

}

W [Jµ, ξ, ξ̄] (191)

0 =

[

ξf (x) +

(

i 6∂ −mf0 + ef0γ
µ δ

iδJµ(x)

)

δ

iδξ̄f (x)

]

W [Jµ, ξ, ξ̄]. (192)

The last line furnishes a nonperturbative functional equivalent of Dirac’s equation.
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Functional Green Function
Next step . . . a functional derivative with respect to ξf : δ/δξf (y), yields

δ4(x− y)W [Jµ]−
(

i 6∂ −mf0 + ef0γ
µ δ

iδJµ(x)

)

W [Jµ]Sf (x, y; [Aµ]) = 0 , (193)

after setting ξf = 0 = ξ̄f , where W [Jµ] := W [Jµ, 0, 0] and S(x, y; [Aµ]) is
defined in Eq. (176).

Now, using Eqs. (165), (171), this can be rewritten

δ4(x−y)−
(

i 6∂ −mf0 + ef0 6A(x; [J ]) + ef0γ
µ δ

iδJµ(x)

)

Sf (x, y; [Aµ]) = 0 , (194)

which defines the nonperturbative connected 2-point fermion Green function

NB. This is clearly the functional equivalent of Eq. (69):

[i∂/x′ − eA/(x′) −m]S(x′, x) = 1 δ4(x′ − x) . (195)

namely, Differential Operator Green Function for the Interacting Dirac Theory.
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DSE for Fermion Propagator

The electromagentic four-potential vanishes in the absence of an external source;
i.e., Aµ(x; [J = 0]) = 0

Remains only to exhibit the content of the remaining functional differentiation in
Eq. (194), which can be accomplished using Eq. (181):

δ

iδJµ(x)
Sf (x, y; [Aµ]) =

∫

d4z
δAν(z)

iδJµ(x)

δ

δAν(z)

(

δ2Γ

δψf (x)δψ̄f (y)

∣

∣

∣

∣

ψ=ψ=0

)−1

= −ef0
∫

d4z d4u d4w
δAν(z)

iδJµ(x)
Sf (x, u) Γν(u,w; z)S(w, y)

= −ef0
∫

d4z d4u d4w iDµν(x− z)Sf (x, u) Γν(u,w; z)S(w, y) ,

(196)
In the last line, we have set J = 0 and used Eq. (180).

Hence in the absence of external sources Eq. (194) is equivalent to

δ4(x− y) =
(

i 6∂ −mf0
)

Sf (x, y)

− i (ef0 )2
∫

d4z d4u d4wDµν(x, z) γµ S(x, u) Γν(u,w; z)S(w, y) . (197)
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Fermion Self Energy

Photon vacuum polarisation was introduced to re-express the DSE for the gauge
boson propagator, Eq. (185). Analogue, one can define a fermion self-energy:

Σf (x, z) = i(ef0 )2
∫

d4u d4w Dµν(x, z) γµ S(x, u) Γν(u,w; z) , (198)

so that Eq. (197) assumes the form

∫

d4z
[(

i 6∂x −mf0
)

δ4(x− z)− Σf (x, z)
]

S(z, y) = δ4(x− y) . (199)

Using property that Green functions are translationally invariant in the absence of
external sources:

−iΣf (p) = (ef0 )2
∫

d4ℓ

(2π)4
[iDµν(p− ℓ)] [iγµ] [iSf (ℓ)] [iΓfν (ℓ, p)] . (200)

Now follows from Eq. (199) that connected fermion 2-point function in momentum
space is

Sf (p) =
1

6p−mf0 − Σf (p) + iη+
. (201)
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Gap Equation

Equation (200) is the exact Gap Equation.

Describes manner in which propagation characteristics of a fermion moving
through ground state of QED (the QED vacuum) is altered by the repeated
emission and reabsorption of virtual photons.

iΣ

=

i

i

i

i

i

Σ

i

i
i

=

i

a)

+b)
0 0S

S

Γ

D

γ

S

S

S

Equation can also describe the real process of Bremsstrahlung. Furthermore,
solution of analogous equation in QCD provides information about dynamical
chiral symmetry breaking and also quark confinement.
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Perturbative Calculation of Gap

Keystone of strong interaction physics is dynamical chiral symmetry breaking
(DCSB). In order to understand DCSB one must first come to terms with explicit
chiral symmetry breaking. Consider then the DSE for the quark self-energy in
QCD:

−iΣ(p) = −g20
∫

d4ℓ

(2π)4
Dµν(p− ℓ) i

2
λaγµ S(ℓ) iΓaν(ℓ, p) , (202)

where the flavour label is suppressed.

Form is precisely the same as that in QED, Eq. (200) but . . .

colour (Gell-Mann) matrices: {λa; a = 1, . . . , 8} at the fermion-gauge-boson
vertex

Dµν(ℓ) is the connected gluon 2-point function

Γaν(ℓ, ℓ
′) is the proper quark-gluon vertex

One-loop contribution to quark’s self-energy obtained by evaluating r.h.s. of
Eq. (202) using the free quark and gluon propagators, and the quark-gluon vertex:

Γ
a (0)
ν (ℓ, ℓ′) =

1

2
λaγν . (203)
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Explicit Leading-Order Calculation

− iΣ(2)(p) = −g20
∫

d4k

(2π)4

(

−gµν + (1− λ0)
kµkν

k2 + iη+

)

1

k2 + iη+

× i

2
λaγµ

1

6k + 6p−m0 + iη+

i

2
λaγµ . (204)

To proceed, first observe that Eq. (204) can be re-expressed as

−iΣ(2)(p) = −g20 C2(R)

∫

d4k

(2π)4
1

(k + p)2 −m2
0 + iη+

1

k2 + iη+

×
{

γµ ( 6k + 6p+m0) γµ − (1− λ0) ( 6k − 6p+m0)− 2 (1− λ0)
(k, p) 6k
k2 + iη+

}

,

(205)

where we have used
1

2
λa

1

2
λa = C2(R) Ic ; C2(R) =

N2
c − 1

2Nc
, with Nc the

number of colours (Nc = 3 in QCD), and Ic is the identity matrix in colour space.
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Explicit Leading-Order Calculation

Now note that 2 (k, p) = [(k + p)2 −m2
0]− [k2]− [p2 −m2

0] and hence

− iΣ(2)(p) = −g20 C2(R)

∫

d4k

(2π)4
1

(k + p)2 −m2
0 + iη+

1

k2 + iη+

{

γµ ( 6k + 6p+m0) γµ + (1− λ0) ( 6p−m0)

+ (1− λ0) (p2 −m2
0)

6k
k2 + iη+

− (1− λ0) [(k + p)2 −m2
0]

6k
k2 + iη+

}

. (206)

Focus on the last term:

∫

d4k

(2π)4
1

(k + p)2 −m2
0 + iη+

1

k2 + iη+
[(k + p)2 −m2

0]
6k

k2 + iη+

=

∫

d4k

(2π)4
1

k2 + iη+

6k
k2 + iη+

= 0 (207)

because the integrand is odd under k→ −k, and so this term in Eq. (206)
vanishes.
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Explicit Leading-Order Calculation

−iΣ(2)(p) = −g20 C2(R)

∫

d4k

(2π)4
1

(k + p)2 −m2
0 + iη+

1

k2 + iη+

{

γµ ( 6k + 6p+m0) γµ + (1− λ0) ( 6p−m0) + (1− λ0) (p2 −m2
0)

6k
k2 + iη+

}

.

Consider the second term:

(1− λ0) ( 6p−m0)

∫

d4k

(2π)4
1

(k + p)2 −m2
0 + iη+

1

k2 + iη+
.

In particular, focus on the behaviour of the integrand at large k2:

1

(k + p)2 −m2
0 + iη+

1

k2 + iη+

k2→±∞∼ 1

(k2 −m2
0 + iη+) (k2 + iη+)

. (208)
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Wick Rotation
Integrand has poles in the second and fourth quadrant of the complex-k0-plane but
vanishes on any circle of radius R→∞ in this plane. That means one may rotate
the contour anticlockwise to find

∫ ∞

0
dk0 1

(k2 −m2
0 + iη+) (k2 + iη+)

=

∫ i∞

0
dk0 1

([k0]2 − ~k2 −m2
0 + iη+)([k0]2 − ~k2 + iη+)

k0→ik4= i

∫ ∞

0
dk4

1

(−k2
4 − ~k2 −m2

0) (−k2
4 − ~k2)

. (209)

Performing a similar analysis of the
∫ 0
−∞

part, one obtains the complete result:

∫

d4k

(2π)4
1

(k2 −m2
0 + iη+) (k2 + iη+)

= i

∫

d3k

(2π)3

∫ ∞

−∞

dk4

2π

1

(−~k2 − k2
4 −m2

0) (−~k2 − k2
4)
. (210)

These two steps constitute what is called a Wick rotation.
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Euclidean Integral

The integral on the r.h.s. is defined in a four-dimensional Euclidean space; i.e.,
k2 := k2

1 + k2
2 + k2

3 + k2
4 ≥ 0, with k2 nonnegative.

A general vector in this space can be written in the form:

(k) = |k| (cosφ sin θ sinβ, sinφ sin θ sinβ, cos θ sin β, cosβ) ; (211)

i.e., using hyperspherical coordinates, and clearly k2 = |k|2.

In this Euclidean space using these coordinates the four-vector measure factor is

∫

d4Ek f(k1, . . . , k4)

=
1

2

∫ ∞

0
dk2 k2

∫ π

0
dβ sin2β

∫ π

0
dθ sin θ

∫ 2π

0
dφ f(k, β, θ, φ) .

(212)
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Euclidean Integral

Returning to Eq. (208) and making use of the material just introduced, the large k2

behaviour of the integral can be determined via

∫

d4k

(2π)4
1

(k + p)2 −m2
0 + iη+

1

k2 + iη+

≈ i

16π2

∫ ∞

0
dk2 1

(k2 +m2
0)

=
i

16π2
lim

Λ→∞

∫ Λ2

0
dx

1

x+m2
0

=
i

16π2
lim

Λ→∞
ln
(

1 + Λ2/m2
0

)

→∞ ; (213)

After all this work, the result is meaningless: the one-loop contribution to the
quark’s self-energy is divergent!
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Regularisation and Renormalisation

Such “ultraviolet” divergences, and others which are more complicated, arise
whenever loops appear in perturbation theory. (The others include “infrared”
divergences associated with the gluons’ masslessness; e.g., consider what would
happen in Eq. (213) with m0 → 0.)

In a renormalisable quantum field theory there exists a well-defined set of rules
that can be used to render perturbation theory sensible.

First, however, one must regularise the theory; i.e., introduce a cutoff, or use
some other means, to make finite every integral that appears. Then each step
in the calculation of an observable is rigorously sensible.

Renormalisation follows; i.e, the absorption of divergences, and the
redefinition of couplings and masses, so that finally one arrives at S-matrix
amplitudes that are finite and physically meaningful.

The regularisation procedure must preserve the Ward-Takahashi identities (the
Slavnov-Taylor identities in QCD) because they are crucial in proving that a theory
can be sensibly renormalised.

A theory is called renormalisable if, and only if, number of different types of
divergent integral is finite. Then only finite number of masses & couplings need to
be renormalised; i.e., a priori the theory has only a finite number of undetermined
parameters that must be fixed through comparison with experiments.HUGS 2005, 31/May–17/June 2005 – p. 100/103
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Renormalised One-Loop Result

Don’t have time to explain and illustrate the procedure. Interested?
Read . . . Pascual, P. and Tarrach, R. (1984), Lecture Notes in Physics, Vol. 194,
QCD: Renormalization for the Practitioner (Springer-Verlag, Berlin).

Answer, in Momentum Subtraction Scheme:
Σ

(2)
R ( 6p) = Σ

(2)
V R(p2) 6p+ Σ

(2)
SR(p2)1D ;

Σ
(2)
V R(p2; ζ2) =

α(ζ)

π
λ(ζ)

1

4
C2(R)

{

−m2(ζ)

(

1

p2
+

1

ζ2

)

+

(

1− m4(ζ)

p4

)

ln

(

1− p2

m(ζ)2

)

−
(

1− m4(ζ)

ζ4

)

ln

(

1 +
ζ2

m2(ζ)

)}

,

Σ
(2)
SR(p2; ζ2) = m(ζ)

α(ζ)

π

1

4
C2(R)

{

− [3 + λ(ζ)]

×
[(

1− m2(ζ)

p2

)

ln

(

1− p2

m2(ζ)

)

−
(

1 +
m2(ζ)

ζ2

)

ln

(

1 +
ζ2

m2(ζ)

)]}

,

where the renormalised quantities depend on the point at which the
renormalisation has been conducted;
e.g., α(ζ) is the running coupling, m(ζ) is the running quark mass.
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Observations on Quark Self Energy

QCD is Asymptotically Free. Hence, at some large spacelike p2 = ζ2 the
propagator is exactly the free propagator except that the bare mass is replaced by
the renormalised mass.

At one-loop order, the vector part of the dressed self energy is proportional to the
running gauge parameter. In Landau gauge, that parameter is zero. Hence, the
vector part of the renormalised dressed self energy vanishes at one-loop order in
perturbation theory.

The scalar part of the dressed self energy is proportional to the renormalised
current-quark mass.

This is true at one-loop order, and at every order in perturbation theory.

Hence, if current-quark mass vanishes, then ΣSR ≡ 0 in perturbation theory.
That means if one starts with a chirally symmetric theory, one ends up with a
chirally symmetric theory: NO DCSB in perturbation theory.
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Exercises
Verify Eq. (171).

Verify Eq. (181).

Verify Eq. (190).

Verify Eq. (194).

Verify Eq. (213).
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