Symmetry methods
for exotic nuclei

P. Van Isacker, GANIL, France

Role of symmetries in
The nuclear shell model
The interacting boson model
Their relevance for RIBs

RIA Theory meeting, Argonne, April 2006
ECT* doctoral training programme

• Title: “Nuclear structure and reactions” (spring 2007, ±3 months, for PhD students).
• Lecture series on shell model, mean-field approaches, nuclear astrophysics, fundamental interactions, symmetries in nuclei, reaction theory, exotic nuclei,…
• Workshops related to these topics.
• Please:
 – Encourage students to apply;
 – Submit workshop proposals to ECT*.

RIA Theory meeting, Argonne, April 2006
Nuclear superfluidity

• Ground states of pairing hamiltonian have the following correlated character:
 – Even-even nucleus ($\nu=0$): $\left(\hat{S}_+\right)^{n/2}|o\rangle$, $\hat{S}_+ = \sum_{m>0} \hat{a}_m^+ \hat{a}_m^+$
 – Odd-mass nucleus ($\nu=1$): $\hat{a}_m^+ \left(\hat{S}_+\right)^{n/2}|o\rangle$

• Nuclear superfluidity leads to
 – Constant energy of first 2^+ in even-even nuclei.
 – Odd-even staggering in masses.
 – Smooth variation of two-nucleon separation energies with nucleon number.
 – Two-particle (2n or 2p) transfer enhancement.
Two-nucleon separation energies

a. Shell splitting dominates over interaction.

b. Interaction dominates over shell splitting.

c. S_{2n} in tin isotopes.
Pairing with neutrons and protons

- For neutrons and protons *two* pairs and hence *two* pairing interactions are possible:
 - 1S_0 isovector or spin singlet ($S=0,T=1$): $\hat{S}_+ = \sum_{m>0} \hat{a}^+_{m\downarrow} \hat{a}^+_{m\uparrow}$
 - 3S_1 isoscalar or spin triplet ($S=1,T=0$): $\hat{P}_+ = \sum_{m>0} \hat{a}^+_{m\uparrow} \hat{a}^+_{m\uparrow}$
Neutron-proton pairing hamiltonian

- The nuclear hamiltonian has two pairing interactions
 \[\hat{V}_{\text{pairing}} = -g_0 \hat{S}_+ \cdot \hat{S}_- - g_1 \hat{P}_+ \cdot \hat{P}_- \]

- SO(8) algebraic structure.

- Integrable and solvable for \(g_0 = 0, g_1 = 0 \) and \(g_0 = g_1 \).

RIA Theory meeting, Argonne, April 2006
Quartetting in $N=Z$ nuclei

• Pairing ground state of an $N=Z$ nucleus:

\[
\left(\cos \theta \hat{S}_+ \cdot \hat{S}_+ - \sin \theta \hat{P}_+ \cdot \hat{P}_+ \right)^{n/4} \left| o \right>
\]

• \Rightarrow Condensate of “α-like” objects.

• Observations:
 – Isoscalar component in condensate survives only in $N\sim Z$ nuclei, if anywhere at all.
 – Spin-orbit term reduces isoscalar component.
Generalized pairing models

- Pairing in degenerate orbits between identical particles has SU(2) symmetry.
- Richardson-Gaudin models can be generalized to higher-rank algebras:

$$\hat{R}_i = \hat{H}_i^s + g_0 \sum_{j \neq i}^{L} \sum_{\mu,\nu} \frac{\hat{X}_i^{\mu} g_{\mu\nu} \hat{X}_j^{\nu}}{2\epsilon_i - 2\epsilon_j}$$

$$g_0 \sum_{i=1}^{L} \frac{\Lambda_i^a}{e_{a\alpha} - 2\epsilon_i} - g_0 \sum_{b=1}^{r} \sum_{\beta=1}^{M_b} \frac{A_{ba}}{e_{a\alpha} - e_{b\beta}} = \delta_{as}$$

J. Dukelsky et al., to be published
SO(5) pairing

• Hamiltonian:

\[\hat{H} = \sum_j \epsilon_j \hat{n}_j - g_0 \hat{S}_+ \cdot \hat{S}_- \]

• “Quasi-spin” algebra is SO(5) (rank 2).

• Example: \(^{64}\text{Ge}\) in \(pf_g9/2\) shell (\(d \sim 9 \cdot 10^{14}\)).

The interacting boson model

• Spectrum generating algebra for the nucleus is $U(6)$. All physical observables (hamiltonian, transition operators,…) are expressed in terms of s and d bosons.

• Justification from
 – Shell model: s and d bosons are associated with S and D fermion ($Cooper$) pairs.
 – Geometric model: for large boson number the IBM reduces to a liquid-drop hamiltonian.

RIA Theory meeting, Argonne, April 2006
The IBM symmetries

- Three analytic solutions: U(5), SU(3) & SO(6).
Applications of IBM
IBM symmetries and phases

- Open problems:
 - Symmetries and phases of two fluids (IBM-2).
 - Coexisting phases?
 - Existence of three-fluid systems?

RIA Theory meeting, Argonne, April 2006
Symmetry chart (SPIRAL-2)
Model with $L=0$ vector bosons

- **Correspondence:** $\hat{S}_+ \rightarrow b_{T=1}^+ \equiv s^+$, $\hat{P}_+ \rightarrow b_{T=0}^+ \equiv p^+$
- **Algebraic structure is** $U(6)$.
- **Symmetry lattice of** $U(6)$:

$$U(6) \supset \left\{ U_s(3) \otimes U_T(3) \right\} \supset SU(4) \supset SO_s(3) \otimes SO_T(3)$$

- **Boson mapping is exact in the symmetry limits** [for fully paired states of the SO(8)].
Masses of $N\sim Z$ nuclei

- Neutron-proton pairing hamiltonian in \textit{non-degenerate} shells:
 \[
 \hat{H}_F = \sum_j \epsilon_j \hat{n}_j - g_0 \hat{S}_+ \cdot \hat{S}_- - g_1 \hat{P}_+ \cdot \hat{P}_-
 \]

- H_F maps into the boson hamiltonian:
 \[
 \hat{H}_B = a\hat{C}_2[SU(4)] + b\hat{C}_1[U_S(3)]
 \]
 \[
 + c_1\hat{C}_1[U(6)] + c_2\hat{C}_2[U(6)] + d\hat{C}_2[SO_T(3)]
 \]

- H_B describes masses of $N\sim Z$ nuclei.
Masses of \textit{pf}-shell nuclei

- Root-mean-square deviation is 254 keV.
- Parameter ratio: $b/a \approx 5$.

RIA Theory meeting, Argonne, April 2006
Deuteron transfer in $N=Z$ nuclei

Deuteron Transfer in $N = Z$ Nuclei

P. Van Isacker, 1 D. D. Warner, 2 and A. Frank 3

1Grand Accélérateur National d’Ions Lourds, B.P. 55027, F-14076 Caen Cedex 5, France
2CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom
3Instituto de Ciencias Nucleares, UNAM, Apdo. Postal 70-543, 04510 México, D.F. Mexico
(Received 14 September 2004; published 29 April 2005)

Predictions are obtained for $T = 0$ and $T = 1$ deuteron-transfer intensities between self-conjugate $N = Z$ nuclei on the basis of a simplified interacting boson model which considers bosons without orbital angular momentum but with full spin-isospin structure. These transfer predictions can be correlated with nuclear binding energies in specific regions of the mass table.

$T=0$ transfer

$T=1$ transfer

RIA Theory meeting, Argonne, April 2006
Deuteron transfer in $N=Z$ nuclei

- Deuteron-transfer intensity c_T^2 calculated in sp-IBM based on $SO(8)$.

$$c_T^2 = \langle [N_b + 1] \phi_B | b_{TS}^+ | [N_b] \phi_A \rangle^2$$

- Ratio b/a fixed from masses in lower half of 28-50 shell.
(d,α) and (p,³He) transfer
Collective modes in n-rich nuclei

- New collective modes in nuclei with a neutron-skin?

- Algebraic model via

- Expressions for M1 strength:

\[
B\left(\text{M1}; 0^+_1 \rightarrow 1^+_S\right) = \frac{3}{4\pi} \left(g_\nu - g_\pi\right)^2 f(N) N_\nu N_\pi
\]

\[
B\left(\text{M1}; 0^+_1 \rightarrow 1^+_SS\right) = \frac{3}{4\pi} \left(g_\nu - g_\pi\right)^2 f(N) \frac{N_{\nu_S} N_\pi^2}{N_\nu + N_\pi}
\]

‘Soft scissors’ excitation
Conclusion

Sir Denys in *Blood, Birds and the Old Road*:

« Accelerators rarely carry out the program on the basis of which their funding was granted: something more exciting always comes along. The lesson is that what matters most is enthusiasm and commitment: the fire in the belly. »

RIA Theory meeting, Argonne, April 2006