VMC Spectroscopic Overlaps

Part I: Pickup Reactions

Part II: Stripping Reactions

Older VMC Spectroscopic Overlaps

GFMC Spectroscopic Overlaps

This web page presents recent spectroscopic overlaps calculated for a variety of nuclei in the range A=3-12. Corresponding one-nucleon densities can be found here. These are from variational Monte Carlo calculations (VMC) using the Argonne v18 two-nucleon and Urbana X three-nucleon potentials (AV18+UX). (Urbana X is intermediate between the Urbana IX and Illinois-7 models; it has the form of UIX supplemented with a two-pion S-wave piece, while the strengths of its terms are taken from the IL7 model. It does NOT have the three-pion-ring term of IL7.)

These VMC wave functions are the starting trial functions for a number of recent Green's function Monte Carlo (GFMC) calculations:
Brida, et al., Phys. Rev. C 84, 024319 (2011);
McCutchan, et al., Phys. Rev. C 86, 024315 (2012);
Pastore, et al., Phys. Rev. C 87, 035503 (2013);
Pastore, et al., Phys. Rev. C 90, 024321 (2014).

More details of the wave function construction can be found in
Wiringa, Phys. Rev. C 43, 1585 (1991) for A=3,4;
Pudliner, et al., Phys. Rev. C 56, 1720 (1997) for A=6,7;
Wiringa, et al., Phys. Rev. C 62, 014001 (2000) for A=8;
Pieper, et al., Phys. Rev. C 70, 044310 (2002) for A=9,10.

Following are figures and tabulations of the single-nucleon r-space amplitudes A(r) (in fm-3/2) and the integrated spectroscopic factors with the normalization:

S.F. = Integral ( A2(r) r2 dr ) .

Momentum-space amplitudes are available upon request.

In the following, states are designated by AZ(Jπ;T) except the T is omitted for states of the lowest isospin available to that nucleus. Second excited states of the same quantum numbers are denoted by AZ(Jπ2;T).

3H(1/2+)->
2H(1+)+n Figure
2H(1+)+n Table
3He(1/2+)->
2H(1+)+p Figure
2H(1+)+p Table
4He(0+)->
3H(1/2+)+p Figure
3H(1/2+)+p Table
3He(1/2+)+n Figure
3He(1/2+)+n Table
6He(0+)->
5H+p Summary
5H(1/2+)+p Figure
5H(1/2+)+p Table
5H(5/2+)+p Figure
5H(5/2+)+p Table
5H(3/2+)+p Figure
5H(3/2+)+p Table
5He+n Summary
5He(3/2-)+n Figure
5He(3/2-)+n Table
5He(1/2-)+n Figure
5He(1/2-)+n Table
6Li(1+)->
5He+p Summary
5He(3/2-)+p Figure
5He(3/2-)+p Table
5He(1/2-)+p Figure
5He(1/2-)+p Table








7He(3/2-) ->
6He(0+)+n Figure
6He(0+)+n Table
6He(2+)+n Figure
6He(2+)+n Table
7Li(3/2-;3/2) ->
6He(0+)+p Figure
6He(0+)+p Table
6Li(0+;1)+n Figure
6Li(0+;1)+n Table
7Be(3/2-;3/2) ->
6Li(0+;1)+p Figure
6Li(0+;1)+p Table
6Be(0+)+n Figure
6Be(0+)+n Table
7B(3/2-) ->
6Be(0+)+p Figure
6Be(0+)+p Table
6Be(2+)+p Figure
6Be(2+)+p Table
7Li(3/2-) ->
6He+p Summary
6He(0+)+p Figure
6He(0+)+p Table
6He(2+)+p Figure
6He(2+)+p Table
6Li+n Summary
6Li(1+)+n Figure
6Li(1+)+n Table
6Li(3+)+n Figure
6Li(3+)+n Table
6Li(0+;1)+n Figure
6Li(0+;1)+n Table
7Be(3/2-) ->
6Be+n Summary
6Be(0+)+n Figure
6Be(0+)+n Table
6Be(2+)+n Figure
6Be(2+)+n Table
6Li+p Summary
6Li(1+)+p Figure
6Li(1+)+p Table
6Li(3+)+p Figure
6Li(3+)+p Table
6Li(0+;1)+p Figure
6Li(0+;1)+p Table
8He(0+)->
7He+n Summary
7He(3/2-)+n Figure
7He(3/2-)+n Table
7He(1/2-)+n Figure
7He(1/2-)+n Table
















8Li(2+)->
7He+p Summary
7He(3/2-)+p Figure
7He(3/2-)+p Table
7He(5/2-)+p Figure
7He(5/2-)+p Table
7Li+n Summary
7Li(3/2-)+n Figure
7Li(3/2-)+n Table
7Li(1/2-)+n Figure
7Li(1/2-)+n Table
7Li(7/2-)+n Figure
7Li(7/2-)+n Table
7Li(5/2-)+n Figure
7Li(5/2-)+n Table
7Li(5/2-2)+n Figure
7Li(5/2-2)+n Table
7Li(7/2-2)+n Figure
7Li(7/2-2)+n Table
8B(2+)






7Be+p Summary
7Be(3/2-)+p Figure
7Be(3/2-)+p Table












9Li(3/2-) ->
8He+p Summary
8He(0+)+p Figure
8He(0+)+p Table
8He(2+)+p Figure
8He(2+)+p Table

8Li+n Summary
8Li(2+)+n Figure
8Li(2+)+n Table
8Li(1+)+n Figure
8Li(1+)+n Table
8Li(3+)+n Figure
8Li(3+)+n Table



9Be(3/2-) ->
8Li+p Summary
8Li(2+)+p Figure
8Li(2+)+p Table
8Li(1+)+p Figure
8Li(1+)+p Table
8Li(3+)+p Figure
8Li(3+)+p Table

8Be+n Summary
8Be(0+)+n Figure
8Be(0+)+n Table
8Be(2+)+n Figure
8Be(2+)+n Table
8Be(2+2)+n Figure
8Be(2+2)+n Table
9C(3/2-) ->
8C+n Summary
8C(0+)+n Figure
8C(0+)+n Table
8C(2+)+n Figure
8C(2+)+n Table

8B+p Summary
8B(2+)+p Figure
8B(2+)+p Table
8B(1+)+p Figure
8B(1+)+p Table
8B(3+)+p Figure
8B(3+)+p Table
8B*(0+;2)+p Figure
8B*(0+;2)+p Table
10Be(0+) ->
9Li+p Summary
9Li(3/2-)+p Figure
9Li(3/2-)+p Table
9Li(1/2-)+p Figure
9Li(1/2-)+p Table
9Be+n Summary
9Be(3/2-)+n Figure
9Be(3/2-)+n Table
9Be(1/2-)+n Figure
9Be(1/2-)+n Table
10B(3+) ->
9Be+p Summary
9Be(3/2-)+p Figure
9Be(3/2-)+p Table
9Be(5/2-)+p Figure
9Be(5/2-)+p Table







10C(0+) ->
9C+n Summary
9C(3/2-)+n Figure
9C(3/2-)+n Table
9C(1/2-)+n Figure
9C(1/2-)+n Table







11B(3/2-) ->
10Be+p Summary
10Be(0+)+p Figure
10Be(0+)+p Table
10Be(2+)+p Figure
10Be(2+)+p Table
10Be(2+2)+p Figure
10Be(2+2)+p Table

10B+n Summary
10B(3+)+n Figure
10B(3+)+n Table
10B(1+)+n Figure
10B(1+)+n Table
10B*(0+;1)+n Figure
10B*(0+;1)+n Table
10B(1+2)+n Figure
10B(1+2)+n Table
11C(3/2-) ->
10C+n Summary
10C(0+)+n Figure
10C(0+)+n Table
10C(2+)+n Figure
10C(2+)+n Table
10C(2+2)+n Figure
10C(2+2)+n Table

10B+p Summary
10B(3+)+p Figure
10B(3+)+p Table
10B(1+)+p Figure
10B(1+)+p Table
10B*(0+;1)+p Figure
10B*(0+;1)+p Table
10B(1+2)+p Figure
10B(1+2)+p Table
12Be(0+) ->
11Be+n Summary
11Be(1/2-)+n Figure
11Be(1/2-)+n Table
11Be(3/2-)+n Figure
11Be(3/2-)+n Table
11Be(3/2-2)+n Figure
11Be(3/2-2)+n Table










12B(1+) ->
11Be+p Summary
11Be(1/2-)+p Figure
11Be(1/2-)+p Table
11Be(3/2-)+p Figure
11Be(3/2-)+p Table
11Be(5/2-)+p Figure
11Be(5/2-)+p Table

11B+n Summary
11B(3/2-)+n Figure
11B(3/2-)+n Table
11B(1/2-)+n Figure
11B(1/2-)+n Table
11B(3/2-2)+n Figure
11B(3/2-2)+n Table
12C(0+) ->
11B+p Summary
11B(3/2-)+p Figure
11B(3/2-)+p Table
11B(1/2-)+p Figure
11B(1/2-)+p Table
11B(3/2-)+p Figure
11B(3/2-)+p Table

11C+n Summary
11C(3/2-)+n Figure
11C(3/2-)+n Table
11C(1/2-)+n Figure
11C(1/2-)+n Table
11C(3/2-)+n Figure
11C(3/2-)+n Table

Robert B. Wiringa
Last update October 3, 2023