Energy (MeV)

-10
15
-20
25
-30
35
-40
45
.50
55
-60
.65
-70
75
-80
-85
-90
95

-100

T 22 1 22 1 22 1 22 1+ n+ 4He scattering — AV18+IL2

7:_ T T T T T T I T T T T I T T T T I T _:
— 2| I 6F 3
- I :
— w76 SE . %- E
L 55w w5 es 1/2+ o 4;_ . 4 5 _é
= F — R-Matrix (data) -
I S 3 . . -
- \\ % Polelocation ]
3
- ST tp R —mm
C A T B T T R B i

| % 1 2 3 4

284 o*

Surfaces of density = 0.24 fm3 in polarized deuteron states. The distinctive
structures are induced by the strong tensor potentials which result from the
pion-exchange component of the nucleon-nucleon interaction.
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°He

States that are above
particle emission thres-
hold should really be
computed as scattering
states. Thisfigure shows
thefirst few partia

waves for n+*He scatter-
ing; i.e. the low-lying
resonant states of the
unbound nucleus °He.
The results are shown as
partial-wave cross sections.
The solid black curves
represent the experimental
data. TheJ=3/2

resonance is well reproduced,

both in location and width.
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AV18

the Argonne v,g (AV18) NN potential

and AV 18 plus the Urbana-1X or the
[1linois-2 NNN potentials.
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The main figure compares computed and
experimental energies of nuclear states.
The computations were made using just
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Thereis an experimental
claim of abound tetra-

neutron (n). Our Ham-
iltonian predicts at most

anceat +2 MeV. The
figure shows attempts to

produce a *n with nega-
tive energy by changing
the Hamiltonian. Modi-
fication of the 1S, poten-

tial gives abound
dineutron and signifi-
cantly overbinds other
nuclei. AddingaT=3/2
NNN potential doesn’t
effect 2n or “He but
very much overbinds
heavier systems; in fact
6n becomes the most
stable A=6 system! We
conclude that a bound
4nisvery unlikely.

a(likely very broad) reson-
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468He- AV18 + IL2 - GFMC proton-proton distributions
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The proton-proton
two-body density in
468Hejisan indica-

tor of the size of the
alpha core of these
nuclei. Many calcula-
tions assume thiscoreis
not modified by the
additional neutrons. Our
A-nucleon calculations
show asmall, but signi-
ficant, suppression of
the peak density and
increase in the rms pp
radius. Thisimplies~80
and ~350 keV excitations
of the alpha cores of

6.8He, respectively.
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6Li was produced in the
big bang by the alpha-
deuteron capture reaction
at energies of 20 to 200
keV, for which good data
does not exist. Thisis
aVMC computation using
6-nucleon wave functions
of the rate, expressed as
the astrophysical S
factor. The low-energy
Kiener data are indirect
and were extracted in a
model-dependent way
from 6Li dissociation on
208phy; no theoretical
calculation gives a
constant Sat low

energy.
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—  The shape and magnitude
of (e,€p) differential

7 cross sections are given
by the overlap of the

4 wave functions of the

1 target and residual

— nuclear states. This
normalization is usually
expressed as a spectro-
scopic factor. In this

- figure overlaps of 7- and
1 6-nucleon VMC wave
— functions have been used
to directly compute the
overlap with no adjust-
ment to fit the data.

4 Theresulting spectro-

7 scopicfactorsare 0.41

for the Ot and 0.19 for

1 the 2" states; consider-
ably smaller than conven-
— tiona (Cohen-Kurath)
shell-model values of
0.59 and 0.40. This
reduction is due to the

- strong short-range and
tensor correlations.
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Neutron drops are systems of

/ +
i ;8 P ;/; 7 interacting nucleons bound in
™ - \/—._ — — — anartificia externa well
o= Ext. well: V=-35.5,R=3, a=1.1 _ atficd exemd nell
405 W2 WI th 3 representing the protons of
50 51 = area nucleus. By including
Ve . i i = only neutronsin the calcula-
-60 = 0.<JJZ 0 A rgonne V18 + 1llinois-2 = tion, theisospin degree of
_70E 2n 3 5 freedomis suppressed and a
80 E 3 312" - larger system can be studied
O E n 4 #1/2- = thanfor real nuclei (sofar
-90= n =  Ynwhichismuch easier
-100E- N ™0 3o —  than 12C, our biggest
-110E Nt :1/2_ = nucleus). Thisfigure shows
120" n= = resultsfor awell chosen to
) & 7 /312* "3 mimic the protonsin oxygen.
-130- N ==0gs 12 = TheNn energies are compared
-140 3N '5/2im s 0 (V2! ~ with experimental N*80
-150— —_— 9n 10n o 2. ot 12+ — vaues; theNn energies have
-160 - IL2 n 12 52 ot been shifted to match 8nto
-170= -19 n 13.rI 14, 160. One can clearly see
= c © —+¥N—= theeffects of nn pairing.
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The density of 8Be(0")

in the laboratory frame
— issphericaly symmetric
1 (left panel). The one-
body structure of the
8Be(0*,2",4") states
consists of an apha
particle and four p-shell

1 nucleons. But strong

4 NN correlations shape the
p-shell nucleonsinto a
second alpha, which can
| beseenin the body-fixed
1 frame (right panel).
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GFMC actson atrial wave
function (W) with
exp[-(H-Ey)T] where T
isthe imaginary time.
Thisfilters excited-

state contamination out
of W;. The figure shows
energies from GFMC
propagation of 10B
states as functions of

T, starting from the
VMC values at 1=0.
Solid and dashed lines
show the averages and
statistical errors used
inthe main figure. The
large and rapid change
for small T indicates
that small admixtures of
highly excited (~1 GeV)
states are being removed.
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are reversed with the lowest symmetry states becoming
most bound. Thus there are often degenerate ground
states with different J.

AV1 - A purely central potential that still retains a repul-

sive core. The Coulomb potential makes AHe the most
stable A-body nucleus for A up to 10!
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GFMC Calculations P 6 A >
The NN force is known from NN scattering data AV18 - The NNN forceisremoved. Nuclei areincreasingly :
to be very complicated, with, e.g., strong tensor and underbound as A or N-Z increases; the Borromean :
spin-orbit terms. The Argonne v, potential (AV18) nuclei 68He are unbound. The ground state of 19B is = 5
is expressed as a sum of 18 operator terms. This predicted to be 1" instead of 3*. Some spin-orbit ™ :
poster explores the importance of this complicated splittings are also too small. 1672 :
structure to nuclear binding energies and level _ AV8' - Terms quadratic in L are removed from AV18. This )
structures. The right-most bars (green) show experi- does not result in qualitative changes. P[3] o
mental energies. Thered (IL2) bars represent our AVE' - The LsSforceisremoved. Spin-orbit pairs are almost 2|:[ 3] \m
best nuclear Hamiltonian which consists of the AV 18 degenerate. 67Li are, at best, marginally bound. 5 \%Q 10
and the lllinois-2 NNN potentials; it gives avery AV4' - The tensor force is removed, leaving just central, g+g, P[21] /7 B
|g§?dt|fllt t(t)heprer Imsleqnt' T{loceedll?g flfom the right to 1T, and 0+0 TeT forces. The deuteron has no D-wave. 4p[21] /%
, the other bars show the results of progressive 8Rai : -
simplifications of this Hamiltonian as described in the e o e Shates 29111]
next column. In each simplification the potential is of the same S, L, [n] but different J are degeneraté.
mod||f| edto rep([oducl\elzl\slas V\iatet” as posstbéle low AVX' - The same 4 operators as AV4' but expressed as only 7 L I
angular-momentum NN scattering partial waves. central and space-exchange operators. A number of pop- I wio
, . . . ular simplified NN forces have this structure. The 234
Itisclear that one needs a complicated interaction, results aFr)e qualitatively similar to those for AV4'. X
including spin, isospin, tensor, spin-orbit, and AV?2 - Only central and 6+G terms. Thisalows S=0 'r
three-body terms, to reproduce important qualitative and S=1 interactions to be different, but does not
features of light nuclear binding and excitation differentiate between even and odd L. Thus the repul- o7k
energes. sion of P wavesis|lost and binding energies do not %-g
This work has been published in R. B. Wiringaand salurete. Thereisno A=5 mass gap. Nuclear spectra o
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