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The axial anomaly

Any fields coupling to anomalous symmetries must have

peculiar interactions N

~

E.g., the pion is generated by the axial-vector current,
which is anomalous:

0, JE < e’ F,, F,y,

If we did try an ill-advised gauge transformation on the
axial symmetries, have to get the expected anomaly

T — T+ € = 0L = 65’#*]? ~ E[GWPUFWFPU]



The baryon anomaly

Again, any fields coupling to anomalous symmetries must
have peculiar interactions /)

W

v

Baryon number is anomalous in the Standard Model

0, T8 o P77 ..

K baryon

If we make an ill-advised gauge transformation, have to

find an anomaly

ow,, = 0,,€

= oL = Eaﬂjg ~ aMG[GMVpUZVFpJ] ~ _E[Euypaa,uZVFpa]



Anomalous chiral lagrangian with vector mesons

Conventional (?) wisdom:

“As it turns out that there is no anomalous term in the
Ward identities for <0|T(VVV)|0> and that there are
anomalous terms for <O|T(AAA)|0>, it is logical to
associate the anomaly with the axial-vector current.”

Cheng and Li
textbook, | 984

l.e.,"“vector currents are conserved, axial-vector currents
are anomalous”

But this would predict the absence of pseudo-Chern
Simons terms !



Using that:
“vector currents are conserved, axial-vector currents are anomalous”,
there is a unique (“Bardeen’”) counterterm that must be added to the

chiral lagrangian:
U A,B) —T'(U,A B)-T(1,A,B) [wrong]

gauge background

Equivalently:
integrating the anomaly with the “Wess-Zumino boundary condition”
maintains vector current conservation in the presence of arbitrary

backgrounds

['(U=1)=0 [wrong]

This subtracts any interaction involving just vector fields (no pions) !

”’

= “proof” that:“pseudo Chern Simons terms do not exist” !

The Standard Model SU(2)xU(1) is not vector-like gauging !
New counterterm = fixes new interactions



Counterterm freedom is fixed by requiring that the anomaly of the
meson theory match the anomaly of the quark theory
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What can we do with the coupling of baryon
number to electroweak gauge fields?

EW EW

.

aryon number

e first, to avoid doubly weak suppression, should take one
electroweak field as photon

® this implies the other is the Z boson

e / is useful for:
- heutrinos
- parity violation



Baryon catalyzed neutrino-photon interactions
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GeV cross sections relevant to MiniBooNE, T2K (lower
energy: LSND; higher energy: Nomad, Minos, Minerva,
Nova, ...)



Baryon catalyzed parity violation
Can also use the Z for parity violation

E.g., for spin-1/2 particle, can phrase in terms of anapole
moment:

5 ) ~ L2k (dgy — 4150 (k)

particle’s weak coupling
baryon density

Potentially relevant in various low-energy parity-violating
observables, e.g. spin-dependent atomic parity violation



Other applications of vector meson action
- radiative decays, e.g. f| = pY

- modeling hadronic corrections to light-by-light contribution
in muon g-2

two vector currents contracted, o
AVV triangle



tidying up the baryon chiral
lagrangian



Anomalous chiral lagrangian with baryons

Problem: Including U(1) factors with baryons

“In order to avoid complications due to anomalies
we disregard the isoscalar vector; axialvector and

pseudoscalar currents.”
Gasser, Sainio and Svarc, 1988

But we need SU(2)L x U(I)y for the standard model !
(contains an isoscalar vector piece)



How to baryons transform?

Recall for pions in the chiral lagrangian, we collected them
Into 2 matrix

U(z) = exp [im(x)/ fx]

When the quarks transform as

Y — e
wR N 6¢6R¢R

e, YL

U transforms as
U — e'“LUe *“F

The form of the chiral lagrangian is fixed by requiring
invariance under this transformation (and an anomaly that
matches the quarks)



For baryons, need a transformation law that involves both

the left-handed (€L) and right-handed (&r) rotations, but
reduces to the correct isospin transformation law when

EL—ER

There’s an (essentially) unique way to do this
Coleman et.al. 1969

Georgi
Define a new pion field
U(z) = £(x)°
And for any chiral transformation define a new €’ by

demanding

€_> eieLge—ie/ _ eielge—ieR

=> Define nucleon spinor field to transform as:

N — el N




About the “essential” in the essentially unique:

The isoscalar and isovector pieces have different
proportionality factors:

N e N

. 434 /
/\/ H ezeiSOVGCtOI' Zeisoscalar {\/

3 quarks in the nucleon

Again, having fixed the transformation laws of all fields -
including baryons - can proceed to write down most
general effective lagrangian



Working order by order:

,C() — MC(O)NN
\ Mass
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vector coupling: Cy axial-vector coupling: Ca
1 _
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anomalous magnetic moment: an
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§
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vector form factor axial-vector form factor

_ ) NEW !
correction: my? correction: ma
(vanishes for neutral fields)



= the only “new” operator is the low-energy manifestation
of pseudo-Chern Simons terms
(through 3-derivative order, at most one axial-vector field)

4 v 7 v
N N N N

(92 NY*N) m%( St eWUZ,,Fpa = ( ez ) VNPT 7, F g

1672 cos Ow 167T2 cos Oy m?2

determines coefficient of new operator

(also a contribution from A excitation)



= This operator has the special property that it involves the
axial-vector Z, yet acts coherently on adjacent nucleons
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interested in cross sections in GeV energy range - Nc the only
expansion parameter

- leading amplitudes given by tree-level meson exchange

- for matching, dominant contributions ; )

in t-channel are w, p %/%/%<
N N

- dominant contributions in s-channel is A (and nucleon)

strategy - normalize and extrapolate chiral lagrangian using
leading resonances in each channel (and add phenomenological
form factors to represent higher resonances, and match onto
perturbative scaling)



“violations” of N. counting rules é%

Consider the propagator: /

ma — (myv+ k) =miA —ma, — 2Emy =~ ma — ma,

At small energy, enhancement from suppressed
mass splitting:

2 2
mN L mN N N2
2 2 C

ma —my  (ma+my)(ma —my)

Analog in pion-nucleon scattering: low energy amplitude
grows with N¢ (should be constant). No paradox, since at
fixed energy:

ma — (myv +k)? =ma —my —2Emy ~ —2Emy



large contribution to pCS term from Delta:

L 94 1 +a, —ay ~ NS ~ 5

4 ma/my —1

cf. omega:
9 9/2m?\f 3
C~ 355 m2 ~ N7 ~ 1.5
and rho:
1 gzm?\, 2
C~ 255 m2 ~ NJ ~ 0.2

® so at very low energy, expect Delta to dominate (barring
interesting in-medium effects, etc.)

ANN67f7TN\/N(37mA_ ]\fr\J]\]’1 NNN

—1/2
99 ~ N¢ /7ngNNNcgagpNNNg

grNA = §g7TNN7 pna = (pp — ,un)/\@

® |arge Nc relations compare (too?) well with
electroproduction data for N-Delta couplings



incoherent (single nucleon) cross sections

A
W

compton (p)

/L
Nz

compton (n)

PRELIMINARY
g | - PR

0 0.5 1 1.5
E (GeV)

2 l F 2

- includes form factors, recoil
- compton-like cross section divergent at small photon

energy (bremstrahlung emission) - cut Ey > 200 MeV



coherent cross sections

three types of contributions:
- Compton-like scattering on weak and e.m. vector charges
of nucleus = initial and final-state radiation from (as yet

unobserved) coherent neutrino-nucleus scattering

- omega mediated

- Delta mediated

.
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The three contributions to coherent photon production are
distinguished by kinematic distributions and scalings in limit of
large nucleus/large energy

F(QY) ="

Consider the limit of large bE* ~ A?3 E?

To avoid exponential suppression, photon must be emitted in either soft
or collinear region. scaling of cross section depends on behavior of
amplitudes in these regions

- compton: soft region, A*3 E? log(E/Emin), flat distribution in photon angle

- Delta: soft, A3 E% (l-cos?3y) angular distribution
(some relation to Dicke super-radiance for atoms)

PR . T I o o~
LA RARAS AL S  AAAAS AARAE RA AL R ARL)

- omega: collinear, A%3 E2, forward photon

-

(]

02 04 06 08 1
E

| GeV is midway between small and large bE? limits



Summary

® single photon events in neutrino-nucleon
scattering involve several mechanisms

® theory - tidying up the chiral lagrangian
coupled to baryons and arbitrary
electroweak currents; large Nc surprises,
simplifications

® phenomenology - important as background
to neutrino experiments (more to come)






Final Results

Events / MeV

i

—i—

® MiniBooNE data

Expected background
BG+Best fit v,—v.

v, background
Vy background

|||||||||

E7" (GeV)

Excess Events / MeV

data - expected background
best-fit v, v,
sin"26=0.004, A m°=1.0eV?
8in®26=02, A m°=0.1eV?

o H

&=

- Extend 2v fit to low E

E,>475 MeV E >200 MeV

Null fit x2 (prob.): 9.1(91%) 22.0(28%)
Best fit 2 (prob.): 7.2(93%) 18.3(37%)

Adding 3 bins to fit causes chiA2 to increase
by 11 (expected 3)

Can see the problem...the best 2v fit that

can be found does not describe the low E
excess.
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MiniBooNE 12K ("Le2TT” beam)

a
= - L] v Flux i ( )
o ! " 106}
= 10 3 & v, Flux = | r'—rr
; - Nzﬁ ;rL._rJ
E i §10°%
) 2 S i hH
>S‘ 10 E (0] [
5 g 2 10% —
g | S 4
s 3 ~ e
e 10 £ § 103 NN n
= g = 3 AN o
102\ '\\Ng s
-4 : N
10 < X N \-\-\ %
&
DANR BUANMNN NN %h\r
0 051 15 2 25 3 35 4 45 5
10 -5 - E, (GeV)

A T2K (“OA2” beam)

[J. Monroe, MiniBooNE, ) | (b)
hep-ex/0408019] FN

-y
o
(o2}

—_
o
[$))

N "\\R%\N\‘\\Q@“‘* X

S
4
g
i

Flux (/100MeV/cm?/yr)
o
N

_

0 05 1 15 2 25 3 35 4 45 5
E, (GeV)

[ltow et. al, T2K,
hep-ex/0106019]



