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Any fields coupling to anomalous symmetries must have 
peculiar interactions

E.g., the pion is generated by the axial-vector current, 
which is anomalous:

π → π + ε

L ∼ ε
µνρσ

πFµνFρσ

If we did try an ill-advised gauge transformation on the 
axial symmetries, have to get the expected anomaly

∂µJ
µ

5
∝ ε

µνρσ
FµνFρσ

δL ≡ ε∂µJ
µ

5
∼ ε[εµνρσ

FµνFρσ]⇒

The axial anomaly

π
0

γ

γ



Again, any fields coupling to anomalous symmetries must 
have peculiar interactions

Baryon number is anomalous in the Standard Model

δωµ = ∂µε

L ∼ ε
µνρσ

ωµZνFρσ

If we make an ill-advised gauge transformation, have to 
find an anomaly

ω

γ

Z

The baryon anomaly

⇒ δL ≡ ε∂µJ
µ

5
∼ ∂µε[εµνρσ

ZνFρσ] ∼ −ε[εµνρσ
∂µZνFρσ]

∂µJ
µ

baryon ∝ ε
µνρσ

∂µZνFρσ + . . .



Anomalous chiral lagrangian with vector mesons

But this would predict the absence of pseudo-Chern 
Simons terms !

“As it turns out that there is no anomalous term in the 
Ward identities for <0|T(VVV)|0> and that there are 
anomalous terms for <0|T(AAA)|0>, it is logical to 
associate the anomaly with the axial-vector current.” 

Conventional (?) wisdom:

I.e., “vector currents are conserved, axial-vector currents 
are anomalous”

Cheng and Li 
textbook, 1984



Using that: 
“vector currents are conserved, axial-vector currents are anomalous”, 
there is a unique (“Bardeen”) counterterm that must be added to the 
chiral lagrangian:

Γ(U, A, B) → Γ(U, A, B) − Γ(1, A, B)

This subtracts any interaction involving just vector fields (no pions) ! 

gauge

⇒ “proof” that: “pseudo Chern Simons terms do not exist” !

Equivalently:
integrating the anomaly with the “Wess-Zumino boundary condition” 
maintains vector current conservation in the presence of arbitrary 
backgrounds

background

Γ(U = 1) = 0

The Standard Model SU(2)xU(1) is not vector-like gauging ! 
New counterterm ⇒ fixes new interactions

[wrong]

[wrong]
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ΓAAAA = C
∫

iW+W−ZA

(

1

4

sW

cW

)

. (73)

The terms ΓAAA and ΓAAAA combine with the lepton-
sector loop contributions to produce gauge invariant op-
erators that do not involve the vector meson fields. In
a formal limit where we assume the leptons are heavy,
we can integrate out (ν, e) to obtain the lepton-sector
WZW term as a function of W , Z, γ and the NGB’s
of the Higgs boson. In this case, the pure gauge terms
Eqs.(72,73) cancel exactly against corresponding lepton

sector loop contributions [18, 21].

B. Interactions involving vector meson fields

Since the B fields transform linearly under the gauge
transformations, the sum of the remaining terms must
be separately gauge invariant. For the various remaining
terms in Γfull the result is:

ΓAAB = C
∫

dZZ

[

s2
W

c2
W

ρ0 +

(

3

2c2
W

− 3

)

ω −
1

2c2
W

f

]

+ dAZ

[

−
sW

cW
ρ0 −

3sW

cW
ω

]

+ dZ
[

W−ρ+ + W+ρ−
] s2

W

cW

+dA
[

W−ρ+ + W+ρ−
]

(−sW ) + (DW+W− + DW−W+)

[

−
3

2
ω −

1

2
f

]

,

ΓABB = C
∫

Z

{

dρ0

[

−
3

2cW
ω −

s2
W

cW
a0 +

(

−
3

2cW
+ 3cW

)

f

]

+ dω

[

−
3

2cW
ρ0 +

(

−
3

2cW
+ 3cW

)

a0 −
s2

W

cW
f

]

+da0

[

s2
W

cW
ρ0 +

(

3

2cW
− 3cW

)

ω −
1

2cW
f

]

+ df

[(

3

2cW
− 3cW

)

ρ0 +
s2

W

cW
ω −

1

2cW
a0

]}

+dA

{

sW ρ0a0 + 3sW ρ0f + 3sWωa0 + sW ωf

}

+ dZ

{

−
s2

W

cW

(

ρ+a− + ρ−a+
)

}

+dA

{

sW

(

ρ+a− + ρ−a+
)

}

+
3

2

[

W+Dρ− + W−Dρ+)
]

(−ω + f) +
3

2

[

W+(−ρ− + a−) + W−(−ρ+ + a+)
]

dω

+
1

2

[

W+Da− + W−Da+
]

(−3ω − f) +
1

2

[

W+(−3ρ− − a−) + W−(−3ρ+ − a+)
]

df ,

ΓBBB = C
∫

2

[

(

ρ−f + ωa−
)

Dρ+ +
(

ωa+ + ρ+f
)

Dρ− +
(

ωa0 + ρ0f
)

dρ0 +
(

ρ+a− + ρ−a+ + ωf + ρ0a0
)

dω

]

,

ΓAAAB = C
∫

i

{

W+W−

[

3cW Z

]

ω + W+W−

[ (

cW +
1

2cW

)

Z

]

f

}

,

ΓAABB = C
∫

i

{

W+W−

[

3

2
(ρ0 + a0)ω −

1

2
(ρ0 − a0)f

]

+W+Z

[

3cW

2
ρ−f −

3cW

2
ρ−ω −

cW

2
a−f +

3cW

2
ωa− −

1

cW
ρ−f

]

+W−Z

[

−
3cW

2
ρ+f +

3cW

2
ρ+ω +

cW

2
a+f −

3cW

2
ωa+ +

1

cW
ρ+f

]}

,

ΓABBB = C
∫

i

{

W+

[

ρ−ρ0(ω − 2f) − ρ−ωa0 + ρ0ωa− + ωa−a0

]

+W−

[

ρ+ρ0(−ω + 2f) + ρ+ωa0 − ρ0ωa+ − ωa+a0

]

+Z

[

ρ+ρ−
(

1

cW
ω +

(

−4cW +
2

cW

)

f

)

+ ρ+ωa−

(

−2cW +
1

cW

)

+ρ−ωa+

(

2cW −
1

cW

)

+ ωa+a−

(

1

cW

) ]}

. (74)

These results use the abbreviated notation of differen-
tial forms, so that for example

∫

d4x εµνρσAµBν∂ρCσ =

∫

ABdC. Here we have defined covariant derivatives of

ν → ν + γ

f1 → ργ

connections to AdS/CFT
models

Counterterm freedom is fixed by requiring that the anomaly of the 
meson theory match the anomaly of the quark theory

etc. 



What can we do with the coupling of baryon 
number to electroweak gauge fields?

● first, to avoid doubly weak suppression, should take one 
electroweak field as photon

baryon number

EWEW

● this implies the other is the Z boson

● Z is useful for: 
- neutrinos 
- parity violation



n p

νe e
−

γ
νµ

νµ

n (p) n (p)

 νe → e  “signal”  νμ → γ “background”

νµ

Baryon catalyzed neutrino-photon interactions

GeV cross sections relevant to MiniBooNE, T2K (lower 
energy: LSND; higher energy: Nomad, Minos, Minerva, 
Nova, ...)



Baryon catalyzed parity violation

Can also use the Z for parity violation

E.g., for spin-1/2 particle, can phrase in terms of anapole 
moment:

γ

e+

e−

Z

h0

e+

e−

µ+

µ−

e+

e−

q̄ q̄ q̄

q q q

Z

a(0) =
e

4π2

GF
√

2

g2
ω

m2
ω

mnBCV

particle’s weak coupling
baryon density

〈k′|Je.m.

µ |k〉 ∼
a(q2)

m2
ū(k′)(/qqµ − q2γµ)γ5u(k)

Potentially relevant in various low-energy parity-violating 
observables, e.g. spin-dependent atomic parity violation



Other applications of vector meson action 

- radiative decays, e.g. f1→ργ

- modeling hadronic corrections to light-by-light contribution 
in muon g-2

two vector currents contracted, 
AVV triangle



tidying up the baryon chiral 
lagrangian



Anomalous chiral lagrangian with baryons

But we need SU(2)L x U(1)Y for the standard model !
(contains an isoscalar vector piece) 

Including U(1) factors with baryonsProblem:

“In order to avoid complications due to anomalies 
we disregard the isoscalar vector, axialvector and 
pseudoscalar currents.” 

Gasser, Sainio and Svarc, 1988



How to baryons transform ?

Recall for pions in the chiral lagrangian, we collected them 
into a matrix

U(x) = exp [iπ(x)/fπ]

When the quarks transform as 

ψR → eiεRψR

ψL → eiεLψL

U transforms as

U → eiεLUe−iεR

The form of the chiral lagrangian is fixed by requiring 
invariance under this transformation (and an anomaly that
matches the quarks)



For baryons, need a transformation law that involves both 
the left-handed (εL) and right-handed (εR) rotations, but 
reduces to the correct isospin transformation law when 
εL=εR

There’s an (essentially) unique way to do this 

Coleman et.al. 1969
Georgi

Define a new pion field

U(x) = ξ(x)2

And for any chiral transformation define a new ε’ by 
demanding 

ξ → eiεLξe−iε′ = eiε′ξe−iεR

Define nucleon spinor field to transform as:

N → eiε′N

⇒



About the “essential” in the essentially unique: 

The isoscalar and isovector pieces have different 
proportionality factors: 

N → eiε′N

N → eiε′isovector+3iε′isoscalarN

3 quarks in the nucleon

Again, having fixed the transformation laws of all fields - 
including baryons - can proceed to write down most 
general effective lagrangian



L0 = Mc(0)N̄N

Working order by order:

mass

L1 = N̄
[
c(1)
1 iD/ − c(1)

2 A/ γ5

]
N

vector coupling: CV axial-vector coupling: CA

L2 =
1
M

N̄
[
− c(2)

1

i

2
σµνTr([iDµ , iDν ])

]
N

L3 =
1

M2
N̄

[
c(3)
1 γν [iDµ, [iDµ, iDν ]] + c(3)

2 γνγ5[iDµ, [iDµ, Aν ]] + c(3)
3 iεµνρσγσ{Aµ, iDνiDρ}

+ c(3)
4 γνγ5[[iDµ , iDν ] , Aµ] + c(3)

5 γνγ5

{
[[iDµ , iDν ] , Aρ], {Dµ , Dρ}

}
+ . . .

]
N

vector form factor 
correction: mV2

axial-vector form factor 
correction: mA2

anomalous magnetic moment: aN

NEW !

(vanishes for neutral fields)



the only “new” operator is the low-energy manifestation 
of pseudo-Chern Simons terms
(through 3-derivative order, at most one axial-vector field)

⇒⇒

N N

Z γ

(
gωN̄γµN

)
1

m2
ω

(
eg2gω

16π2 cos θW
εµνρσZνFρσ

)
=

(
eg2g2

ω
16π2 cos θW m2

ω

)
N̄γµNεµνρσZνFρσ

determines coefficient of new operator
(also a contribution from Δ excitation)

ω

N N

Z γ



⇒
Working in units where Eγ = q0 = 1, we have:

T 00 =
1

2

{

1

m

[

F1CV (2q · p) + F1CA(−2σ · q)

]

+
1

m2

[

F1CV (2q · pq · (k + k′) − iσ · q × p) + F1C2 (−iσ · q × p)

+ F1CA (−q · pσ · (k + k′) − q · (k + k′)σ · q) + F2CV (−iσ · q × p)

]}

,

T i0 =
1

2

{

1

m

[

F1CV (2pi) + F1CA(−2σi)

]

+
1

m2

[

F1CV

(

q · (k + k′)pi + q · p(ki + k
′i) − i(p × σ)i + iq · p(q × σ)i

)

+ F1C2

(

−i(p × σ)i
)

+ F1CA

(

−q · (k + k′)σi − piσ · (k + k′)
)

+ F2CV

(

−i(p × σ)i + q · pi(q × σ)i
)

+ F2CA

(

(ki + k
′i)q · σ − q · (k + k′)σi

)

]}

T 0j =
1

2

{

1

m

[

F1CV (2qj) + F1CA(−2q · pσj)

]

+
1

m2

[

F1CV

(

q · p(kj + k
′j) + q · (k + k′)qj + i(q × σ)j − ip · q(p × σ)j

)

+ F1C2

(

−iq · p(p × σ)j + i(q × σ)j
)

+ F1CA

(

−qjσ · (k + k′) + (1 − 2q · p)q · (k + k′)σj
)

+ F2CV

(

i(q × σ)j
)

+ F2CA

(

i(q × p)j + (kj + k
′j)q × σ − qj(k + k′) · σ

)

]}

T ij =
1

2

{

1

m

[

F1CV (2δij) + F1CA

(

−2piσj + 2(δijq · σ − qjσi)
)

+ F2CA

(

2(δijq · σ − qjσi)
)

]

+
1

m2

[

F1CV

(

iεijrσr(−1 + p · q − k · k′) + k
′ik

′j − kikj + k
′iqj + qik

′j + qikj + kiqj

+ iεjrsσs(−(k + k′)r(k + k′)i − prpi + qrqi) + iεirsσs((k + k′)r(k + k′)j − prpj + qrqj)
)

+ F1C2

(

− iεijrσr + iεjrspr(δisσ · q − piσs − qsσi)
)

+ F1CA

(

− (1 − p · q)iεijrqr − δijσ · (k + k′) + q · (k + k′)(qjσi − δijq · σ)

+ σj(−q · (k + k′)qi − 2q · k′k
′i + 2q · kki)

)

+ F2CV

(

− iεijrσr + iεirsqr(−δsjσ · p + qjσs + psσj)
)

+ F2C2

(

2iεjrspr(δisσ · q − qsσi)
)

+ F2CA

(

(q · pqr − pr)iεijr + (k + k′)jσi − δij(k + k′) · σ
)

]}

. (59)
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This operator has the special property that it involves the 
axial-vector Z, yet acts coherently on adjacent nucleons

higher-order corrections from Compton 
scattering all involve nucleon spin 
or momenta

N N

Z γ



tickling the skyrmion



interested in cross sections in GeV energy range - Nc the only 
expansion parameter

- leading amplitudes given by tree-level meson exchange

- for matching, dominant contributions 
in t-channel are ω, ρ

- dominant contributions in s-channel is Δ (and nucleon)

strategy - normalize and extrapolate chiral lagrangian using 
leading resonances in each channel (and add phenomenological 
form factors to represent higher resonances, and match onto 
perturbative scaling)

N N

Z γ



“violations” of Nc counting rules

m2
∆ − (mNv + k)2 = m2

∆ −m2
N − 2EmN ≈ m2

∆ −m2
N

At small energy, enhancement from suppressed 
mass splitting:

m2
N

m2
∆ −m2

N

=
m2

N

(m∆ + mN )(m∆ −mN )
∼ N2

c

Analog in pion-nucleon scattering: low energy amplitude 
grows with Nc (should be constant).  No paradox, since at 
fixed energy:

m2
∆ − (mNv + k)2 = m2

∆ −m2
N − 2EmN ≈ −2EmN

Consider the propagator: 



large contribution to pCS term from Delta: 

cf. omega: 

c ∼ gA

4
1 + ap − an

m∆/mN − 1
∼ N5

c ∼ 5

c ∼ 9
32π2

g′2m2
N

m2
ω

∼ N3
c ∼ 1.5

and rho:
c ∼ 1

32π2

g2m2
N

m2
ω

∼ N3
c ∼ 0.2

● so at very low energy, expect Delta to dominate (barring 
interesting in-medium effects, etc.)

gA ∼ Nc, fπ ∼
√

Nc, m∆ −mN ∼ N−1
c , mN ∼ Nc,

g, g′ ∼ N−1/2
c , gωNN ∼ Ncg′, gρNN ∼ g

gπN∆ = 3
2gπNN , µN∆ = (µp − µn)/

√
2

● large Nc relations compare (too?) well with 
electroproduction data for N-Delta couplings



PRELIMINARY

Δ
ω
compton (p)

compton (n)

- includes form factors, recoil
- compton-like cross section divergent at small photon 
energy (bremstrahlung emission) - cut Eγ > 200 MeV 

incoherent (single nucleon) cross sections



coherent cross sections

three types of contributions: 

- Compton-like scattering on weak and e.m. vector charges 
of nucleus = initial and final-state radiation from (as yet 
unobserved) coherent neutrino-nucleus scattering

- omega mediated

- Delta mediated

Δ
ω
compton



The three contributions to coherent photon production are 
distinguished by kinematic distributions and scalings in limit of 
large nucleus/large energy

F (Q2) = e−bQ2

Consider the limit of large bE2 ∼ A2/3 E2 
To avoid exponential suppression, photon must be emitted in either soft 
or collinear region.  scaling of cross section depends on behavior of 
amplitudes in these regions

- compton: soft region, A4/3 E2 log(E/Emin), flat distribution in photon angle

- Delta: soft,  A4/3 E0;  (1-cos2ϑγ) angular distribution 
(some relation to Dicke super-radiance for atoms) 

- omega: collinear, A2/3 E2, forward photon

1GeV is midway between small and large bE2 limits



Summary

• single photon events in neutrino-nucleon 
scattering involve several mechanisms

• theory - tidying up the chiral lagrangian 
coupled to baryons and arbitrary 
electroweak currents; large Nc surprises, 
simplifications

• phenomenology - important as background 
to neutrino experiments (more to come) 
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Figure 1. Preliminary MiniBooNE neutrino flux
Monte Carlo prediction vs. Eν (GeV ).

sphere filled with mineral oil (CH2). There
are 1280 inward-facing “tank” PMTs, and 240
outward-facing “veto” PMTs. Particle identifi-
cation depends upon both prompt Cerenkov and
time-delayed scintillation light. Neutrino induced
events are identified by requiring that the event
occur within the beam spill, have fewer than 6
veto PMT hits, and have greater than 200 tank
PMT hits. With these simple cuts the cosmic ray
background is reduced to less than 0.1% of the
beam-induced neutrino signal2. A fiducial vol-
ume cut at R < 5 m is also typically required to
ensure good energy reconstruction.

3. νµ Event Rate Prediction

The event rate prediction is based on the prod-
uct of neutrino flux and cross section. The Mini-
BooNE neutrino flux is primarily produced from
π+ decay in flight. Therefore a detailed under-
standing of the π+ production in p −Be collisions
is necessary. The neutrino cross section at Mini-
BooNE energies has contributions from a number
of different processes [8]. Disentangling the var-
ious contributions to the total cross section is of
theoretical interest in this energy regime, and is
important to oscillation measurements.

2The cosmic ray rejection is demonstrated in reference [7].

3.1. Flux Prediction

At MiniBooNE, the relevant ranges of π+ pro-
duction momenta and angles are 1 < pπ <
4 GeV/c and 0 < θπ < 0.2 radians respec-
tively. There are no existing measurements at
8.89 GeV/c proton momentum. However there
is a limited amount of relevant production data
from past experiments [9] at 10, 12, and 19
GeV/c. To address the paucity of production
information, MiniBooNE collaborators have ana-
lyzed data at 6, 12, and 17 GeV/c from the BNL
E910 experiment [10]. In addition, 20 million
triggers were collected with a replica MiniBooNE
target and an 8.89 GeV/c proton beam at the
CERN HARP experiment [11]. The analysis of
this data is currently in progress, and the result-
ing p Be → π+ X cross section measurement
will be used for the final MiniBooNE flux pre-
diction. Currently, the neutrino flux is modeled
with a GEANT4 based Monte Carlo [12] and an
external parameterization of the p Be → π+ X
cross section. The parametrization comes from a
global fit of existing production data in the range
10 < pproton < 17GeV/c to the Sanford-Wang
model [13].

3.2. Cross Section Prediction

The NUANCE Monte Carlo is used to predict
the neutrino interaction cross sections. At Mini-
BooNE neutrino energies the cross section has
contributions from charged current quasi-elastic
scattering (39% of the total event rate), charged
current resonance production (25%), neutral cur-
rent elastic scattering (7%), and neutral current
π0 production (7%). For the νµ → νe oscillation
analysis, the most important processes are CCQE
scattering which affords a precise measurement of
the neutrino energy, NC π0 production which is a
large background to a νe signal [7], and NC elastic
scattering which can be used to study the optical
properties of the detector and nuclear recoil.

4. CCQE Events

Charged current quasi-elastic interactions are
fairly well measured in the MiniBooNE energy
range on light targets. However, the cross section
uncertainty on this process is an important error
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Figure 5: Comparison of νe and νµ spectra for (a) LE2π and (b) OA2◦. Solid (black) histogram
is νµ and dashed (red) one is νe. Hatched area is contribution from K decay.
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Figure 6: Comparison of spectra at far and near site for (a) LE2π, (b) OA2◦ and (c) WBB. Upper
figure is νµ spectra at 280 m (solid black histogram) and 295 km (dashed red histogram). The flux
for the near site is multiplied by (295/0.28)2 to directly compare the spectra. The front detector
size is assumed to be ±5 m in horizontal and vertical directions. The lower plots are far/near ratio
of fluxes.

The Large angle neutrinos have different energies from neutrinos at zero degree
direction.

• Finite length of decay pipe. The near detector has a larger solid angle for pions

which decay near the end of the decay pipe than those decaying at the beginning
of the decay pipe. Higher momentum pions decay further downstream. For the far
detector, the length of the decay pipe can be neglected as a point source. Thus the

neutrino spectrum is also distorted by this finite decay pipe effect.

At the distance longer than one km from the target, both of the above two effects become
negligible and the far/near ratio becomes flat.
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Figure 5: Comparison of νe and νµ spectra for (a) LE2π and (b) OA2◦. Solid (black) histogram
is νµ and dashed (red) one is νe. Hatched area is contribution from K decay.
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Figure 6: Comparison of spectra at far and near site for (a) LE2π, (b) OA2◦ and (c) WBB. Upper
figure is νµ spectra at 280 m (solid black histogram) and 295 km (dashed red histogram). The flux
for the near site is multiplied by (295/0.28)2 to directly compare the spectra. The front detector
size is assumed to be ±5 m in horizontal and vertical directions. The lower plots are far/near ratio
of fluxes.

The Large angle neutrinos have different energies from neutrinos at zero degree
direction.

• Finite length of decay pipe. The near detector has a larger solid angle for pions

which decay near the end of the decay pipe than those decaying at the beginning
of the decay pipe. Higher momentum pions decay further downstream. For the far
detector, the length of the decay pipe can be neglected as a point source. Thus the

neutrino spectrum is also distorted by this finite decay pipe effect.

At the distance longer than one km from the target, both of the above two effects become
negligible and the far/near ratio becomes flat.
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