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Introduction

Extensions to the Standard Model with a strongly
coupled Higgs sector (composite Higgs) are amenable
to Lattice Gauge Theory simulation methods. One
class of such models is Technicolor where the Higgs
field is replaced with the (techni)pions of a QCD-
like gauge theory. Potential phenomenological prob-
lems with such theories can be circumvented by
choosing the gauge group, number of (techni)quarks
Ny and their colour representation such that the
running coupling constant evolves very slowly — Walk-
ing Technicolor.

The running of the gauge coupling ¢g(u), where
1t is the momentum scale at which ¢ is measured is

described by ((g).
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where the coeflicients depend on the gauge group,

the number of fermion flavours and their colour rep-
resentation. For Ny =0, 5y and f; are both pos-
itive, and to the extent that we can neglect higher
order terms, the theory is asymptotically free and
confining. For each group/representation there is
some value of Ny where ) changes sign. There is
an even larger value ot N ¢ for which 5y also changes
sign, and asymptotic freedom is lost. Between these
two values, 3(g) develops a second zero at g = g*.
If this describes the physics, ¢* is a fixed point
describing the infrared behaviour of the massless
theory, which is then a conformally invariant field
theory with no particles. If, however, a chiral con-
densate forms before g* is reached, B(g) starts to
decrease again, and the IR fixed point is avoided.
Close to ¢*, g will run very slowly and the theory
is a candidate for Walking Technicolor.
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Figure 1. Cartoon of 3(g) as a function of g a) with an IR
fixed point b) where a chiral condensate forms before g* is
reached. [from DeGrand, Shamir and Svetitsky]
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For QCD [SU(3) colour| with colour-sextet quarks,
the N 7 at which asymptotic freedom is lost is NV =

31—%, while that where the second term in the beta
function changes sign is Ny = 112285. A rainbow
graph estimate of that Ny below which a chiral
condensate forms is Ny = Q%. This suggests
Ny = 2 as a candidate for a Walking gauge the-
ory. A non-perturbative calculation is needed to
test this. Preliminary lattice work of DeGrand,
Shamir and Svetitsky using Wilson quarks suggests
that this Ny = 2 theory does have an IR (con-
formal) fixed point. The same authors have made
a preliminary study of the thermodynamics of this
theory:.

We are simulating lattice QUD with Ny = 2
staggered sextet quarks at finite temperature to ex-
amine its phase structure and determine the rele-

vant scales to compare with this pioneering work.
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Note, since DeGrand, Shamir and Svetitsky’s and
our thermodynamics simulations study deconfine-
ment and chiral-symmetry restoration transitions
then, if the theory is indeed conformal, this regime
is not connected to the continuum limit. A corol-
lary is that we will not necessarily observe the same
physics. In addition, lattice simulations work with
massive quarks, which could enable us to avoid the
IR fixed point, even if it is there for massless quarks,
making attempts to extrapolate to zero quark mass
difficult if not impossible.

Staggered quarks have the advantage over Wil-
son quarks in that they have a vestige of chiral sym-
metry, and a well-defined chiral order parameter.

Our preliminary indications are that QCD with
2 flavours of colour-sextet quarks shows well-separated
deconfinement and chiral-symmetry restoration tran-
sitions at finite temperature. We have seen evidence
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that the deconfinement transition moves to weaker
coupling as the number of lattice sites in the time
direction is increased. This is consistent with this
being a finite temperature transition for an asymp-
totically free field theory (rather than a bulk tran-
sition). More simulations will be necessary to draw
conclusions as to the nature of the chiral transition.
In addition we have observed 2 different ‘deconfined’
phases — a standard deconfined phase, and phase in
which charge conjugation is spontaneously broken
— the vestige of the Z3 centre symmetry of the pure
gauge theory:.



Simulations of QCD with N, = 2 sextet quarks
at finite temperature

We simulate lattice QCD with the standard Wil-
son gauge action and (unimproved) staggered quarks.
The exact RHMC algorithm is used to tune the
number of flavours to 2.

Finite temperature 71" is achieved by simulating
on a lattice of temporal extent Ny = 1/7T with peri-
odic/antiperiodic boundary conditions in the time
direction, and spatial extent Ng >> N¢.

Our current simulations are on 8 X 4. 123 x 4
and 123 x 6 lattices, with quark masses m = 0.02,
m = 0.01 and m = 0.005. For each m and § =
6/g° we run for 10,000 — 100,000 length-1 trajecto-
ries.

To determine the position of the deconfinement
transition we use the Wilson Lines (Polyakov Loops)
in both the triplet and sextet representations. The
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chiral transition is determined from measuring the

chiral condensate {(1)1)).
12°x4 lattice
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Figure 2: Wilson Line and chiral condensate as functions of
B =1/g* on a 123 x 4 lattice



The deconfinement transition occurs where the
Wilson Line shows a jump at 8 = 5.420(5). The
time history at 6 = 5.42 suggests that this is a
first-order phase transition.
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Figure 3: Time history of the triplet Wilson Line(Polyakov
Loop) at 3 = 5.42 on a 123 x 4 lattice
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Below this transition, the triplet Wilson Line is
consistent with zero, rather than just being small
as would be expected since the Z3 centre symmetry
is explicitly broken by the quark fields. However,
the sextet Wilson Line, although it also shows the
transition, is small but finite in this region. This
suggests that the reason the triplet Wilson Line is
so small, is because in QCD with sextet quarks the
triplet string can only break by producing a qq pair
and excited glue, or 3 qq pairs, which requires extra
energy. The sextet string can break by producing a
qq pair. This suggests that the triplet Wilson Line
might not be zero in the confined regime for larger
lattices.
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Figure 4: Sextet Wilson Line(Polyakov Loop) as functions of
B =16/g* on a 123 x 4 lattice
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With masses as large as those simulated here,
it is diflicult to determine the position of the chiral
transition with great precision. Our best guesti-
mate would be 8 ~ 6.5. Hence the Ny = 4 chi-
ral transition appears to occur at a considerably
higher (8 than the deconfinement transition. Such
a separation of these two transitions has been ob-
served by others for QCD with 2 or 3 flavours of ad-
joint quarks, and by us for QCD with fundamental
quarks and strong enough extra 4-fermion interac-
tions. For fundamental quarks without these addi-
tional interactions, these two transitions appear to
be coincident.

We have also identified another deconfined phase.
For 5 > 6.0 this phase has a negative Triplet Wil-
son Line with magnitude roughly 1/3 of that in
the normal phase. For g < 5.8 the Wilson Line
is complex, approximately aligning itself with one
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of the non-trivial cube roots of unity. Although the
negative Wilson Line regime could represent a sepa-
rate phase where the gauge group breaks SU(3) —
SU(2) x U(1)y, the large fluctuations of its imagi-
nary part makes us suspect that this is the same as
the complex Wilson Line phase, except that it is dis-
torted by the small spatial lattice. At lower 3 this
phase undergoes a transition to the confined phase
at a (0 close to that for the standard deconfined
phase. There must be 2 such states corresponding
to the 2 non-trivial cube roots of unity and con-
nected by charge conjugation. Hence this phase is
characterised by spontaneous breakdown of charge
conjugation.
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Figure 5: Values of the complex Wilson Line for the charge-
conjugation violating phase. Error bars have been suppressed
for clarity.
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So far 122 x 6 simulations have been limited
to m = 0.02, so it is impossible to estimate the
position of the chiral transition. Preliminary indi-
cations are that the deconfinement transition is at
3 ~ 5.6 — significantly larger than the 8 = 5.420(5)
at Ny = 4. Such an increase is what one would ex-
pect for a finite temperature transition in an asymp-
totically free theory.
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Discussion

Our simulations on Ny = 4 lattices show well
separated deconfinement and chiral transitions. For
m = 0.02 the deconfinement transition is at 0 =
6/g° = 5.420(5) and for m = 0.01 it is at 5.41 <
B < 5.42. We estimate that the chiral-symmetry
restoration occurs at 5 ~ 6.5. On Ny = 6 lattices
the deconfinement transition occurs at 7 ~ 5.6.
This suggests that the deconfinement transition is
a finite temperature transition, and that the cou-
pling is increasing at longer distances. These re-
sults are consistent with what would happen if a
chiral condensate forms before the theory can en-
counter the infrared fixed point predicted by per-
turbation theory. Of course, the finite quark mass
and lattice artifacts could also be responsible for
the avoidance of the IR fixed point. Simulations
at larger Ny (and Ny), including zero temperature
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simulations, as well as simulations at smaller masses
are needed to resolve this. Calculation of ‘hadron’
spectra, fr, etc. would help, as would a serious
renormalization-group analysis.

Our observation of both a normal deconfined
phase and a charge conjugation violating deconfined
phase is of interest. Larger lattices will be needed to
tell if the charge-conjugation violating phase really
does transition to a phase where the gauge group
is partially broken, or whether this is a finite size
effect. We have yet to study chiral symmetry break-
ing in these exotic phases. Simulations in the con-
fined and normal deconfined phase on both 83 x 4
and 123 x 4 lattices, indicate that finite size effects
are small. We have yet to perform simulations in
the charge conjugation violating phase on the 83 x 4
lattice.

The phase diagram we observe is very similar
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to that tor QCD with Ny = 2 fundamental quarks
and strong 4-fermion interactions. Physics at scales
much longer than the chiral-symmetry breaking scale
is apparently insensitive to the detailed nature of
the chiral symmetry breaking.

Our results are rather different from those ob-
tained by DeGrand, Shamir and Svetitsky. They
find the deconfinement and chiral-symmetry restor-
ing transitions to be coincident. It will be interest-
ing to see if these transitions become closer together
as we increase V¢ in our simulations. They see the
charge conjugation violating but not the normal
deconfined phase. Their discrete renormalization
group analysis suggests that QCD with Ny = 2
massless sextet quarks is conformal. We hope to
clarify this.
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Conclusions

e OCD with 2 massless flavours of colour-sextet
quarks is a potential candidate for Walking Tech-
nicolor.

e [t remains an open question as to whether it
‘walks’ or is a conformal ‘unparticle’ theory:.

e In cither case, its behaviour is qualitatively dit-
ferent than standard QCD which makes it inter-
esting to study as a field theory.

e At finite temperatures, it exhibits both a decon-
finement and a chiral-symmetry restoration tran-
sition. These appear well separated, at least on
coarse lattices.

e After the current set of runs, we need larger lat-
tices and smaller quark masses. Zero tempera-
ture runs are also needed.
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e Better actions are needed to reduce lattice arti-
facts near the IR fixed point. Overlap fermions
would be best, but highly improved staggered
actions might provide a cheaper alternative.

e We should consider studying QCD with 3 mass-
less flavours of colour-sextet quarks which is al-
most certainly conformal.

e When we have exhausted this model, we should
apply these methods to other candidate theories.

e With such conformal or quasi-conformal gauge
theories it would be interesting to know how
much of the information we want can be obtained

using AdS/CFT.

e Our simulations use Franklin at NERSC and
Abe at NCSA.
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Appendix
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Figure 6: Histogram of Re(Wilson Line), 12% x 4 lattice, m =
0.02, B = 5.42.
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12°x4 Lattice, F=7.0, m=0.025
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Figure 7: Time evolution of Wilson Line from start with
Ui(N; = 1) = diag(e’?, e, 1), all other U’s set to identity,
123 x 4 lattice, m = 0.02, 8 = 7.
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Figure 8: Scatterplot of Wilson Lines 123 x4 lattice, m = 0.02,
£ =6 and B = 7, exotic phase.
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Figure 9: Scatterplot of Wilson Lines 12° x4 lattice, m = 0.02,
B =5.3
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Figure 10: Scatterplot of Wilson Lines 12° x 4 lattice, m =
0.02, B =5.41
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Figure 11: Scatterplot of Wilson Lines 12° x 4 lattice, m =
0.02, B = 5.42
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Figure 12: Scatterplot of Wilson Lines 12% x 4 lattice, m =
0.02, B =5.43
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