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• QCD is not conformal;  however, it has 
manifestations of a scale-invariant theory: 
Bjorken scaling, dimensional counting for hard 
exclusive processes

• Conformal window:

• Use mathematical mapping of the conformal 
group  SO(4,2) to AdS5 space

Map AdS5 X S5 to conformal N=4 SUSY

3

αs(Q2) ! const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

κ = 2ΛQCD

V = −βκ2ζ

Maldacena:

AdS/CFT: Anti-de Sitter Space / Conformal Field Theory

3



 
 Stan Brodsky 

 SLAC 
JTI Workshop  ANL

April  14, 2009
Maximal Wavelength and  QCD Properties

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

1
s−M2+iMΓ

q2 → q2 + iε→ q2 + iMΓ

Fix Γ from height

Γρ = 111 MeV

Conformal Theories are invariant under the 
Poincare and conformal transformations with  

the generators of SO(4,2)

SO(4,2)  has a mathematical representation on AdS5

4
4
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AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(ηµνdxµdxν − dz2),

xµ → λxµ, z → λz, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 → λ2x2, z → λz.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z → 0 correspond to theQ→∞, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 115

invariant measure
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Applications of AdS/CFT  to QCD 

de Teramond, sjb

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 

6
6
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• Use AdS/CFT to provide an approximate, 
covariant, and analytic model of hadron 
structure with confinement at large distances, 
conformal behavior at short distances

• Analogous to the Schrodinger Theory for 
Atomic Physics

• AdS/QCD Light-Front Holography

• Hadronic Spectra and Light-Front 
Wavefunctions

Goal:

7
7
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

• Light-Front Holography

8

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

ψ(x, k⊥)(GeV)

ψ(x, k⊥)

• Light Front Wavefunctions:                                   

Schrödinger Wavefunctions
of Hadron Physics

8
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Prediction from AdS/QCD: Meson LFWF
ψ(x, k⊥)

ψ(x, k⊥)

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

(GeV)

de Teramond, sjb

9

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

9
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 3

+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal  Invariance + 

Confinement at large 
distances

Counting rules for Hard 
Exclusive Scattering
Regge Trajectories

Light Front Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level

10
10
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σ(e+e−→three jets)
σ(e+e−→two jets)

proportional to αs(s)

Ratio of rate for e+e− → qq̄g to e+e− → qq̄

σ(e+e−→three jets)
σ(e+e−→two jets)

proportional to αs(s)

Ratio of rate for e+e− → qq̄g to e+e− → qq̄

σ(e+e−→three jets)
σ(e+e−→two jets)

proportional to αs(s)

proportional to αs(Q)

Ratio of rate for e+e− → qq̄g to e+e− → qq̄

at Q = ECM = Ee− + Ee+

σ(e+e−→three jets)
σ(e+e−→two jets)

proportional to αs(s)

proportional to αs(Q)

Ratio of rate for e+e− → qq̄g to e+e− → qq̄

at Q = ECM = Ee− + Ee+

Verification of Asymptotic Freedom 

Gross, Wilczek, Politzer
Khriplovich, `t Hooft

Oberwölz

α(Q2) ! 4π
β0

1
logQ2/Λ2

QCD

Q4F1(Q2)→ constant

Π(Q2) = α
15π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

11



 
 Stan Brodsky 

 SLAC 
JTI Workshop  ANL

April  14, 2009
Maximal Wavelength and  QCD Properties

12

Γp−n
bj (Q2) ≡ gA

6 [1− α
g1
s (Q2)

π ]

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Deur, Korsch, et al:  Effective Charge from Bjorken Sum Rule

 
 

Q (GeV)

!
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Deur, Korsch, et al.

!
s/
"

pQCD evol. eq.

!
s,g1

/" JLab

Cornwall

Fit

GDH limit

Godfrey-Isgur

Bloch et al.

Burkert-Ioffe

Fischer et al.

Bhagwat et al.

Maris-Tandy

Q (GeV)

Lattice QCD

10
-1

1

10
-1

1

10
-1

1 10
-1

1

Fig: Infrared conformal window ( from Deur et al., arXiv:0803.4119 )

From String to Things, INT, Seattle, April 10, 2008 Page 8

DSE  gluon  
couplings

13
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IR Conformal Window for QCD
• Dyson-Schwinger Analysis:    QCD gluon coupling has 

IR Fixed Point                                      

• Evidence from Lattice Gauge Theory 

• Define coupling from observable: indications of IR 
fixed point for QCD effective charges

• Confined gluons and quarks have maximum 
wavelength: Decoupling of QCD vacuum 
polarization at small Q2  

• Justifies application of AdS/CFT in strong-
coupling conformal window

14

Serber-Uehling

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

x1

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

x1

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

!+

!−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Shrock, de Teramond, sjb
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t u

This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Gell Mann-Low Effective Charge for QED

15



 
 Stan Brodsky 

 SLAC 
JTI Workshop  ANL

April  14, 2009
Maximal Wavelength and  QCD Properties

16

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

QED One-Loop Vacuum Polarizationα(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2
Serber-Uehling

Q2 << 4M2

Π(Q2) = α(0)
3π

logQ2

m2

Q2 >> 4M2

β =
d( α

4π)
d logQ2 = 4

3(
α
4π)2n$ > 0

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

!+

!−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

(t spacelike)

β ∝ Q2

m2

dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

xF

A2/3 component

A1 component

vanishes at small momentum transfer

Π(Q2) ! α(0)
3π log Q2

m2 Q2 >> 4m2

Q2 << 4m2

16
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∆E ∼ α(Zα)4 ln (Zα)2me

Infrared divergence of free electron propagator 
removed because of atomic binding 

Bethe Log
γ∗

e− p

Lamb Shift in Hydrogen

Maximum wavelength of bound electron 

λ <
1

Zαme

k > Zαme

Lesson from QED:

17
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gluon and quark propagators cutoff in IR 
because of  color confinement

g

q
b̄

k >
1

ΛQCD
λ < ΛQCD

maximum wavelength of bound quarks and gluons

Lesson from QED and Lamb Shift:

                         
B-Meson  

Shrock, sjb

18



• Colored fields confined to finite domain 

• All perturbative calculations regulated in IR

• High momentum calculations unaffected

• Bound-state Dyson-Schwinger Equation

• Analogous to Bethe’s Lamb Shift Calculation

Maximal Wavelength of Confined Fields 

A strictly-perturbative space-time region can be defined as one which
has the property that any straight-line segment lying entirely within the region has an 
invariant length small compared to the confinement scale 
(whether or not the segment is spacelike or timelike).

J. D. Bjorken, 
SLAC-PUB 1053

Cargese Lectures 1989 Λ−1
QCD

(x− y)2 < Λ−2
QCD

Quark and Gluon vacuum polarization insertions 
decouple: IR fixed Point 

19
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T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries

Leading Twist 
Sivers Effect

!Sp ·!q×!pq

 Hwang,  
Schmidt, sjb

Light-Front Wavefunction  
S and P- Waves

QCD S- and P-
Coulomb Phases

--Wilson Line

20

Collins, Burkardt
Ji, Yuan

i

20
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Final-State Interactions Produce 
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling!

• Requires nonzero orbital angular momentum of quark

• Arises from the interference of Final-State QCD                                                  
Coulomb phases in S- and P- waves; Wilson line effect;                       
gauge independent

• Relate to the quark contribution to the target proton                                        
anomalous magnetic moment and final-state QCD phases

• QCD phase at soft scale: IR Fixed Point!

• New window to QCD coupling and running gluon mass in the IR

• QED S and P Coulomb phases infinite -- difference of phases finite

!S ·!p jet×!q

!S ·!p jet×!qi

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

21

 Hwang,  
Schmidt, sjb

21
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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We show that initial-state interactions contribute to the cos 2# distribution in unpolarized Drell-Yan lepton

pair production pp and pp̄→!!!"X , without suppression. The asymmetry is expressed as a product of

chiral-odd distributions h1
!(x1 ,p!

2 )# h̄1
!(x2 ,k!

2 ), where the quark-transversity function h1
!(x ,p!

2 ) is the trans-

verse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an unpo-

larized proton. We compute this !naive" T-odd and chiral-odd distribution function and the resulting cos 2#
asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this

model the function h1
!(x ,p!

2 ) equals the T-odd !chiral-even" Sivers effect function f 1T
! (x ,p!

2 ). This suggests

that the single-spin asymmetries in the semi-inclusive deep inelastic scattering and the Drell-Yan process are

closely related to the cos 2# asymmetry of the unpolarized Drell-Yan process, since all can arise from the same
underlying mechanism. This provides new insight regarding the role of the quark and gluon orbital angular

momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.

DOI: 10.1103/PhysRevD.67.054003 PACS number!s": 12.38.Bx, 13.85.Qk, 13.88.!e

I. INTRODUCTION

Single-spin asymmetries in hadronic reactions have been

among the most challenging phenomena to understand from

basic principles in QCD. Several such asymmetries have

been observed experimentally, and a number of theoretical

mechanisms have been suggested $1–6%. Recently, a new
way of producing single-spin asymmetries in semi-inclusive

deep inelastic scattering !SIDIS" and the Drell-Yan process
has been put forward $7,8%. It was shown that the exchange
of a gluon, viewed as initial- or final-state interactions, could

produce the necessary phase leading to a single transverse

spin asymmetry. The main new feature is that, despite the

presence of an additional gluon, this asymmetry occurs with-

out suppression by a large energy scale appearing in the pro-

cess under consideration. It has been recognized since then

$9% that this mechanism can be viewed as the so-called Sivers
effect $1,10%, which was thought to be forbidden by time-
reversal invariance $4%. Apart from generating Sivers effect

asymmetries, the mechanism offers new insight regarding the
role of orbital angular momentum of quarks in a hadron and

their spin-orbit couplings; in fact, the same S•! L! matrix ele-
ments enter the anomalous magnetic moment of the proton
$7%. The new mechanism for single target-spin asymmetries
in SIDIS necessarily requires noncollinear quarks and glu-
ons, and in the Sivers asymmetry the quarks carry no polar-
ization on average. As such it is very different from mecha-

nisms involving transversity !often denoted by h1 or &q),
which correlates the spin of the transversely polarized hadron
with the transverse polarization of its quarks.
In further contrast, the exchange of a gluon can also lead

to transversity of quarks inside an unpolarized hadron. This
chiral-odd partner of the Sivers effect has been discussed in
Refs. $6,11%, and in this paper we will show explicitly how
initial-state interactions generate this effect. Goldstein and

Gamberg reported recently that h1
!(x ,p!

2 ) is proportional to

f 1T
! (x ,p!

2 ) in the quark-scalar diquark model $12%. We con-
firm this and find that these two distribution functions are in
fact equal in this model. Although this property is not ex-
pected to be satisfied in general, nevertheless, one may ex-
pect these functions to be comparable in magnitude, since
both functions can be generated by the same mechanism. We
investigate the consequences of the present model result for
the unpolarized Drell-Yan process. We obtain an expression
for the cos 2# asymmetry in the lepton pair angular distribu-
tion. Here # is the angle between the lepton plane and the
plane of the incident hadrons in the lepton pair center of
mass. This asymmetry was measured a long time ago $13,14%
and was found to be large. Several theoretical explanations
!some of which will be briefly discussed below" have been
put forward, but we will show that a natural explanation can
come from initial-state interactions which are unsuppressed
by the invariant mass of the lepton pair.

II. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has been
measured in pion-nucleon scattering: '"N→(!("X , with
N deuterium or tungsten and a '" beam with energy of 140,
194, 286 GeV $13% and 252 GeV $14%. Conventionally

*Email address: dboer@nat.vu.nl
†Email address: sjbth@slac.stanford.edu
‡Email address: dshwang@sejong.ac.kr
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER
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Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
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The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

4

Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈

H22 − H11

1 + H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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Double Initial-State Interactions 
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Drell-Yan planar correlations

Double ISI

Hard gluon radiation

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.

Q4F1(Q2) # constant

Violates Lam-Tung relation!
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The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

PQCD Factorization (Lam Tung):

Model: Boer,

23
23



 
 Stan Brodsky 

 SLAC 
JTI Workshop  ANL

April  14, 2009
Maximal Wavelength and  QCD Properties

24

Volume 315, number 3,4 PHYSICS LETTERS B 7 October 1993 

0.20 

r 
0.15 

0.10 

0.05 

++ 

0.00 - -4 -  i 

0.15 

0.10 
+ 

o.o5 * 

0.00~ 20 

x~ < 0 0 0 0 8  

ZEUS 

0 , 0 0 0 8  < x~  < 0 . 0 0 3  

t , 

40 60 80 1 O0 

Q2DA [CeV 2] 

Fig. 4. Fraction r of events with a large rapidity gap, 

qmax < 1.5, as a function of Q2 A for two ranges of XDA. No 
acceptance corrections have been applied. 

small compared to WDA and is typically smaller than 

10 GeV. The events span the range of  WDA from 60 

to 270 GeV. For  WDA > 150 GeV these events are 

well separated from the rest of  the sample. In this 

region, acceptance corrections have little dependence 

on W and the contr ibut ion of  these events to the deep 

inelastic cross section is, within errors, constant with 

WDA, as expected for a diffractive type of  interaction 

(see fig. 3b). At smaller values of  WDA, the acceptance 

for these events decreases since the final state hadronic 

system is boosted in the forward direction. 

In fig. 3c we present the dis tr ibut ion of  Mx for 

events with r/max< 1.5 and WOA > 150 GeV. The dis- 

t r ibution is not corrected for detector or acceptance ef- 

fects. Although this acceptance could be model  depen- 

dent, the three models  we have checked [ 13,14,16 ] 

predict  a flat acceptance with Mx for Mx > 4 GeV. 

We observe a spectrum which, given our resolution, 

the uncertainty about the acceptance and the large sta- 

tistical errors, is compat ible  with a 1/MZx dependence,  

shown as the solid curve. 

The fraction of  events with a large rapidi ty gap, pre- 

sented as a function of  Q~A in fig. 4 for two selected 

bins of  XOA, is, within errors, independent  of  Q2. The 

Q2 dependence is little affected by acceptance correc- 

tions. In QCD terminology, leading twist contribu- 

tions to structure functions show little (at most loga- 

r i thmic)  dependence on Q2 at fixed x, whereas higher 

twist terms fall as a power of  Q2. Since the proton 

structure function determined for our DIS data  sam- 

ple shows a leading twist behavior  [29], the produc- 

t ion mechanism responsible for the large rapidity gap 

events is also likely to be a leading twist effect. The 

decrease with x is partly due to acceptance, since for 

larger values of x the final hadronic state is boosted 

in the direction of  the proton so that such events will 

not be identified as having a large rapidi ty  gap in our 

detector. 

8. Discussion and conclusions 

In a sample of  deep inelastic neutral current scatter- 

ing events, we have observed a class of  events with a 

large rapidi ty gap in the final hadronic state. The flat 

rapidi ty  distr ibution,  the lack of  W dependence and 

the shape of  the Mx distr ibution are suggestive of  a 

diffractive interaction between a highly virtual pho- 

ton and the proton, mediated by the exchange of  the 

pomeron [5 ]. The fact that the percentage of  events 

with a large rapidity gap shows only a weak depen- 

dence on Q2 points to a leading twist contribution to 

the proton structure function. 

For  the hypothesis that events with a large rapidi ty 

gap are produced by a diffractive mechanism, one 

expects such events to be accompanied by a quasi- 

elastically scattered proton. For  this type of  pro- 

cess the gap between the maximum rapidity of  the 

calorimeter  and the rapidi ty of  the scattered proton is 

about three units. The selection criteria, in part icular 

the requirement of  a rapidi ty gap in the detector of  

at least 2.8 units, l imit  the acceptance for diffractive- 

like events. Since we have made no corrections for 

acceptance, the 5.4% for DIS events with a large 

rapidity gap should be considered a lower l imit  for 

diffractively produced events. 
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Inclusive Diffraction at HERA

F.-P. Schillinga∗ (on behalf of the H1 and ZEUS collaborations) †

aDESY, Notkestr. 85, D-22603 Hamburg, Germany

New precision measurements of inclusive diffractive deep-inelastic ep scattering interactions, performed by the
H1 and ZEUS collaborations at the HERA collider, are discussed. A new set of diffractive parton distributions,
determined from recent high precision H1 data, is presented.

1. INTRODUCTION

One of the biggest challenges in our under-
standing of QCD is the nature of colour sin-
glet exchange or diffractive interactions. The
electron-proton collider HERA is an ideal place to
study hard diffractive processes in deep-inelastic
ep scattering (DIS). In such interactions, the
point-like virtual photon probes the structure of
colour singlet exchange, similarly to inclusive DIS
probing proton structure.

2

!

Figure 1: Illustration of
a diffractive DIS event.

At HERA,
around 10% of
low x events
are diffractive
[1]. Experimen-
tally, such events
are identified by
either tagging
the elastically
scattered pro-
ton in Roman
pot spectrometers
60− 100 m down-
stream from the
interaction point
or by asking for

a large rapidity gap without particle production
between the central hadronic system and the
proton beam direction.

A diagram of diffractive DIS is shown in Fig. 1.
A virtual photon coupling to the beam electron

∗e-mail address: fpschill@mail.desy.de
†Talk presented at 31st Intl. Conference on High Energy
Physics ICHEP 2002, Amsterdam

interacts diffractively with the proton through
the exchange of a colour singlet and produces a
hadronic system X with mass MX in the final
state. If the 4-momenta of the incoming (out-
going) electron and proton are labeled l (l′) and
p (p′) respectively, the following kinematic vari-
ables can be defined: Q2 = −q2 = −(l − l′)2, the
photon virtuality; β = Q2/q.(p − p′), the longi-
tudinal momentum fraction of the struck quark
relative to the diffractive exchange; xIP = q.(p −
p′)/q.p, the fractional proton momentum taken
by the diffractive exchange and t = (p− p′)2, the
4-momentum squared transferred at the proton
vertex. Bjorken-x is given by x = xIP β. For the
measurements presented here typical values of xIP

are < 0.05. y = Q2/sx denotes the inelasticity,
where s is the ep CMS energy.

A diffractive reduced cross section σD(4)
r can be

defined via

d4σep→eXp

dxIP dt dβ dQ2
=

4πα2

βQ4

(

1 − y +
y2

2

)

σD(4)
r (xIP , t, β, Q2) , (1)

which is related to the diffractive structure func-
tions FD

2 and the longitudinal FD
L by

σD
r = FD

2 −
y2

2(1 − y + y2

2 )
FD

L . (2)

Except at the highest y, σD
r = FD

2 to a very good
approximation. If the outgoing proton is not de-
tected, the measurements are integrated over t:

σD(3)
r =

∫

dt σD(4)
r .

10% to 15% 
of DIS events 

are 
diffractive !

Remarkable observation at HERA
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Conventional wisdom wrong:  
Final-state interactions of struck quark cannot be neglected
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p

Final-State Interaction 
Produces Diffractive DIS 

Quark Rescattering 

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Low-Nussinov model of Pomeron
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

27

Origin of Diffractive DIS
Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb
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Feynman Gauge Light-Cone Gauge

Result is Gauge Independent

Final State Interactions in QCD 

28
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29

Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate 
T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

Evaluate gluon coupling 
at soft scale!

29
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Conformal symmetry: Template for QCD

• Take conformal symmetry as initial 
approximation; then correct for non-zero beta 
function and quark masses

• Eigensolutions of ERBL evolution equation for 
distribution amplitudes

• Commensurate scale relations: relate 
observables at corresponding scales: 
Generalized Crewther Relation

• Fix Renormalization Scale (BLM, Effective 
Charges)

• Use  AdS/CFT

30

V. Braun et al; 
 Frishman, Lepage, Sachrajda, sjb

H-J. Lu, sjb
 Kataev, Gabadadze, Rathsman, 

Lu, sjb

Grunberg
 Lepage, Mackenzie, Binger, sjb

30
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• Eliminate intermediate scheme

• No scale ambiguity 

• Transitive!

• Commensurate Scale Relations

• Example: Generalized Crewther Relation

31

Relate Observables to Each Other

31
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32

[1 + αR(s∗)
π ][1− αg1(q

2)
π ] = 1

√
s∗ $ 0.52Q

[1 + αR(s∗)
π ][1− αg1(q

2)
π ] = 1

√
s∗ $ 0.52Q

Generalized Crewther Relation

Conformal relation true to all orders in 
perturbation theory

No radiative corrections to axial anomaly
Nonconformal terms set relative scales (BLM)

Analytic matching at quark thresholds
No renormalization scale ambiguity!

Lu, Kataev, Gabadadze, Sjb
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 Eliminate MSbar, 
Find Amazing Simplification
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Geometric Series in Conformal QCD

Generalized Crewther Relation

Lu, Kataev, Gabadadze, Sjb

34
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Relate Observables to Each 
Other

• Eliminate intermediate scheme

• No scale ambiguity 

• Transitive!

• Commensurate Scale Relations

• Example: Generalized Crewther Relation

35
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Transitivity Property of Renormalization Group

A B

C

A      C C      B A       B identical to 

Relation of observables independent of intermediate scheme C

36
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Translation between schemes at LO

p

Leading Order Commensurate Scales
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[33]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

 Leading-Twist  PQCD Factorization  for 
form factors, exclusive amplitudes

38

(which is not unnatural for discussing effects of nuclear size) we may regard3 antishadowing and the EMC effect as

merely resulting from Fourier transforming a flat distribution (of finite length) in x−! This is corroborated in Fig. 11b,
where the reverse transform back to momentum (xB-) space is made, under the assumption that R

A(x−,Q2) is unity
for x− < w (and takes the values of Fig. 11a for x− > w). It is seen that the antishadowing and (most of) the EMC

effect is reproduced assuming no nuclear dependence in coordinate space for x− <∼ 5 fm. The nuclear effects can thus
be ascribed solely to shadowing.

The parton distribution qA(x−,Q2) in coordinate space is insensitive to the region of Fermi motion at large xB in
Fig. 9, where the structure function F2(xB,Q2) is small. The sizeable nuclear dependence of RAF2(xB,Q

2) at large xB
reflects the ratio of very small F2, which do not appreciably affect the inverse Fourier transform (11).

SIZE OF HARD SUBPROCESSES

The third aspect of shape that I would like to discuss concerns the size of coherent hard subprocesses in scattering

involving large momentum transfers. As sketched in Fig. 12, in inclusive DIS (ep→ eX) we expect that the virtual

photon (whose transverse coherence length is ∼ 1/Q) scatters off a single quark. The quark is typically part of a Fock
state with a hadronic,∼ 1 fm size. In elastic scattering (ep→ ep), where the entire Fock state must coherently absorb

the momentum, one might on the other hand expect [11] that only compact Fock states of the photon, with transverse

sizes r⊥ ∼ 1/Q will contribute. Thus the dynamics of inclusive and exclusive processes appears to be quite different.
In particular, the dependence on the electric charges of the quarks is expected to be, qualitatively,

!(ep→ eX) " #
q

e2q Inclusive, DIS

(13)

!(ep→ ep) " (#
q

eq)
2 Exclusive, form factor

! !

"

!#$

!"#$%&'()

% *+,-.

&

/0#$%&'()

! !

" "

#$ !

% *+12

FIGURE 12. The virtual photon scatters from single quarks in inclusive deep inelastic scattering (left). If the valence quarks
absorb equal shares of the momentum transfer in the exclusive ep→ ep process (right) only compact Fock states can contribute.

In contrast to these expectations the data suggests a close connection between inclusive and exclusive scattering.

The resonance production ep→ eN∗ cross sections (including N∗ = p) average the DIS scaling curve when plotted at

the same value of xB (or of the related Nachtmann variable $ ) [12]. Examples of this Bloom-Gilman duality are shown
in Fig. 13. A natural explanation of duality is that the same Fock states of the proton contribute in both cases [13].

Resonance formation occurs on a longer time scale than the hard subprocess, hence is incoherent with it and cannot

change the total cross section. Only the local mass distribution (resonance bumps) is sensitive to the hadronization

time scale.

3 Understanding the dynamics of nuclear dependence in momentum space is nevertheless interesting in its own right. See [10] for recent ideas about
the origin of the antishadowing enhancement.

Lepage, sjb

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

High Q2 from short distances

Fπ(Q2)

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

If αs(Q̃2) " constant

High Q2 from short distances

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

baryon distribution 
amplitude

38
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• Scaling behavior for large Q2: Q4F p
1 (Q2)→ constant Proton τ = 3

0
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8757A2

SW model predictions for κ = 0.424 GeV. Data analysis from: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

Helmholtz Institut, Bonn, Oct 16, 2007 Page 29
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QCD Sum Rules (Nesterenko, 1982)

pQCD (Bakulev et al, 2004)

BSE-DSE (Maris and Tandy, 2000)

Disp. Rel. (Geshkenbein, 2000)

CERN !-e scattering

DESY (Ackermann)

DESY (Brauel)

JLab (Tadevosyan)

this work

FIG. 3: Pion form factor as extracted in this work. Also
shown are e−π elastic data from CERN, and earlier pion elec-
troproduction data from DESY and Jefferson Lab. The ear-
lier Jefferson Lab data are taken from reference [9]. The data
point at Q2 = 1.60 GeV2 from [9] has been shifted from its
central value for visual representation. The curves are from a
Dyson-Schwinger equation (solid, [17]), QCD sum rules (dot-
ted, [14]), dispersion relations with QCD constraint (dashed,
[15]), and from a pQCD calculation (dashed-dotted, [18]).

inance the longitudinal π−/π+ ratios in 2H were exam-
ined. Since the pole term is purely isovector this ratio is
expected to be close to unity and a significant deviation
from unity would indicate the presence of an isoscalar
background. The preliminary analysis of the longitudi-
nal π−/π+ ratios is consistent with unity.

In Figure 3, our results are shown along with re-
sults from CERN, DESY, earlier Jefferson Lab data, and
some representative calculations. Comparing the result
at Q2 = 1.60 GeV2 to the earlier Jefferson Lab data
point at a lower value of W allows for a direct test of the
theoretical model dependence. A higher value of W al-
lows for a measurement at smaller values of −t, at closer
proximity to the pion pole. The data are consistent with
the previous Jefferson Lab Fπ measurement at a value of
Q2 = 1.60 GeV2 and suggest a small model uncertainty
due to fitting the VGL model to the data. The data in-
dicate a one sigma deviation from a monopole form fac-
tor that yields the measured charge radius. That form
factor is up to Q2=2.5 GeV2 indistinguishable from the
solid curve in Figure 3. Various models provide a good
description of the measured values for Fπ up to Q2=1.60
GeV2. The data are well described by the calculation of
Nesterenko and Radyushkin [14], in which a QCD sum
rule framework for the soft contribution to Fπ as well as
an asymptotically dominant hard gluon exchange term
is used. The dispersion relation calculation by Geshken-

bein [15] also agrees well with the data. The data are
also reasonably well described by the Dyson-Schwinger
calculation by Maris and Tandy, which is based on the
Bethe-Salpeter equation with dressed quark and gluon
propagators. All parameters in the latter calculation are
determined without the use of Fπ data [16, 17]. Perturba-
tive QCD calculations of which one is shown in Figure 3
give values of Q2Fπ around 0.10 GeV2 in the region of
our measurements.

In summary, we have measured separated 1H(e,e′π+)n
cross sections at values of Q2=1.60 and 2.45 GeV2 at
W=2.22 GeV. The charged pion form factor was ex-
tracted from the separated longitudinal cross section us-
ing a Regge model. The data are consistent with the
previous Jefferson Lab result at Q2 = 1.60 GeV2. The
data deviate by one sigma from a monopole form factor
obeying the measured charge radius, but are still far from
the values expected from pQCD calculations.

This work was supported in part by the U.S. Depart-
ment of Energy. The Southeastern Universities Research
Association (SURA) operates the Thomas Jefferson Na-
tional Accelerator Facility for the United States Depart-
ment of Energy under contract DE-AC05-84150. We ac-
knowledge additional research grants from the U.S. Na-
tional Science Foundation, the Natural Sciences and En-
gineering Research Council of Canada (NSERC), NATO,
and FOM (Netherlands).

[1] G.R. Farrar and D.R. Jackson, Phys. Rev. Lett. 43, 246
(1979).

[2] N. Isgur and C.H. Llewellyn-Smith, Phys. Rev. Lett. 52,
1080 (1984); N. Isgur and C.H. Llewellyn-Smith, Nucl.
Phys. B317, 526, (1989).

[3] S.R. Amendolia et al., Phys. Lett. B138, 454 (1984);
Nucl. Phys. B277, 168 (1986).

[4] C.J. Bebek et al., Phys. Rev. D13, 25 (1976).
[5] C.J. Bebek et al., Phys. Rev. D17, 1693 (1978).
[6] P. Brauel et al., Phys. Lett. B69, 253 (1977); P. Brauel

et al., Z. Phys. C3, 101 (1979).
[7] H. Ackermann et al., Nucl. Phys. B137, 294 (1978).
[8] J. Volmer et al., Phys. Rev. Lett 86, 1713 (2001).
[9] V. Tadevosyan et al., submitted to Phys. Rev. C as Rapid

Communication, (2006).
[10] T. Horn, Ph.D. thesis, University of Maryland (2006).
[11] R. Asaturyan et al., Nucl. Instrum. Meth.A548, 364-374

(2005).
[12] J. Arrington, Phys. Rev. C69, 022201 (2004).
[13] M. Vanderhaeghen, M. Guidal and J.-M. Laget, Phys.

Rev. C57, 1454 (1998); Nucl. Phys. A627 645 (1997).
[14] V.A. Nesterenko and A.V. Radyushkin, Phys. Lett.

B115, 410 (1982).
[15] B.V. Geshkenbein, Phys. Rev. D61, 033009 (2000).
[16] P. Maris and C.D. Roberts, Phys. Rev. C58, 3659 (1998).
[17] P. Maris and P.C. Tandy, Phys. Rev. C62, 204 (2000).
[18] A.P. Bakulev et al., Phys. Rev. D70, 033014 (2004).

 Determination of the Charged Pion Form Factor at
 Q2=1.60 and 2.45 (GeV/c)2.
 By Fpi2 Collaboration (T. Horn et al.). Jul 2006. 4pp.  
e-Print Archive: nucl-ex/0607005 

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)
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Consequences of Maximum Quark 
and Gluon Wavelength

• Infrared integrations regulated by confinement

• Infrared fixed point of QCD coupling 

• Bound state quark and gluon Dyson-Schwinger 
Equation

• Quark and Gluon Condensates exist within 
hadrons

αs(Q2) finite, β → 0 at small Q2

Shrock, sjb
Casher, Susskind
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Use Dyson-Schwinger Equation for bound-state quark 
propagator: find confined condensate 

g

q
b̄

k >
1

ΛQCD
λ < ΛQCD

Maximum wavelength of bound quarks and gluons

                         
B-Meson  

< b̄|q̄q|b̄ > not < 0|q̄q|0 >

Shrock, sjb

42



e−

e+

e−

Spontaneous Production in QED:  
Adiabatic Collision of Heavy Ions 

(GSI)

Vacuum charge changed by +1

Ztot >  183

e+

Z1 + Z2 → Ztot + e+e− → [Ztote
−] + e+

43



Spontaneous Production in  Supercritical QCD:  
Color Confinement:  Enriched Fock state 

q̄

q

αs → αs > αcritical
s

|uud >→ ψψ|uud >= |uud(qq̄) >

(q̄q)

44



 

u

u

u
ū

d

p p

Supercritical QCD  produces an extra quark pair

|uudūu > Fock state

arrows indicate quark LF chirality
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Spontaneous Positronium Production in 
QED:  Adiabatic Collision of Heavy Ions 

(GSI)

Ztot >  183 e+e−

positronium

Z1 + Z2 → Ztot + [e− + e+]
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Spontaneous Production in QCD:  
Color Confinement:  Pion production

q̄

q

αs → αs > αcritical
s

|uud >→ ψψ|uud >= |udd > +|ud̄ >

qq̄

|uud >→ |dd̄uud >→ n + π−
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Quark and Gluon condensates 

reside within hadrons, not vacuum 
• Bound-State Dyson-Schwinger Equations 

• LF vacuum trivial up to k+ =0 zero modes

• Analogous to finite size superconductor

• Usual picture  for 

• Implications for cosmological constant --                      
reduction by 45 orders of magnitude!

48

 Shrock, sjb

mπ → 0
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Light-Front 
(Front Form) 

Formalism
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Critical Conflict 
between  Standard Model and Phenomenology: 
Vacuum Condensates  vs Cosmological Constant

P. Srivastava, sjb

γ
!

!̄

• QCD Condensates:  Cosmological Constant 1045 
larger than measurement

• Higgs potential gives Cosmological Constant 1054 
larger than measurement

• Equal-Time Vacuum has nonzero vacuum even for 
QED

• Higgs Theory on LF: Higgs condensate replaced 
by zero mode;  

• LF Vacuum trivial up to zero modes
50
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Determinations of  the vacuum Gluon Condensate

1.22
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M
(1)

(Q2)=0n
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0
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n
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2
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b)

Figure 4: a): MS mass found from experimental moments Mn(Q2
n) for different n and Q2

n

determined by the equation M̄ (1)
n (Q2

n) = 0 for different values of the gluon condensate. The
shaded area shows the experimental error for

〈

αs

π G2
〉

= 0, for nonzero condensates only the
central lines are shown. b): m̄(m̄2) in GeV vs

〈

αs

π G2
〉

in GeV4 determined from n = 10 and
Q2 = 0.98 × 4m̄2. The αs is taken at the scale (41).

other experiments. In particular, as boundary condition in the RG equation (12) we put:

αs(m
2
τ ) = 0.330 ± 0.025 , mτ = 1.777 GeV (40)

found from hadronic τ -decay analysis [19] at the τ -mass in agreement with other data [20].
Another question is the choice of the scale µ2, at which αs should be taken. Since the

higher order perturbative corrections are not known, the moments Mn(Q2) will depend on
this scale. In the massless limit the most natural choice is µ2 = Q2. On the other hand
for massive quarks and Q2 = 0 the scale is usually taken µ2 ∼ m2. So we choose the
interpolation formula:

µ2 = Q2 + m̄2 (41)

At this scale αs is smaller than at µ2 = m̄2 for the price of larger M̄ (2)
n according to (39).

(Notice, that in the Tables in the Appendix as well as in the Fig 2 the ratio M̄ (2)/M̄ (0) is
given at the scale µ2 = m̄2.) Sometimes we will vary the coefficient before m̄2 (41) to test
the dependence of the results on the scale.

The sum rules for low order moments Mn(Q2), n ≤ 3 cannot be used because of large
contribution of high excited states and continuum as well as large α2

s corrections (see the
Tables in Appendix), especially at Q2 = 0. As the Fig 3 demonstrates, at n ≥ 4 the αs

correction to the gluon condensate is large at Q2 = 0. The 〈G3〉 condensate contribution is
also large (see below), which demonstrates, that the operator product expansion is divergent
here. For these reasons we will avoid using the sum rules at small Q2.

As the Fig 2 shows, the first correction to the moments M̄ (1)
n (Q2) vanishes along the

diagonal line, approximately parametrized by the equation Q2/(4m̄2) = n/5−1. The second-
order correction M̄ (2) and the correction to the condensate contribution M̄ (G,1) are also

12

< 0|αs
π G2|0 > [GeV4]

+0.009± 0.007 from charmonium sum rules
+0.006± 0.012 from τ decay.

Ioffe, Zyablyuk

Geshkenbein, Ioffe, Zyablyuk

Davier et al.−0.005± 0.003 from τ decay.

Consistent with zero 
vacuum condensate

51



• Casher & Susskind model shows that 
spontaneous chiral symmetry breaking can 
occur in the finite domain of a hadronic LFWF

• Infinite number of partons required, but this is 
a feature of QCD LFWFs -- 

• Regge behavior of DIS due to                 behavior 
of structure functions (LFWFs squared )

• A.H. Mueller: BLKL Pomeron derived from 
the multi-gluon Fock States of the quarkonium 
LFWF

• F. Antonuccio, S. Dalley, sjb:   Construct soft-
gluon LFWF via ladder operators

• LF Vacuum Trivial up to zero modes 

x−αR
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Dirac’s Amazing  Idea: 
The Front Form

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Instant Form Front Form 

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

Evolve in 
light-front time!

53

Evolve in 
ordinary time

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)
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Each element of 
flash photograph  

illuminated  
at same LF time

τ = t + z/c

Eigenstate -- independent of τ

Evolve in LF time

P− = i
d

dτ
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of P
μ 

55

Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

Process Independent 
Direct Link to QCD Lagrangian!
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HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n∑

i=1
xi = 1Remarkable new insights from AdS/CFT,              

the duality between conformal field theory       
and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

56

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1
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|p,Sz>=∑
n=3

ψn(xi, !k⊥i,λi)|n;k⊥i,λi>|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,!k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

!k⊥i =!0⊥.

sum over states with n=3, 4, ...constituents

Fixed LF time

57

Intrinsic heavy quarks,    s̄(x) != s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep→ eπ+n

Pπ/p " 30%

Violation of Gottfried sum rule

ū(x) #= d̄(x)

Does not produce (C = −) J/ψ,Υ

Produces (C = −) J/ψ,Υ

Same IC mechanism explains A2/3
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S.J. Brodsky et al. / Nuclear Physics B 593 (2001) 311–335 331

moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved 
LF Fock state by Fock State
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moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
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The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
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∂
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− k2j
∂
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)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

n-1 orbital angular momenta

Angular Momentum on the Light-Front

A+=0 gauge: No unphysical degrees of freedom

Nonzero Anomalous Moment requires
Nonzero orbital angular momentum
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General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

LFWFs

B-Decays

GPDs

Distribution 
Amplitudes

Hadronization 
at the amplitude level

TMDs
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Some Applications of Light-Front Wavefunctions

• Exact formulae for form factors, quark and gluon distributions; 
vanishing anomalous gravitational moment; edm connection to 
anm

• Deeply Virtual Compton Scattering, generalized parton 
distributions, angular momentum sum rules

• Exclusive weak decay amplitudes

• Single spin asymmetries: Role of ISI and FSI

• Factorization theorems, DGLAP, BFKL, ERBL Evolution

• Quark interchange amplitude

• Relation of spin, momentum, and other distributions to  physics of 
the hadron itself.
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Heisenberg Matrix 
FormulationLight-Front QCD

Eigenvalues and Eigensolutions give Hadron 
Spectrum and Light-Front wavefunctions

HQCD
LF |Ψh >= M2

h|Ψh >

HQCD
LF =

∑

i

[
m2 + k2

⊥
x

]i + Hint
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)
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LQCD → HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

DLCQ: Periodic BC in x−. Discrete k+; frame-independent truncation
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HQCD
LF |Ψh >= M2

h|Ψh >

In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2

⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Matrix 
Formulation

Light-Front QCD H.C. Pauli  & sjb
Discretized Light-Cone 

Quantization

Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions

DLCQ:  Frame-independent, No fermion doubling; Minkowski Space

HQCD
LF |Ψh >= M2

h|Ψh >

DLCQ: Periodic BC in x−. Discrete k+; frame-independent truncation
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Nonperturbative wavefunction
color confinement

spin, momenta, orbital angular 
momentum  .... 

Light-Front Quantization: 
Rigorous realization of IMF
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 E866/NuSea (Drell-Yan)

s(x) != s̄(x)

Intrinsic glue, sea, 
heavy quarks

d̄(x) != ū(x)
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Light-Front 
(Front Form) Formalism

65



 Fig. 8. Time-ordered contributions to the electron’s anomalous magnetic moment. In light-cone quantization with
q!"0, only the upper-left graph needs to be computed to obtain the Schwinger result.

As an example for the above perturbative formalism, one can evaluate the electron’s anomalous
moment to order ! [53]. In principle, one would have to account for all x!-ordered diagrams as
displayed in Fig. 8. But most of them do not contribute, because either the vacuum fluctuation
graphs vanish in the front form or they vanish because of using the Drell frame. Only the diagram
in the upper-left corner of Fig. 8 contributes the two electron—photon Fock states with spins
"!
"
#
!
,#!$""!!

"
, 1$ and "!

"
,!1$:

%
""

" e/"x

M"!k"
#
##"

x
!k"

#
#mL "

1!x

#!
"2

(k
!
!ik

"
)

x
for "!!

"
$P"!!

"
, 1$,

"2
M(1!x)!mL

1!x
for "!!

"
$P"!

"
, !1$,

(3.79)

%*
"$

" e/"x

M"!k"
#
##"

x
!k"

#
z#mL "
1!x

#!
!"2

M(1!x)!mL
1!x

for "!!
"
, 1$P"!

"
$ ,

!"2
(k

!
!ik

"
)

x
for "!

"
,!1$P"!

"
$ .

(3.80)

The quantities to the left of the curly bracket in Eqs. (3.79) and (3.80) are the matrix elements of

uN (p#k, #)
(p!!k!)!#"

&$'*$ (k, #()
u(p, #))
(p!)!#"

,
uN (p, #)
(p!)!#"

&$'$(k, #()
u(p!k, #))

(p!!k!)!#"
,

respectively, where k$'$(k, #)"0 and in light-cone gauge '!(k, #)"0. In LB-convention holds
!
#
(k

#
, #)P!

#
(k

#
,$)"$(1/"2)(xL $iyL ), see also Appendix B [41]. For the sake of generality, we

let the intermediate lepton and boson have mass mL and mJ , respectively. Substituting (3.79) and
(3.80) into Eq. (3.78), one finds that only the "!!

"
, 1$ intermediate state actually contributes to a,
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energy denominators:
frame-dependent and non-analytic  

√
(!p + !q − !k)2 + m2

n! diagrams at order en  

Only diagram in LFPTH (q+=0)
 

Calculation of  lepton g-2 in TOPTH (Instant form)
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zero for q+ = 0
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AdS/QFT and QCDErice
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Calculation of Form Factors in TOPTH

zero !!

Calculation of Form Factors in  Equal-Time Theory
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AdS/QFT and QCDErice
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Calculation of Form Factors in TOPTH

Instant Form

Calculation of Form Factors in  Light-Front Theory
Front Form

Need vacuum-induced currents

Absent for q+ = 0
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γ
!

!̄

Vacuum bubbles vanish 
in light-front formalism

All k+ ≥ 0
∑

k+
i conserved at every vertex

k+
γ + k+

" + k+
"̄

= 0
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

∑

a

∫
[dx][d2k⊥]

∑

j

ej

[
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

∑

a

∫
[dx][d2k⊥]

∑

j

ej
1

2
× (11)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

,

F3(q2)

2M
=

∑

a

∫
[dx][d2k⊥]

∑

j

ej
i

2
× (12)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi)−
1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

∫
[dx] [d2k⊥] ≡

∑

λi,ci,fi

[
n∏

i=1

(∫ ∫ dxi d2k⊥i

2(2π)3

)]

16π3δ

(

1−
n∑

i=1

xi

)

δ(2)

(
n∑

i=1

k⊥i

)

, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function differentiate between the struck and spectator constituents; namely, we
have [13, 15]

k′
⊥j = k⊥j + (1− xj)q⊥ (14)

for the struck constituent j and

k′
⊥i = k⊥i − xiq⊥ (15)

for each spectator i, where i $= j. Note that because of the frame choice q+ = 0, only
diagonal (n′ = n) overlaps of the light-front Fock states appear [14].
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Drell, sjbA(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

x̂, ŷ plane

M2(L) ∝ L

Must have ∆%z = ±1 to have nonzero F2(q2)

-

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

69

q2 = −q2
⊥

q+ = 0

      Roskies, Suaya, sjbChecked to         in QEDOα3
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-

graviton

Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

70

Hwang, Ma, Schmidt, 
sjb; 

Holstein et al

Okun, Kobzarev, Teryaev:  B(0) Must vanish because of 
Equivalence Theorem 

q2 = −q2
⊥
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of P
μ 

71

Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

Process Independent 
Direct Link to QCD Lagrangian!

71



 

u

d

p p

ū

u u

gmu

Mass shift  in  LF QCD 

|pF >= |u+u+d−ū+u+ >Lz=−1|pI >= |u+u+d−g+ >Lz=−1

Contribution to the proton mass squared from overlap 
of valence and higher Fock states 

The arrows and superscripts indicate LF chirality

HLF
I = gAψ̄γµψ ∼ −gmqagb

†
qd

†
q

de Teramond, Shrock, sjb 
(preliminary)

δM2 =< p|HLF
I |p >∝ −mq < p|Aψ̄ψ|p >
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u

d

p
p

The arrows and superscripts indicate helicity/chirality

ū

u u

p

ρ0gmu

∆M2
p = g < pF |Aµψ̄γµψ|pI >

|pI >= |u+u+d−g+ >Lz=−1

|pF >= |u+u+d−ū+u+ >Lz=−1

! |(u+u+d−)p(u+ū+)ρ0 >Lz=−1

Linear quark mass term generated by transition from  
valence to meson-nucleon LF Fock state

HLF
I = gAψ̄γµψ ∼ −gmqagb

†
qd

†
q

Dynamical chiral symmetry breaking
73
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Chiral Symmetry Breaking in AdS/QCD 

A ∝ mq B ∝< ψ̄ψ >

We consider the action of the X field which encodes the effects of CSB in
AdS/QCD:

SX =
∫

d4xdz
√

g
(
g!m∂!X∂mX − µ2

XX2
)
, (1)

with equations of motion

z3∂z

(
1
z3

∂zX

)
− ∂ρ∂

ρX −
(

µXR

z

)2

X = 0. (2)

The zero mode has no variation along Minkowski coordinates

∂µX(x, z) = 0,

thus the equation of motion reduces to
[
z2∂2

z − 3z ∂z + 3
]
X(z) = 0. (3)

for (µXR)2 = −3, which corresponds to scaling dimension ∆X = 3. The solution
is

X(z) = 〈X〉 = Az + Bz3, (4)

where A and B are determined by the boundary conditions.

Ehrlich, Katz, Son, Stephanov

Babington, Erdmenger, Evans, 
Kirsch, Guralnik, Thelfall 

Expectation value taken inside hadron

de Teramond, Shrock, sjb 
(preliminary)
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In presence of quark masses the Holographic LF wave equation is (ζ = z)
[
− d2

dζ2
+ V (ζ) +

X2(ζ)
ζ2

]
φ(ζ) =M2φ(ζ), (1)

and thus

δM2 =
〈

X2

ζ2

〉
. (2)

The parameter a is determined by the Weisberger term

a =
2√
x

.

Thus
X(z) =

m√
x

z −
√

x〈ψ̄ψ〉z3, (3)

and
δM2 =

∑

i

〈
m2

i

xi

〉
− 2

∑

i

mi〈ψ̄ψ〉〈z2〉+ 〈ψ̄ψ〉2〈z4〉, (4)

where we have used the sum over fractional longitudinal momentum
∑

i xi = 1.

Mass shift from dynamics inside hadronic boundary
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Chiral Symmetry Breaking in AdS/QCD 

• Chiral symmetry breaking effect in            
AdS/QCD depends on weighted z2 
distribution, not constant condensate

• z2 weighting consistent with higher Fock 
states at periphery of hadron wavefunction

• AdS/QCD  supports confined condensate 
picture

δM2 = −2mq < ψ̄ψ > ×
∫

dz φ2(z)z2

de Teramond, Shrock, sjb
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ΩΛ = 0.76(expt)

(ΩΛ)EW ∼ 1056

(ΩΛ)QCD ∼ 1045

June 10, 2008 12:22 WSPC/Guidelines-MPLA 02770

Modern Physics Letters A
Vol. 23, Nos. 17–20 (2008) 1336–1345
c© World Scientific Publishing Company

DARK ENERGY AND
THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA
Kavil Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful

1336

“One of the gravest puzzles of 
theoretical physics”
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“Confined  QCD Condensates” 

Quark and Gluon condensates reside 

within hadrons, not vacuum 
• Bound-State Dyson-Schwinger Equations 

• Domain becomes infinite at zero pion mass

• Finite size phase transition

• Analogous to finite-size superconductor!

• Phase change observed at RHIC within a single-nucleus-
nucleus collisions-- quark gluon plasma!

• Implications for cosmological constant --                      
reduction by 45 orders of magnitude!
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M. Fisher
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Hadron Dynamics at the Amplitude Level

• LFWFS are the universal hadronic amplitudes which 
underlie structure functions, GPDs, exclusive processes, 
distribution amplitudes, direct subprocesses, hadronization.

• Relation of spin, momentum, and other distributions to  
physics of the hadron itself.

• Connections between observables, orbital angular 
momentum

• Role of FSI and ISIs--Sivers effect

• Higher Fock States give GMOR Relations, Chiral Symmetry 
Breaking

•
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• AdS/CFT:  Duality between string theory in  Anti-de 
Sitter Space and  Conformal Field Theory

• New Way to Implement Conformal Symmetry

• Holographic Model: Conformal Symmetry at Short 
Distances, Confinement at large distances

• Remarkable predictions for hadronic spectra, 
wavefunctions, interactions

• AdS/CFT provides novel insights into the quark 
structure of hadrons

New Perspectives on QCD 
Phenomena from AdS/CFT
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Features of Soft-Wall AdS/QCD
• Single-variable frame-independent radial Schrodinger equation

• Massless pion (mq =0)

• Regge Trajectories: universal slope in  n and L

• Valid for all integer J & S.    Spectrum is independent of S

• Dimensional Counting Rules for Hard Exclusive Processes

• Phenomenology: Space-like and Time-like Form Factors

• LF Holography: LFWFs;  broad distribution amplitude

• No large Nc limit

• Add quark masses to LF kinetic energy

• Systematically  improvable -- diagonalize HLF on AdS basis

81
81



 Stan Brodsky 
 SLAC 

Maximal  Wavelength and  QCD PropertiesJTI Workshop  ANL
April  14, 2009 82

Consequences of Maximum Quark 
and Gluon Wavelength

• Infrared integrations regulated by confinement

• Infrared fixed point of QCD coupling 

• Bound state quark and gluon Dyson-Schwinger 
Equation

• Quark and Gluon Condensates exist within 
hadrons

αs(Q2) finite, β → 0 at small Q2

Shrock, sjb
Casher, Susskind
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• Color Confinement: Maximum Wavelength of Quark 
and Gluons

• Conformal symmetry of QCD coupling in IR

• Provides Conformal Template 

• Motivation for AdS/QCD

• QCD Condensates inside of hadronic LFWFs

• Technicolor: confined condensates inside of 
technihadrons -- alternative to Higgs

• Simple physical solution to cosmological constant 
conflict

QCD Symmetries
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