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Overview

I We study EM N → ∆ transition FF in holographic QCD

I N – topological soliton of the 5D gauge theory

I 5D g.t. describes a tower of mesons (ρ, ρ′, a1, . . . )

I External EM field – nonnormalizable mode of 5D g.t.

I Interaction to baryons is completely VM dominated

I Using non-relativistic N∆v(n) interaction (Park & Yi ’08), we propose
its relativistic generalization that allows consistent treatment of FF

I We compare the results from hQCD with experimental data



General Introduction

I ∆(1232) resonance is the 1st excited state of N

I ∆’s are produced in scattering π or e off a nucleon target

I ∆ has S = I = 3/2 (∆++, ∆+, ∆0, ∆−) with ≈ same mass and width

I It decays via ∆→ Nπ with 99% branching ratio and only less than 1%
to the total decay width is coming from the EM channel (∆→ Nγ)

I This ∆→ Nγ transition is dominantly of the M1 type

I γ∗N → ∆ has 3 FF related to M1, E2 and C2 types of transitions

I γN∆ was measured in π photoproduction near ∆-resonance region



Introduction

I E2 and C2 were found to be small at moderate Q2, with REM = E2/M1
and RSM = C2/M1 ∼ −2÷ 3%

I The smallness of these ratios seems to have nonperturbative origin

I pQCD studies (Carlson ’85) predict E2 ∼ M1 at large Q2

I Experimentally E2/M1 < 0 and ≈ 0 for Q2 ≤ 4 GeV2 (Beck ’97)

I In quark model N → ∆ is described by spin flip of quark in s-wave
state, leading to M1 transition



Introduction

I d-wave admixture in w.f. of ∆ will produce E2 and C2 ⇒

I Measuring these, one can observe d-wave components and quantify
how N or ∆ w.f. deviate from spherical shape

I In large Nc QCD E2/M1 ∼ O(1/N2
c ) (Jenkins et al. ’02)

I Lattice calculations (Alexandrou et al. ’04) of N∆ transition FF up to
1.5 GeV2 give small negative values for the ratio E2/M1

I This suggests that smallness of E2/M1 has non-perturbative origin



Model of Sakai and Sugimoto (PTP113&114, 2005)

I This model is constructed by placing Nf D8- and D8- branes in S1

compactified Nc D4-brane background of Type IIA s.t.

I SUSY on D4 is broken by anti-periodic BC on fermions along S1 ⇒

I At low energies we are left with the 4D pure SU(Nc) g.t.

I When Nf /Nc � 1, we ignore backreaction of D8- and D8-branes

I qL,R appear from D8− D4 and D8− D4 strings

I SS model aims to reproduce large Nc QCD with Nf massless quarks.



Model of Sakai and Sugimoto

I χ symmetry of QCD ⇐ U(Nf )L × U(Nf )R g.t. living on D8 and D8

I ChSB to U(Nf )V ⇐ “merging” of D8 and D8 in background of D4

I Resulting configuration is a U-shaped stack of Nf D8-branes

I NG arise from Wilson line connecting asmpt. separated regions on D8

I Other modes on D8 correspond to tower of V and A− V mesons

I Resulting 5D theory on D8-branes → U(Nf ) YM theory + CS term

I In addition to xµ, there is a "holographic dimension" Z ∈ (−∞,∞)



Model of Sakai and Sugimoto
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Holographic Baryons

I 5D YM theory has topological solitons along 4D (~x,Z) s.t.
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1
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∫
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I B reduces to Skyrmion number upon 4D interpretation⇒ B – baryon #

I To minimize energy baryon localizes at Z = 0 and tends to shrink

I From SD8 ⇒ the soliton mass MN with B = 1 is

M0
B = 4π2 π
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I If soliton size is ρ⇒ δMN ∼ ρ2 ⇒ shrinking

I 5D CS term gives 1/ρ2 contribution to MN preventing shrinking

I As a result the baryon acquires a stable and finite size



Holographic Baryons

I Soliton solutions have moduli space along which one should quantize

I Moduli space: SO(4) spatial rotations interlocked with the iso-spin
SU(2)I + translational moduli.

I Size is not a moduli, but one can quantize along it (Hata et al. ’07)

I Remember, YM instanton has purely non-Abelian nature with profile

Aa
m ∼ −ρ2η̄a

mn∂n
1
r2 , r →∞

I This gives information about coupling of baryons with AM(x,Z = 0)

I The logic is to replace soliton with a point like field that has a coupling
to mesons with the right strength to source the asymptotic meson tail of
the original soliton solution



Non-relativistic Treatment (Park & Yi ’08)

I A convenient non-relativistic notation for spin, iso-spin 1/2 states is

Uεα

α = {+,−} is spinor index and ε = {1, 2} is iso-spin index

I Similarly for spin, iso-spin 3/2 states

Uε1ε2ε3
α1α2α3

,

where αi’s and εi’s must be totally symmetric to be in the S = I = 3/2
reps. under spatial rotation and iso-spin

I These non-relativistic fields are presumed to be localized at Z = 0

I Quantum spread along Z 6= 0 is a O(1/Nc) effect



Non-relativistic Treatment

I The relevant non-relativistic N −∆ coupling AM is
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I Relevant to EM FF, we only need vector mesons B(2n−1)
µ = v(n)

µ

I Since ψ(2n−1)(Z) is even under Z → −Z ⇒
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I This non-relativistic result will be the starting point of our analysis



Vector Dominance in Holographic QCD
I SS model can also include external vector potentials as its nonnormalizable modes near

Z → ±∞ boundaries
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I As a result the effective 4D theory will be
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Vector Dominance in Holographic QCD

It is more convenient to work in basis where v(n)
µ = ṽ(n)

µ − aVvnVµ
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In this basis Aµ(x,Z) =
∑

n≥1 ṽ(n)
µ (x)ψ(2n−1)(Z)

Any interaction of the system with the external vector potential is completely
mediated by tree-level exchanges of the massive vector mesons ṽ(n)

µ

Finally, in this basis:
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Other Approaches

I Other approaches treat non-relativistic baryon w.f. along Z differently

I Above w.f. was taken to be δ(Z)-function leading to ψ(2n−1)(0) factor

I Other works also included some of the O(1/Nc) effects

I This modification of w.f. affects only ψ(2n−1)(0)

I E.g. in (Hata et al. ’07; Hashimoto et al. ’08) motion along Z was
approximated by harmonic oscillator

I For our purposes, it is sufficient to take the ground state w.f.
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I In summary,

Type I : ψ(2n−1)(0)
Type II : ψ(2n−1)(0)→ 〈ψ(2n−1)(Z)〉

I As a final comment, the three types of approaches we consider share
one common feature that seems to be universal.∑

n≥1

aVvnψ(2n−1)(Z) = 1

for any Z, one can easily see that the sum rule∑
n≥1

aVvn〈ψ(2n−1)(Z)〉 = 1

holds whatever approximation we use for 〈ψ(2n−1)(Z)〉
I As a result, we get universal (robust) results for transition FF at Q2 = 0



Relativistic Generalization

I A difficulty for relativistic formulation was the absence of a relativistic
5D formalism of high spin fermions

I Without going into details, the resulting 4D theory, after integrating
over Z, must be reduced to a 4D relativistic theory for a spin-3/2 field

I The non-relativistic limit of this 4D theory should reproduce
non-relativistic result

I We expect an ambiguity of sub-leading terms of order
O(1/MB) ∼ O(1/Nc)



Rarita-Schwinger Field

I The ∆(1232) is a spin-3/2 resonance and can be described in terms of
a Rarita-Schwinger field: Ψ(σ)

µ , where µ is the vector and σ the spinor
index

I The free and massive RS field obeys

(i/∂ −M)Ψµ = 0 , ∂µΨµ = 0 , γµΨµ = 0

I Constraints ensure that # of independent components of vector-spinor
field is reduced to physical # of spin d.o.f.

I In interacting theory, coupling of RS must be compatible with free
theory construction, to preserve the physical spin d.o.f., otherwise one
ends up with un-physical d.o.f. with negative-norm states or
super-luminal modes

I Since we are interested in tree-level Feynman diagrams, we will not
discuss issues related to quantization of RS field



Basics of Rarita-Schwinger Spin 3
2 Field

I Consider specific momentum state: ∂µ = −ipµ, which has following
components p0 = E = M and pi = 0 (i = 1, 2, 3)

I Solving EOM with constraints, one finds Ψ0 = 0 and

Ψi =
(
Ui

0

)
,

with three two-component spinors Ui (i = 1, 2, 3) satisfying

3∑
i=1

σi Ui = 0 .

I Ui (i = 1, 2, 3) with this constraint is a way of describing usual
non-relativistic s = 3

2 states of SO(3) rotation group

I First note that the independent number of components is indeed
2× 3− 2 = 4 as in the case of spin s = 3/2 representation



Relativistic N∆ṽ(n) Vertex

I While we have to generalize the space rotation indices (lower indices)
into a relativistic RS field, we should still keep the iso-spin indices
(upper indices)

I If we take non-relativistic limit as is done in the previous section, the
spinors reduce to non-relativistic two-component spinors as
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)
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)
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One can check that the only relativistic operator that reproduce the
non-relativistic result is:
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Relativistic N∆ṽ(n) Vertex

The final result in terms of the conventional notation of ∆-baryons
(∆++,∆+,∆0,∆−) and the nucleons (p, n)
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are the n’th vector meson fields in the EM charge basis, and ∆µ are the
Rarita-Schwinger fields for the ∆-baryons



N∆γ Transition Form Factors: Definition

〈∆(p′) | JEM
µ (0) | N(p)〉 = e Ψβ(p′)Γβµγ5N(p)
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Magnetic dipole GM , electric quadrupole GE, Coulomb quadrupole GC FF
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Also define ratios REM and RSM , often used in the experimental papers:
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Predictions from Holographic QCD
Adding Feynman diagrams corresponding to p→ ∆+ transition:

G1(Q2) =
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Predictions from Holographic QCD
When Q2 = 0 we have
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This result is universal for Type I, II models, moreover,
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Numerically: GM(0) = 2GC(0) ' 2.58 and REM = RSM = 0



Predictions from Holographic QCD

I In addition,

REM(0) = RSM(0) = − m∆ − mN

3m∆ + mN
.

I Since mN,∆ ∼ O(Nc), while m∆ − mN ∼ O(1/Nc)

REM(0) = RSM(0) ∼ −O
(

1
N2

c

)
I REM was also shown to be O(1/N2

c ) by (Jenkins et al. ’02)

I In the large-Nc limit REM(0) = RSM(0) was also observed by
(Pascalutsa et al. ’03)



Predictions from Holographic QCD

Figure: The plot of the ratio G∗M(Q2)/(3GD(Q2)) as a function of Q2, where
GD(Q2) = 1/(1 + Q2/Λ2)2 with Λ2 = 0.71 (GeV/c)2. The solid and dotted lines are the
predictions from the holographic Type I and Type II models respectively. The dashed
(dash-dotted) curves are from taking the parameter a to be 20% larger (smaller) than the value
a ∼ 0.240. Experimental data points are taken from CLAS Collaboration 2003-06.



Helicity Amplitudes
One can also parametrize γ∗N∆ through the rest frame helicity amplitudes
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Helicity amplitudes can be expressed in terms of Jones-Scadron γ∗N∆ FF as
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Helicity Amplitudes

I Helicity amplitudes are expressed in units GeV−1/2, and reduce at
Q2 = 0 to the photo-couplings quoted by PDG

I Experimentally, helicity amplitudes are extracted from the M1, E2, and
C2 multipoles for the γ∗N → πN process at the resonance position, i.e.
for πN c.m. energy W = M∆.

I In terms of helicity amplitudes,

REM =
A1/2 − 1√

3
A3/2

A1/2 +
√

3 A3/2

I From the results above it follows:

A3/2

A1/2
=
√

3 + O
(

1
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c

)
I This was also observed in (Jenkins et al. ’02) within the framework of

large Nc QCD



Predictions from Holographic QCD

I In the case Q2 = 0, we have Q± = M∆ ±MN , and therefore,

N =
e
2

(
M2

∆ −M2
N

2M3
N

)1/2

' 0.094 GeV−1/2 .

I As a result, we will have from holographic QCD:

A1/2 ' −121 [10−3GeV−1/2],

A3/2 ' −209 [10−3GeV−1/2],
REM ' 0 %

I Experimental results (MAMI/A2 and LEGS) taken from PDG give:

A1/2 = − (135± 6) [10−3GeV−1/2],

A3/2 = − (250± 8) [10−3GeV−1/2],
REM = − (2.5± 0.5 %)



Predictions from Holographic QCD

I From γ∗N∆ FF at Q2 = 0, one can extract more static observables

I From dominant M1 transition, one can extract static transition
magnetic moment µN→∆ from the value of GM(0) (Tiator et al. ’03)

µN→∆ =
√

M∆

MN
GM(0)

expressed in nuclear magnetons µN ≡ e/(2MN)

I One can also extract quadrupole transition moment QN→∆

QN→∆ = −6
√

M∆

MN

1
MNq∆(0)

GE(0)

where q∆(0) = (M2
∆ −M2

N)/2M∆.



Predictions from Holographic QCD

I Neglecting terms of order O(1/Nc) we get

GM(0) ' 2.58 , µN→∆ ' 2.58µN , QN→∆ ' 0 fm2

I From experiment (Tiator et al. 2000) extracted values

GM(0) = 3.02± 0.03,
µp→∆+ = [3.46± 0.03]µN ,

Qp→∆+ = − (0.0846± 0.0033) fm2



Summary

I Working within the framework of holographic dual model of QCD,
proposed by Sakai-Sugimoto, we generalize the non-relativistic
N∆v(n) vertex to relativistic one

I Using this generalization, we show how to calculate transition FF

I We find that these FF are expressed in terms of only one

I Various relation expected in the large Nc limit are verified

I At O(Nc), G1,2,3(Q2) transition FF are expressed in terms of one

I REM = RSM ∼ O(1/N2
c ) as expected in the large Nc limit



Conclusion

I Taking into account that our results are of only leading order in large
Nc, we find about 20% discrepancy with experiments as an indication
that the holographic model works consistently

I It is an important open problem to systematically improve the large Nc

expansion in the holographic QCD

I We suggest that this approach opens a new possibility for studying
other hadronic transitions among the excited states of baryons
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