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AdS/CFT correspondence:  a link between gauge theories 
like QCD (in ordinary flat 4D space) and gravitational 

theories (in a curved 5D space, AdS5) which may make it 
possible to carry out accurate calculations in the strong 

coupling limit of gauge theories.



Outline

3

Introduction

Establish viewpoint

We do “AdS/QCD” or “bottom-up” approach

Applications to vector mesons

Goal is form factors but need masses and w.f. also

Applications to baryons

End!



AdS
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One start:  AdS5 is 5D hyperboloid embedded in 6D space,

extra dim.ordinary dimensions

with metric

t2 − y2
1 − y2

2 − y2
3︸ ︷︷ ︸
− y2

5 + y2
6︸ ︷︷ ︸

= L2 (= 1)

•  Invariant under SO(4,2) transformations
•  Constant negative curvature

•  Usually change variables so that  ( 0 < z < ∞ )

ds2 =
L2

z2

(
dxµdxµ − dz2

)
=

L2

z2

(
dt2 − d!x2 − dz2

)

ds2 = dt2 − dy2
1 − dy2

2 − dy2
3 − dy2

5 + dy2
6

•  Solves Einstein Eq. for negative cosmological constant Λ



4D  Conformal Field Theory
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Usual symmetries:  translation and Lorentz invariance

also dilations

• Commute generators:  
  get 4 new operators called special conformal transformations
• commutation relations then close
• 15 generators

“Conformal group”  algebra same as SO(4,2)

xµ → x′µ = xµ + aµ

xµ → x′µ = Λ ν
µ xν

xµ → x′µ = λ xµ



Original AdS/CFT correspondence
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4D CFT:   SYM (Supersymmetric Yang-Mills), Nsuper = 4, NC colors

⇔
type IIB string theory, in 10D

More useful: for CFT take limit 

NC -> ∞

gYM2 NC fixed but large

⇔



“Real” AdS/CFT correspondence (cont.)

“low energy” limit of string

string looks pointlike

has particle-like excitations

still supersymmetric: supergravity

correspondence has L4 = 4πgYM
2 NC /ls2 large          

(ls is string length);  classical string

10D splits into AdS5 ⊗ S5

Still too hard
7

⇔



AdS/QCD or “bottom-up”

Start in the middle: focus on non-supersymmetric particles

Anticipate 5D AdS5 action in terms of fields with direct 
correspondence to recognizable 4D operators

Choose terms in 5D Lagrangian based on

   simplicity

   symmetries

   relevance to problem at hand

89



AdS/QCD
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E.g., say we are interested in vector mesons

For 5D theory also need gravity.  Use action:

S5D =
∫

d5x
√

g
{
R+ 12− 1

2g2
5

Tr(F2
V)

}

R = scalar curvature

Λ= 12 is cosmological constant giving metric for AdS5

(ta are n x n matrices)

FMN
V = ∂MVN − ∂NVM − i[VM, VN ]

VM(x, z) = Va
M(x, z)ta



AdS/QCD 2

QCD not conformal.  E.g., particles have definite masses

Get masses in 5D theory by deforming AdS to be not 
quite conformal by,  E.g.,

restricting the range of z:   0 < z < z0

with BC at z0 (“hard-wall model”)

or

Multiply Lagrangian by factor e-Φ = exp(-κ2z2)

(“soft-wall model”)

10



AdS/QCD 3

Need dictionary matching fields in 5D to operators 
in 4D

Respect Lorentz symmetry, isospin, parity, etc.

for vector meson case:

11

4D operator -- 5D field
(
O(x) ↔ φ(x, z)

)

q̄γµtaq = Jaµ(x) ↔ Vaµ(x, z)
Tµν(x) ↔ gµν(x, z)



AdS/CFT 4 --- Correspondence
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Z4D[φ0] =
〈

exp
(

iS4D + i
∫

d4x O(x)φ0(x)
)〉

General statement:  z = 0 boundary of AdS space is a Minkowski 
space --- our Minkowski space.  Need specific connection.

4D generating function

Correspondence

5D action evaluated for classical solutions with 
boundary condition

Used for expectation values

Z4D[φ0] = eiS5D [φcl ]

〈O(x) . . . 〉 = −i
δZ4D

δφ0(x) . . .
= −i

δ (iS5D)
δφ0(x) . . .

limz→0 φcl(x, z) = φ0(x)



Understand Stanley’s picture

picture borrowed from Stan Brodsky13



Some references for this talk
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AdS/CFT now extensive field---apologies for all omitted references
Original 1997 Maldacena paper has 6016 citations

Calculations of form factors:  “fancy”
Start from string theory, develop QCD analogs 
on lower dimensional branes

Sakai & Sugimoto

“Bottom-up”
Anticipate what 5D Lagrangian must be (guess),
directly involving desired rho, pi, a1, ...  fields and 
connect to matching QCD structures

Erlich et al.
Da Rold & Pomarol

EM form factors in “bottom-up” approach Brodsky & de Teramond
Radyushkin & Grigoryan

Gravitational form factors in bottom-up approach Zainul Abidin & me

Soft-wall Karch, Katz, Son, and Stephanov
Batell, Gherghetta, and Sword



Real calculation: vector fields
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g ≡ det gMN =
L10

z10 ; Va
KM = ∂KVa

M − ∂MVa
K

Action

EoM

SV =
∫

d5x
√

g Tr{− 1
2g2

5
F2

V}

= − 1
4g2

5

∫
d4x

∫ z0

ε
dz
√

g gKLgMN Va
KM Va

LN

(
z ∂z

(1
z

∂zVa
µ (x, z)

)
− ∂ν∂νVa

µ (x, z)
)

⊥
= 0

Step 1: need masses and w.f.  Get from 2-point function



Two-point function for vector fields
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Switch to momentum space for x (derivative -> iq)

•  q2 is 4D momentum squared           •  Eqn. same for all µ 
V⊥µ(q, z) = V(q, z)V0

µ (q)∴

(V(q,z) = “Profile function”)

V(q, ε) = 1 ; ∂zV(q, z0) = 0BC

“Anyone can see” solutions are Bessel fcns., z J1(qz) & z Y1(qz)

(
z ∂z

(
1
z

∂zVa
µ (q, z)

)
+ q2Va

µ (q, z)
)

⊥
= 0

V(q, z) =
π

2
zq

(
Y0(qz0)
J0(qz0)

J1(qz)−Y1(qz)
)

w/ BC



Alternative expansion for profile function
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Normalizable solutions for expansions. Sturm-Liouville

with BC

solutions ψn(z) = const.× z J1(mnz)

and mn s.t. J0(mnz0) = 0

V(q, z) = −g5 ∑
n

Fnψn(z)
q2 −m2

n
Expand

ψn(0) = 0 & ∂zψn(z0) = 0

z ∂z

(
1
z

∂zψn(z)
)

+ m2
n ψn(z) = 0



two-point function for vector fields
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Putting solutions in action, get only surface term:

SV =
∫ d4q

(2π)4 V0µ(q)V0
µ(q)

(
−∂zV(q, z)

2g2
5z

)

z=ε

AdS/CFT

〈0| T Jaµ(x)Jbν(y) |0〉 = −i
δ2SV

δVa0
µ (x)δVb0

ν (y)

i
∫

d4x eiqx 〈0| T Ja
µ(x)Jb

ν(0) |0〉 = ∑
n

F2
n δab

q2 − m2
n + iε

(
ηµν −

qµqν

q2

)
∴

Poles in 4D q2 (masses) fixed by e’values of 5D equation

5D



Two-point function for vector fields
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Alternative: insert complete set, with

< 0|Ja
µ(0)|ρb

n(p) >= Fnδabεµ(p)

Get same result, i.e., same Fn .

Using rho mass  ➜   J0(mρz0) = 0  ➜ 
1
z0
≡ ΛQCD ≈ 0.31 GeV



Form factors
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•  EM FF defined from matrix elements of an EM current,

〈
ρa

n(p2, λ2)
∣∣T̂µν(0)

∣∣ρb
n(p1, λ1)

〉

〈
ρa

n(p2, λ2)
∣∣Jµ(0)

∣∣ρb
n(p1, λ1)

〉

•  gravitational FF using the stress [energy-momentum] tensor

•  illustrate with latter

Step 2 (of 2): get form factors from 3-point functions



Three point functions: form factors
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〈
0
∣∣T

(
Ja

α(x)Tµν(y)Jb
β(w)

)∣∣0
〉

Start with

∑
n

∫ d3 p
(2π)32p0

∣∣ρa
n(p)

〉〈
ρa

n(p)
∣∣ = 1Insert complete sum (twice)

Isolate
〈

ρa
n(p2, λ2)

∣∣T̂µν(0)
∣∣ρb

n(p1, λ1)
〉

= lim
p2

1,p2
2→m2

n

ε∗α(p2, λ2)εβ(p1, λ1)
(

p2
1 −m2

n

) (
p2

2 −m2
n

)

× 1
F2

n

〈
0
∣∣T

(
Ja

α(p2)T̂µν(0)Jb
β(p1)

)∣∣0
〉



Three point functions: form factors
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AdS/CFT Tµν(x) ↔ hµν(x, z)

gµν(x, z) =
1
z2

(
ηµν + hµν(x, z)

)
for

Can also do 2-point function calculation for hµν,

and get 5D hµνas boundary term × profile function,

hµν(q, z) = h0
µν(q)H(q, z)

AdS/CFT,

〈
0
∣∣T Jα(x)T̂µν(y)Jβ(w)

∣∣0
〉

=
−2 δ3S5D

δV0
α (x)δh0

µν(y)δV0
β (w)



Three point functions: form factors
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Relevant part of S5D

S5D
→= − 1

4g2
5

∫
d5x
√

g glmgpnVa
mnVa

lp

→=
1

2g2
5

∫ d5x
z

(
ηργησδhγδ

[
−VσzVρz + ηαβVσαVρβ

])

〈
ρa

n(p2, λ2)
∣∣Tµν(0)

∣∣ρb
n(p1, λ1)

〉
= ε∗2αε1β

×
{
− 2A(q2)ηαβ pµ pν

− 4
(

A(q2) + B(q2)
)
q[αηβ](µ pν) + 4 more

}

Proceed, and define form factors



Three point functions: form factors
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A(q2) =
∫ z0

0

dz
z
H(Q, z)ψn(z)ψn(z)

B(q2) = 0
. . .

Obtain

ψn already known,
H(Q, z) =

1
2

Q2z2
(

K1(Qz0)
I1(Qz0)

I2(Qz) + K2(Qz)
)

0.5 1 1.5 2 2.5 Q
2 !GeV2"

0.2
0.4
0.6
0.8
1
A!Q2"



Three point functions: form factors
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〈
r2

〉

grav
= −6

∂A
∂Q2

∣∣∣∣
Q2=0

=
3.24
m2

ρ
= 0.21 fm2

Gravitational radius

〈
r2

〉

C
= −6

∂GC
∂Q2

∣∣∣∣
Q2=0

= 0.53 fm2

•  Can do same for EM form factors

• Momentum density in rho more concentrated than charge



AdS form factors: asymptotic limits
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More commentary on EM form factors

•  ∃ three EM form factors for spin-1 particles, GC, GM, & GQ

•  Old high Q2 PQCD result GC = (Q2/6m2
n)GQ

satisfied by AdS/CFT rho meson results

• Stronger results (Brodsky-Hiller ) follow if corrections to 
dominant PQCD are neglected,

GC : GM : GQ =
(
1− Q2

6M2
)

: 2 : −1

exactly satisfied by AdS/CFT results



AdS form factors: why gravitational?
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Related to integrals of generalized parton distributions (spin-1)
∫ 1

−1
xdx H1(x, ξ, t) = A(t)− ξ2C(t) +

t
6m2

n
D(t)

∫ 1

−1
xdx H2(x, ξ, t) = 2 (A(t) + B(t))

Relations between the stress tensor and the 
momentum and angular momentum operators lead to

A(0) = 1
A(0) + B(0) = (Jz)max = 1

Quark flavor specific version of latter exploited by X. Ji in his 
“killer application” for the GPDs.



Concentration of momentum density
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A(Q2) measuring distribution of momentum density;  EM 
form factors measure distribution of charge.  Relating to 
integrals over GPDs, EM form factors are moments 
without x factor (i.e., x0).

Known picture: higher x quarks have more compact 
distribution in transverse directions.  Hence x weighted 
integral will have smaller average transverse size.



Baryon states

Page of credits: 

Henningson and Sfetsos;  Mueck and Viswanathan

Contino and Pomarol

Hong, Inami, and Yee;  Hong, Rho, Yee, and Yi

Brodsky and de Téramond

Hata, Sakai, Sugimoto, and Yamato

Pomarol and Wulzer

29



Important: work only with independent degrees of 
freedom.  4-spinor fermions have redundant 
components. 

Pick one, say ΨL . Determine other from Eq. of 
motion from 

and

Baryon states
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ΨR,L =
1
2
(1± γ5)Ψ

ΨR,L(p, z) = z∆ fR,L(p, z) Ψ0(p)R,L

4d boundary field
profile function

fR =
1
p

(
∂z −

d/2−M− ∆
z

)
fL



Baryon states
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Version:  have fundamental fermion fields in 5D 
interacting with AdS gravitational background

(Alternative not pursued:  treat the fermions as 
Skyrmions within the 5D model)

Soft wall Φ=κ2z2 or hard wall has BC and Φ=0.

SF =
∫

dd+1x
√

g e−Φ(z)
(

i
2

Ψ̄eN
A ΓADNΨ

− i
2
(DNΨ)†Γ0eN

A ΓAΨ− (M + Φ(z))Ψ̄Ψ
)

eN
A = zδN

A (inverse vielbein); ΓA = (γµ,−iγ5)

DN = ∂N +
1
8

ωNAB[ΓA, ΓB]− iVN



Same procedure: find profile functions, then get 3-
point functions (→ form factors).

For variation, give results for soft wall model

(Kummer function of 2nd kind)

or expanding in terms of normalizable solutions,

where we have decay constants and masses from 
solving Eq. of motion,

Baryon states
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fL(p, z) = NL ξαU
(

α− p2

4κ2 , α + 1; ξ

)

α = M +
1
2

fL(p, z) =
∞

∑
n=0

fnmn ψ
(n)
L (z)

p2 −m2
n

m2
n = 4κ2(n + α)



Three point functions

For fermion fields, generating function uses ΨL(0) as 
source of 4D operator OR,

Derivatives give VEVs, and from VEVs project 
matrix elements that give form factors,

33

lim
p0

1,2→En
1,2

(p2
1 −m2

n)(p2
2 −m2

n)
∫

d4xd4y

×ei(p2x−qy−p1w)
〈

0
∣∣T Oi

R(x)Jaµ(y)Ō j
R(w)

∣∣0
〉

= f 2
n u(p2, s2)

〈
p2, s2

∣∣Jaµ(0)
∣∣p1, s1

〉
ū(p1, s1) × δ(4)(p2 − p1 − q)

ZCFT [Ψ0
L, Ψ̄0

L, ...] =
〈

ei
∫

ddx(ŌR(x)Ψ0
L(x)+h.c.+...)

〉
= eiSAdS(Ψcl

L ,...)



Three point functions

For the record,

Part of action giving 3-point function,

Gives o.k . F1p, but no F2 and zero F1n. 
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〈
p2, s2

∣∣Jµ(0)
∣∣p1, s1

〉
= u(p2, s2)

(
F1(Q2)γµ + F2(Q2)

iσµνqν

2mn

)
u(p1, s1)

SF =
∫

d5x
√

ge−Φ Ψ̄eM
A ΓAVMΨ



Inlcude further isoscalar and isovector terms,

Result (algebraic)

with

and similarly for neutron

Three point functions
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SηS,V = ηS,V

∫
d5x
√

ge−Φ i
2

Ψ̄ eM
A eN

B [ΓA, ΓB] F(S,V)
MN Ψ

C1(Q) =
∫ dz

2z2M e−Φ V(Q, z)
(
ψL

2(z) + ψR
2(z)

)
,

C2(Q) =
∫ dz

2z2M−1 e−Φ ∂zV(Q, z)
(
ψL

2(z)− ψR
2(z)

)
,

C3(Q) =
∫ dz

z2M−1 e−Φ 2mnV(Q, z)ψL(z)

F(P)
1 (Q) = C1(Q) + ηPC2(Q), F(P)

2 (Q) = ηPC3(Q)



Nucleon form factors in pictures
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Form factors
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Same for gravitational form factors
〈

p2, s2
∣∣Tµν(0)

∣∣p1, s1
〉

= u(p2, s2)
(

A(Q)γ(µ pν)

+B(Q)
ip(µσν)αqα

2mn
+ C(Q)

qµqν − q2ηµν

m

)
u(p1, s1)



Charge and gravitational radii
Proton charge radius

Neutron charge radius

Gravitational (momentum density) charge radius

Same feature of smaller gravitational radius
38

〈
r2

C

〉

p
= − 6

GE(0)
dGE(0)

dQ2 = (0.961 fm)2 [data, 0.877 fm]

〈
r2

C

〉

n
= −6

dGEn(0)
dQ2 = (−0.136 fm2) [data, −0.112 fm2]

〈
r2

A

〉
= − 6

A(0)
dA(0)
dQ2 = (0.575 fm)2 [GPD model, 0.608 fm]



A(Q2) measured?
Yesterday: report of Domokos et al. fitting pp 
cross sections using pomeron trajectory with 
vertex function given in terms of gravitational 
form factor A(Q2).  

Reverse:  they parameterize

and determine that M = 1.02 GeV.

Thus obtain form factor stiffer than EM.

Result here (converting gravitational radius):

39

A(Q2) =
1

(1 + Q2/M2)2

M =

{
1.19 GeV AdS/QCD

1.12 GeV GPD model



Summary/Conclusions
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Connection between 5D theories with gravitational interactions 
and 4D conformal or QCD-like theories.

Did less-fancy AdS/QCD starting with idea of what 5D action 
must be.  Sometimes called “bottom up” approach.

Calculate two-point functions---propagators with 
interactions---to obtain masses and decay constants.

Main target was form factors, obtained from three-point 
(vertex) functions  Results for both EM and gravitational FF, and 
for both mesons (including scalar and axial mesons) and baryons.

Particles appear smaller viewed gravitationally than 
electromagnetically.  Momentum density is more concentrated 
than charge.

The End



Extra slides
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Nearly conformal QCD?
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Γp−n
1 ≡

∫ 1

0
dx

(
gp

1 (x, Q2)− gn
1 (x, Q2)

)
=

1
6

gA

(
1−

αs,g1

π

)Define αs from 
Björkén sum,

Q (GeV)

!
s(Q

)/"

!s,g1/" world data

!s,#/" OPAL

pQCD evol. eq.

JLab PLB 650 4 244

JLab CLAS

!s,F3/"

GDH limit

0.06
0.07
0.08
0.09

0.1

0.2

0.3

0.4

0.5

0.6
0.7
0.8
0.9

1

10 -1 1

g1 = spin dependent structure 
function (from inelastic ep 
scattering

Data from EG1 exp., at 
JLab CLAS  (2008)

αs runs only 
modestly at small Q2

Fig. from 0803.4119, Duer et al.



Nearly conformal QCD?
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PQCD suggests 

s7 dσ

dt
(γp → π+n) = const× α6

s (t)

from diagrams like

 running of αs not seen here;
αs does not run in conformal thy.

√
s (GeV)



The axial sector: pions and axial mesons
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restart

S5D =
∫

d5x
√

g
{
R+ 12 + Tr

[
|DX|2 + 3|X|2 − 1

4g2
5
(F2

L + F2
R)

]}

with

To 2nd order in axial fields,

S(A)
5D =

∫
d5x
√

g
[

v(z)2

2
gMN(∂Mπa − Aa

M)(∂Nπa − Aa
N)

− 1
4g2

5
gKLgMN Fa

KMFa
LN

]

Fa
KM = ∂K Aa

M − ∂M Aa
K

X(x, z) =
1
2

v(z)1 exp(2itaπa) ; A =
1
2
(AL − AR)



The axial sector: pions and axial mesons
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∂z

(
1
z

∂z Aa
ν⊥

)
+

q2

z
Aa

ν⊥ −
g2

5v2

z3 Aa
ν⊥ = 0

∂z

(
1
z

∂zφa
)

+
g2

5v2

z3 (πa − φa) = 0

−q2∂zφa +
g2

5v2

z2 ∂zπa = 0

EoM

( Split A into transverse and longitudinal part                                  )Aa
µ = Aa

µ⊥ + ∂µφa

For looking at two point functions, q2 ➜ mπ2 ➜ 0 (chiral limit) in 
last equation, and

∂z

(
1
z

∂zψa(q, z)
)
−

g2
5v2

z3 ψa(q, z) = 0

(ψa ≡ φa − πa)



The axial sector: pions and axial mesons
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Choice  v(z) = σz3

Profile function ψa(q, z) = ψ0a(q)Ψ(z)

Get Ψ(z) = zΓ[2/3]
(α

2

) 1
3

(
I− 1

3
(αz3)− I 1

3
(αz3)

I 2
3
(αz3

0)

I− 2
3
(αz3

0)

)

(
for α = g5σ/3

)



The axial sector: pions and axial mesons
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Study two-point functions to find masses and decay constants

Along way, define

Learn f 2
π = −∂zΨ(z)

g2
5 z

∣∣∣∣
z=ε

Use fπ = 92.4 MeV to fix σ.

Find
AdS/CFT data

ma1 1376 MeV 1230 MeV
(Fa1)1/2 493 MeV 433 MeV

〈
0
∣∣∣Ja

A,µ(0)!
∣∣∣πb(p)

〉
= i fπ pµδab



The axial sector: pions and axial mesons
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Get gravitational form factors 
〈

πa(p2)|Tµν(0)|πb(p1)
〉

=

δab
[

2Aπ(Q2)pµ pν +
1
2

Cπ(Q2)
(

q2ηµν − qµqν
) ]

from three point function as before:

•  find part of S5D linear in hµν and quadratic in axial fields

•  do functional derivative to find three-point function

•  etc.



The axial sector: pions and axial mesons
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Find Aπ(Q2) =
∫

dzH(Q, z)

(
(∂zΨ(z))2

g2
5 f 2

πz
+

v(z)2Ψ(z)2

f 2
πz3

)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

Aa1
,Aπ

Q2(ΛQCD
2)

Gravitational Form Factors

π

a1

〈
r2

π

〉

grav
= 0.13 (fm)2 = (0.36 fm)2

radii

Cf.
〈

r2
π

〉

C
=

{
(0.57 fm)2 AdS/CFT
(0.67 fm)2 data

• Again, energy in constituents more 
spatially concentrated than charge


