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Content of the talk

• Main questions addressed

• Dyson instability, complex coupling and large fields

• Lattice perturbation theory and density of states (arXiv:0807.0185 [hep-
lat], Phys. Rev. D78 054503)

• Sigma models in the large-N limit, in the complex coupling plane
(preprint in progress)

• Conclusions
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Main Questions Addressed

What is the large order behavior of perturbative series in lattice gauge
theory?

How do truncated series compare with numerical data?

Can we treat these questions by calculating the density of states (color
entropy)?

Can we solve or understand better these problems in the large-N limit?

In asymptotically free theories with no phase transitions at real coupling, can
weak coupling expansions be used to approach the large distance behavior?
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Few facts about pure gauge lattice theory:

• Existing series (average plaquette up to order 16 in g2) indicate power
growth (not factorial!)

• Partition function well defined when g2 < 0

• Mass gap, no phase transition, between weak and strong coupling for
SU(2) and SU(3) in four dimensions

• The problem is fully understood for the one plaquette model
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Dyson’s instability

Suppose that a physical quantity in QED can be calculated as a perturbative
series F (e2) = a0 + a1e

2 + . . . .

If we assume that the series has a finite radius of convergence, then, for e2

sufficiently small, we can interpret F (−|e2|) as the value of this quantity in
a fictitious world where same charge particles attract. But in this fictitious
world, every physical state is unstable. So, the radius of convergence is
zero.

”The argument [...] is lacking in mathematical rigor and in physical
precision. It is intended to be suggestive, to serve as a basis for further
discussions” (F. J. Dyson, Phys. Rev. 85, 631 (1952))
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Complex coupling (Bender, Wu, Zinn-Justin, Parisi,

Brezin...)

The validity of Dyson conclusions were confirmed for the anharmonic
oscillator, the double-well potential and other models.

Dispersion relations + semi-classical calculations at small negative λ or e2

predict the large order behavior of (asymptotic) series.

Theories with stable states at negative coupling can be constructed (Carl
Bender et al.)

Large-N: some quantities (e. g. , ground state energy, anomalous dimensions
...) have a finite radius of convergence in the ’t Hooft coupling (in the
planar approximation). However Dyson instability is invoked by Polyakov
(arXiv 0709.2899) in the AdS/CFT context.
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Asymptotic series and large fields (YM, PRL88:141601)

∫ +∞

−∞

dφe−
1
2φ2−λφ4 6=

∞
∑

0

(−λ)l

l!

∫ +∞

−∞

dφe−
1
2φ2

φ4l

The peak of the integrand of the r.h.s. moves too fast when the order
increases. On the other hand, if we introduce a field cutoff, the peak moves
outside of the integration range and

∫ +φmax

−φmax

dφe−
1
2φ2−λφ4

=
∞
∑

0

(−λ)l

l!

∫ +φmax

−φmax

dφe−
1
2φ2

φ4l (1)

General expectations: for a finite lattice, the partition function Z calculated
with a field cutoff is convergent and ln(Z) has a finite radius of convergence.
φmax is an optimization parameter fixed using strong coupling, for instance.
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Quenched lattice QCD

Lattice gauge theories with a compact group (e.g., Wilson’s lattice QCD)
have a build-in large field cutoff: the group elements associated with the
links are integrated with dUl the compact Haar measure. N is the number
of colors. UV and large field regularization preserve gauge invariance.

S =
∑

plaq.(1 − (1/N)ReTr(Up))

β = 2N/g2

Z =
∏

l

∫

dUle
−βS

Number of plaquettes: Np ≡ LDD(D − 1)/2

Average plaquette: P (β) = (1/Np)
〈

∑

p(1 − (1/N)ReTr(Up))
〉
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The density of states

Z(β) is the Laplace transform of n(S), the density of states

Z(β) =

∫ Smax

0

dS n(S) e−βS ,

with

n(S) =
∏

l

∫

dUlδ(S −
∑

p

(1 − (1/N)ReTr(Up)))

ln(n(S)) is a ”color entropy” (∝ Np, extensive); n(S) = eNpf(S/Np)

Smax = 2Np for SU(2N), 3
2Np for SU(3); (Np : number of plaquettes)
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One plaquette (SU(2))

Z(β) =
∫ 2

0
dSn(S)e−βS = 2e−βI1(β)/β (analytical in the entire β plane)

n(S) = 2
π

√

S(2 − S) (invariant under S → 2 − S)

The large order of the weak coupling expansion β → ∞ is determined by
the behavior of n(S) near S = 2, itself probed when β → −∞ in agreement
with the common wisdom that the large order behavior of weak coupling
series can be understood in terms of the behavior at small negative coupling.

√
2 − S is easy to approximate near S = 0 (radius of convergence = 2)

Z(β) = (βπ)−3/221/2
∑∞

l=0(2β)−lΓ(l+1/2)
l!(1/2−l)

∫ 2β

0
dte−ttl+1/2 is convergent
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The crucial step

∫ 2β

0
dte−ttl+1/2 ≃

∫ ∞

0
dte−ttl+1/2 +O(e−2β) is responsible for the factorial

behavior

The peak of the integrand crosses the boundary near order 2β

Dropping higher order terms (than order ≃ 2β) agrees with the rule of
thumb (minimizing the first contribution dropped)

The non-perturbative part can be fully reconstructed (higher orders +
”tails”, PRD 74 096005)
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L4 lattices

The crossing is near order 2βNp which explains that up to order 16, no sign
of factorial growth is seen on 84 and 244 lattices. However the tail effects
may be important for reduced models (small volume models introduced in
the context of the large-N limit).

Complex singularities for |S| < Smax should explain the behavior of
perturbative series at large volume.

Non-perturbative effects should be explainable by the contributions near
Smax which can be probed at small negative coupling.

Z remains an analytic function of β in the entire complex β plane and
the strong coupling expansions is dominated by the zeros of the partition
function.
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Lattice Perturbation Theory (SU(3))

P (1/β) =
∑10

m=0 bmβ−m + . . . .

(F. Di Renzo et al. JHEP 10 038, P. Rakow Lat. 05)

Series analysis suggests a singularity: P ∝ (1/5.74 − 1/β)1.08 (Horsley et
al, Rakow, Li and YM)

This means that the coefficients we know grow like 5.74n rather than n!

Not seen in 2d derivative of P (would requires massless glueballs!)

Solution: complex singularities slightly off the real axis (PRD 73 036006)
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Figure 1: ln(bk) for the mean field model (solid line) and the renormalon
model (dashes). The dots up to order 10 are the known values. The two
models yields similar coefficients up to order 20. After that, the integral
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Fisher’s zeros

Figure 2: Zeros of the real (crosses) and imaginary (circles) using MC on
a 44 lattice, for SU(2) at β0 = 2.18. The values for the real (green) and
imaginary (blue) parts are obtained from a 4 parameter model.
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A SU(2) duality (g2 → −g2 means S → 2Np − S)

For cubic lattices with even number of sites in each direction and a gauge
group that contains −1, it is possible to change βReTrUp into −βReTrUp

by a change of variables Ul → −Ul on a set of links such that for any
plaquette, exactly one link of the set belongs to that plaquette (Li, YM
PRD71 016008). This implies

Z(−β) = e2βNpZ(β)

n(2Np − S) = n(S)

Thanks to this symmetry, we only need to know n(S) for 0 ≤ S ≤ Np

(< S >= Np means < TrUp >=0). Note: this is not a symmetry of the
14 reduced EK model.
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Numerical calculation of n(S) (A. denBleyker)
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054503); Volume effects will be discussed tomorrow.
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Weak and strong coupling expansions
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Finite radius of convergence (strong coupling)
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Moments (D. Du)
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U(1) lattice gauge theory
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Figure 8: Density of states for U(1) on a 44 lattice by multicanonical
methods ( A. Bazavov).

22



0.30 0.35 0.40 0.45 0.50 0.55

0

1

2

3

4

5

6

7

x=S�N_p

PH
x<

Plaquette distribution
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Figure 10: Zeros of Re and Im part of Z for U(1) using the density of states
for a 44 lattice. Real part of leading zero is about 0.979. As the volume
increases, the zero gets closer (tomorrow’s talk)
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Linear O(N) σ-model with a sharp momentum cutoff

Z =
∫

Dφe−
R

dDx[(1/2)(∂φ)2+(1/2)m2
Bφ2+(λt/N)(φ2)2+(ηt/N2)(φ2)3]

After introducing auxiliary fields and integrating over the N vector ~φ

Z ∝
∫ c+i∞

c−i∞ dM2
∫ ∞

0
dXe−NV A

A = (1/2)
∫

|k|≤1
ln(k2 + M2) − (1/2)M2X + U(X)

with U(X) = (1/2)m2
BX + λtX2 + ηtX3 + . . .

Every dimensional quantity is expressed in units of a sharp cutoff

(ref: David et al. PRL 53, 2071)
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Saddle point (gap equation)

∫

|k|≤1
dDk

(2π)D
1

k2+M2 = X and M 2 = 2U ′(X)

For a quartic potential

∫

|k|≤1
dDk

(2π)D
1

k2+M2 = (M 2 − m2
B)/(4λt)

For D=2, when λt is positive, this equation has 1 solution. When λt is
negative, this equation may have 2, 1 or no real solution. We call λt

c the
value where the two real solutions coalesce and disappear if the coupling
becomes more negative. (See figure)
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B=0.5, with λt above, below and very close to λt
c.
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Perturbative solution

Perturbative solution: M2(λt) = m2
b + c1λ

t + . . . ,

For m2
B = 0.5, cn/cn+1 ≃ −0.27(1 + 1.6/n) indicates a finite radius of

convergence with a square root singularity near λt
c.

Numerical calculations with m2
B = 0.5 yield λt

c ≃ −0.27.

At large M2, M2 ∝
√

λt, in contrast to the nonlinear sigma model where
M2 ∝ λt.

A study of the quadratic fluctuations shows that
∫

ln(k2 + M2), induces a
local minimum for the ”master field” X when λt is not too negative. This
is a classical result that is blind to the quantum tunneling (metastability,
large field behavior).
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Nonlinear O(N) sigma model on a square lattice

Z =
∫

∏

x dNφxδ( ~φx
~φx − 1) e−(1/g2

0)E[{φ}]

with E[{φ}] =
∑

x,e(1 − ~φx
~φx+e)

We assume a cubic lattice with an even number of sites in each directions
and periodic boundary conditions. Under these conditions (as for SU(2N)
LGT)

Z[−g2
0] = e4DLD/g2

0Z[g2
0]

This can be seen by changing variable φ → −φ on sublattices with lattice
spacing twice larger and such that they share exactly one site with each link
of the original lattice.
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Gap equation

∏D
j=1

∫ π

−π

dkj

2π
1

2(
∑D

j=1(1−cos(kj))+M2
= 1/λt ≡ b

with λt = g2
0N kept constant as N becomes large.

The saddle point equation is invariant under λt → −λt together with
M2 → −M2 − 4D. This can be seen by changing variables kj → kj + π
for all j.

For D = 2, λt → 0 when M2 → 0, −8 ,−4 ± iǫ with double poles at
(k1, k2) = (0, 0), (π, π), (0, π), (0, π) respectively.
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Average energy

E =< E > /Ld = (1/2)(λt − M2)

Note that 0 ≤ E ≤ 2D (the range is N -independent)

At large M2, M2 ≃ λt so unlike the linear sigma model there is no cut at
infinity.

Dispersion relations dominated by four-leaf clover path

Plausible scenario for LGT?

36



Density of states

n(E) =
∫

∏

x dNφxδ(~φx
~φx − 1)δ(E[{φ}] − E)

δ(E[{φ}] − E) =
∫ K+i∞

K−i∞ dueu(E[{φ}]−E)

Saddle point:

∏D
j=1

∫ π

−π

dkj

2π
1

2
PD

j=1(1−cos(kj))+M2
= u

M2 = 1/u − 2E

These equations are equivalent to the previous ones except that now E is
the independent variable and u is a function of E and plays the role of 1/λt.
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Entropy

f(E) = ln(n(S))/(NpN)

= (1/2)M2u + uE

−(1/2)log(u) − (1/2)
D
∏

j=1

∫ π

−π

dkj

2π
ln(2

D
∑

j=1

(1 − cos(kj)) + M2)

f(E) = f(2D − E) (using s.p. equations)

small E , f(E) ≃ (1/2)ln(E)

E ≃ D, f(E) ≃ (−1/D)(E − D)2
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Zeros of the partition functions

∮

C

db(dZ/db)/Z = i2π × number of zeros in C

= V

∮

C′
dM2(db/dM2)(1/2)(1/b − M2)

C ′ is the contour in the M2 plane. If C ′ does not cross [−8, 0], there
are no zeros. So, there are no zeros of the partition function in the
image of the cut M2 plane. The apparent pole at b = 0 is cancelled by
M2 ≃ 1/b in this limit. Consistent with preliminary numerical calculations
using interpolations of f(E) at infinite volume and large values of NV .
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boundary of b(M2)
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Perspectives

• Large order in weak coupling expansions in LGT dominated by complex
singularities of the density of states for 0 < |S| < Smax. Non-
perturbative effects in tail effects (S ∼ Smax).

• ”Hadamard” expansions (that includes e−lβ effects) possible at least for
reduced models.

• λt expansion sensitive to instability but not metastability

• Clover-leaf dispersion for LGT?

• Finite volume effects in progress (tomorrow’s talk)
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