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Overview

• Quantum many body problem: 

– Exponential wall

– Breaking the wall

• Quantum computing

• Quantum tensor networks

• Quantum computing:

– Quantum simulation: dynamics

– Quantum simulation: statics

• Tensor networks:

– The entanglement structure of quantum many body systems: area laws

– Variational quantum tensor networks

• MPS / PEPS / MERA



Quantum many body problem

• Central premise: strongly interacting quantum many body systems cannot 
be described using mean field theory such as Hartree Fock and variants:

– QFT in the strong coupling regime

– Quantum chemistry

– Condensed matter theory: quantum Hall, Hubbard model, …

– Nuclear physics: effective field theory and/or many body problem

• Exponential wall: 

– Tensor product structure leads to exponential scaling of Hilbert space:
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Breaking the exponential wall



Breaking the exponential wall: 2 ideas from QIT

• Use a quantum computer to simulate the low dimensional manifolds: digital 
quantum simulation

• Use entanglement structure to construct novel classes of variational
wavefunctions for ground and thermal states

J. Preskill, ‘99



Digital quantum simulation

• Use a quantum computer to simulate the low dimensional manifolds

– Central point: work with wavefunctions (Schrodinger picture) as opposed 
to path integrals: quantum computer can only do unitary time evolution

• Fock space is encoded using qubits:

– Real time evolution of  many body Hamiltonian: digitize / trotterize
Hamiltonian evolution (Lloyd ‘96)

• Start with a fiducial state, and then evolve quantum state



Digital quantum simulation

– Ground state physics can now be simulated by adiabatic time evolution 
(Farhi et al.): 

• Speed at which Hamiltonian can be evolved is inversely proportional to 
the gap

– Problem in the continuum limit: the closer to continuum limit 
(gapless), the slower we have to evolve

– Problem at quantum phase transition: there cannot be phase 
transitions along the path!

• How to prepare initial ground state of H0?

– Efficient quantum circuits for Slater determinants



Efficient quantum circuits for Slater determinants

• Any canonical and in particular Bogoliubov and (quantum fast) Fourier 
transform can be performed on a quantum computer with cost N.logN

– Note: no need for Jordan Wigner transform; JW just encodes the 
mapping  

FV, Cirac, Latorre ‘09



• Alternative (but essentially equivalent) to adiabatic time evolution: 

– Prepare an initial state |u> (e.g. Slater determinant) with a large (poly) 
overlap with the many body ground state, and then measure the 
energy with a quantum non-demolition measurement (quantum 
phase estimation)

– This method is very useful when the Hartree Fock state has a sizeable 
overlap with the many body ground state

• Quantum chemistry

• Nuclear Schell model? 



• What if there is a phase transition and/or we want to simulate quantum many 
body system at finite temperature?

– Cfr. classical many body problem: has been completely monopolized by 
Monte Carlo sampling techniques (“We  devised a general method to 
calculate the properties of any substance comprising individual molecules 
with classical  statistics”, Metropolis, Rosenbluth, Teller ‘52)

– Quantum Metropolis Sampling (Temme, Vollbrecht, Osborne, Poulin, FV  
Nature ‘11): use a quantum computer to sample eigenstates of 
Hamiltonian 

• QC solves the sign problem!

• Quantum detailed balance criterion ensures convergence to Gibbs 
state 



Quantum Metropolis Sampling

• Three obstacles to overcome:

– How to prepare eigenstates of an interacting Hamiltonian?

• Quantum phase estimation

– How to do local moves?

• Just apply random 2-body unitary transformations to the state 
such as to assure ergodicity

– How to reject a move using Metropolis’ criterion (no cloning 
theorem!)?

• Most difficult step: we have to do a measurement which reveals 
whether we want to accept or reject the move, AND does not 
contain more information than that (otherwise state would be 
disturbed too much)

• Can be done using Jordan’s lemma and quantum unwiding trick of 
Marriott and Watrous

• Should work like a charm, plus no sign problem! Convergence rate will 
have to be determined empirically (just as in classical case)



Quantum Metropolis Sampling



• Quantum Metropolis should be able to sample in regimes where lattice 
QCD and Lattice EFT fail:

Dean Lee



Breaking the Wall II: Tensor Networks

Computational aspects:

• MPS

• PEPS

• MERA

Conceptual aspects: the shadow world

• Area laws and the corner of Hilbert space: 
manifold of ground states of local 
Hamiltonians, symplectic structures

• Modelling the entanglement degrees of 
freedom: symmetries

• Symmetry fractionalization, 
classification of SPT phases

• Gauge theories and topologically 
ordered matter: holographic Landau 
type order parameters

Vidal, Evenbly

Marien ‘16

Vanderstraeten ‘15



Quantum tensor networks

• Ground and Gibbs states of interacting quantum many body Hamiltonians 
have very peculiar properties

– Area law for the entanglement entropy (ground states) or for mutual 
information (Gibbs states)

1. Ground states:

2. Gibbs states:

Holzhey, Larsen, Wilczek ‘94; …

Wolf, Hastings, Cirac, FV ‘08

Srednicki ’93; Hastings ’07; …



Feynman’s vision of modelling 
entanglement degrees of freedom:

Wangerooge 1987, Proceedings, 
Variational calculations in quantum field theory



Tensor Calculus for Quantum Spin Chains

• Systematic way of creating states which have extremal local marginals but 
keep translational invariance: matrix product states



Tensor Calculus for Quantum Spin Chains

• Systematic way of creating states which have extremal local marginals but 
keep translational invariance: matrix product states



Tensors for Quantum Spin Chains

• Systematic way of creating states which have extremal local marginals but 
keep translational invariance: matrix product states (MPS)

• MPS model the correlations and how the entanglement is distributed



I. Cirac  ‘04

S. White ‘92K. Wilson ’70s

M. Fannes, B. Nachtergaele, 
R. Werner ‘91

I. Affleck, T. Kennedy, 
E. Lieb, H. Tasaki ‘87

G. Vidal ‘04



Higher dimensions: Projected Entangled Pair States 
(PEPS) FV, Cirac ‘04



Multiscale Entanglement Renormalization Ansatz

Scale invariant (critical) systems

G. Vidal ‘07



• Crucial ideas in tensor networks:

– Tensors model the entanglement structure: modelling correlations 
makes much more sense than modelling wavefunction directly

– Tensor networks can be efficiently contracted due to holographic 
property: map quantum 3D -> 2D -> 1D -> 0D problems, and this can 
be done efficiently due to area laws

– Local tensor contains all global information about quantum many body     
state

• different phases of matter can be distinguished by symmetries of 
those local tensor, including topological phases

• Tensor networks provide a natural way of dealing with gauge 
theories: enforcing symmetries



Tensor networks at work: Schwinger model

• Kogut-Susskind staggered formulation with

• Entanglement spectrum in continuum limit 

Buyens, Van Acoleyen, FV ‘13-’17 



• Cutting off the electrical field:

– This justifies “qubit” approach to Schwinger model



• Excitation spectrum: continuum limit



• Entanglement entropy in presence of test charges Q at distance L.g=15: 
string breaking in the meson states



• Entanglement entropy in presence of test charges Q=4.5 as function of L



• Quark-andiquark potential for Q=1



Continuous MPS: variational methods in the continuum
FV, Cirac ’10; Haegeman, FV ’11; …



Scattering elementary particles and solitons

• Single particle ansatz (also for solitons!):

• Scattering ansatz:

Vanderstraeten et al. ‘14



Vanderstraeten et al. ‘15

Scattering lengths in 
Heisenberg spin ½ ladder; 
the divergences in the 
spin 0 and 1 sector 
indicate the formation of 
bound states

Dispersion relation in a 
Heisenberg spin ½ ladder



Tensor networks in 2+1D

• Dispersion relations for 2D Heisenberg (AKLT) model



• Entanglement spectrum and confinement/deconfinement phase transition 
by anyon condensation in a Z2 gauge theory (Shenker/Fradkin == toric
code with string tension)

Haegeman, Zauner, Schuch, FV ‘15



QED in 2+1 D

Zohar, Burrello, Wahl, Cirac ‘16



TQFT in 2+1 and CFT in 2+0: MPO symmetries

Sahinoglu, Williamson, Bultinck, Marien, Haegeman, FV ‘14-’18



Entanglement Matters

Quantum Computation

Bosonic SPT phases

Quantum Topological Order

Quantum Spin Liquids

Fractional Quantum Hall

Lattice Gauge Theories

Cold Atomic Gases Hubbard Model

Quantum Quenches

Projected Entangled Pair States

Multiscale Entanglement 
Renormalization Ansatz

Matrix Product States

Non-Commutative Gross-Pitaevskii

Anyon Condensation

Holographic Principle

Renormalization Group

Quantum Phase Transitions

Lieb-Robinson bounds

Quasi-Particles (Virtual) Order Parameter

Entanglement
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