Towards scalable circuit model quantum computing with neutral atom qubits

M. Saffman

Challenges of Quantum Computing

- Qubit isolation from the environment to preserve quantum states
- High fidelity quantum logic gates
- Qubit measurement without Xtalk
- Quantum error correction costs X10 to X1000 qubit overhead

Leading approaches

trapped ions

superconductors

2D quantum dots

Dichotomy of Quantum Computing

need full control strong coupling weak coupling need coupling to environment for QEC

Neutral atom qubits

Quadratic Zeeman: $v=v_0 + 8.55 \times 10^{10} B_0 \,\delta B \,Hz/T$ $B_0 = 10^{-4} \,T, \,\,\delta B = 10^{-8} \,T$ $\Delta v \sim 0.1 \,Hz$

Neutral atom qubits

Tensor polarizability & hyperpolarizability

 $\delta v \sim \alpha I + \beta I^2$

Adding sidebands to trap light can make traps doubly magic.

$$\left|\frac{\partial\nu}{\partial B}\right|_{B=B_0} = \frac{\partial\nu}{\partial I}\Big|_{I=I_0} = 0$$

A. Carr & MS, PRL 117, 150801 (2016)

Neutral atom qubits

Coherence times as high as 10 sec. have been measured in optically trapped qubit arrays.

Decoherence rate ~ 0.1 s⁻¹

(Dave Weiss, PSU)

Neutral atom approach

Atomic qubits in optical lattices & Rydberg interactions

125 sites, blue detuned PSU – not yet Rydberg

Lattice design

2D array of 3D optical traps

PRA 88, 013420 (2013)

121 site array in progress

line array twice more efficient use of optical power

insensitive to optical perturbations

Rydberg trapping

PRA 84, 043408 (2011)

Blue detuned light traps ground and Rydberg states at intensity minimum.

 $\tau_{mech} = 0.35 \text{ ms} >> \tau_{spont}$

Accounting for spontaneous lifetime & blackbody repopulation this implies a mechanical trap lifetime

Single qubit gates - global

Quantify gate fidelity with random sequence of Clifford gates

Fidelity ~ 0.999 Close to threshold for quantum error correction

$$\begin{cases} \langle F^2 \rangle_{47 \text{ sites}} & 0.9983 \pm 0.0014 \\ F_{\min}^2 & 0.9939 \pm 0.0007 \\ F_{\max}^2 & 0.9999 \pm 0.0003 \end{cases}$$

Single qubit gates – site selected

Stark shift target site with 2D acousto-optic scanner

Microwave + Stark shift laser

Single qubit gates – multiple sites 2D

Sequential addressing

Switching time < 1 µS

Crosstalk is accumulated in all 7 rotations ~ few %.

Single qubit gates – Scalability

Scalable error correction requires parallel gate operations.

Crossed AOMs access one site at a time.

Row parallel single site gates with multichannel AO deflector.

N times optical power cost for N sites.

Full parallel operation with spatial light modulator

N² times optical power cost for N² array.

Rydberg blockade C_Z gate

Ideal C_Z Gate
$$\omega_q$$
, B >> Ω >> 1/ τ_{Ryd}

$$C_Z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

CNOT experiment

B(R)/2π = 23 MHz R=2d= 7.6 μm Ω_{Ry}/2π = .65 MHz

Ground-Rydberg Rabi oscillations

CNOT sequence & Bell states

PRA 92, 022336 (2015)

StateCNOT truthpreparationtableF=98%F=82%

Bell state: F=0.73 +/- 0.05 F=0.79 +/- 0.05 (post selected)

F limited by SPAM errors, atom motion (Doppler), perturbing fields, laser noise, beam position noise, physics.

Improved CNOT protocols

L. S. Theis,* F. Motzoi, F. K. Wilhelm M. Saffman

Two qubit gates – Scalability

Dense parallel operations not possible due to long range Rydberg interaction

$1/R^6$ vdW interaction R/d > 5gives $Xtalk < 10^{-4}$

Multi-qubit gates

Can turn a bug into a feature for multi-qubit gate operations. Native CNOT^k & C_kNOT gates.

Wisconsin, Aarhus, Innsbruck....

J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 094004 Grover search algorithm with Rydbergblockaded atoms: quantum Monte Carlo Aarhus, Wisconsin simulations XH HX H |0> Х X H H X Х Η X |0> H X Z X H Х Z |0> -- H X oracle inversion about mean

PRL 117, 130503 (2016)

Improved Error Thresholds for • Measurement-Free Error Correction Wisconsin

PHYSICAL REVIEW A 96, 052320 (2017)

Blueprint for fault-tolerant quantum computation with Rydberg atoms UCL, London

Parameter	Today	Near term real	ism
Number qubits	80/121	600/900	laser&optics upgrade
Fidelity qubit measurement	0.99@10 msec	>0.99@1 msec	higher NA lens
Fidelity one-qubit gate 0 Fidelity two-qubit gate	.99-0.999@100 μs 0.73@3 μs	>0.999@200 ns >0.99@500 ns	Raman laser sideband cooling, laser noise reduction

Quantum simulator

Many proposals for cold atom quantum simulators. Erez Zohar yesterday

Rydberg versions nature ARTICI FS physics PUBLISHED ONLINE: 14 MARCH 2010 | DOI: 10.1038/NPHYS161 A Rydberg quantum simulator Hendrik Weimer^{1*}, Markus Müller², Igor Lesanovsky^{2,3}, Peter Zoller² and Hans Peter Büchler¹ A quantum annealing architecture with all-to-all connectivity from local interactions ARTICLE Wolfgang Lechner,^{1,2}* Philipp Hauke,^{1,2} Peter Zoller^{1,2} Received 27 Oct 2016 | Accepted 4 May 2017 | Published 22 Jun 2017 **OPEN** DOI: 10.1038/ncomms15813 A coherent quantum annealer with Rydberg atoms 23 October 2015 Sci. Adv. 2015;1:e1500838

A.W. Glaetzle^{1,2,3,4,*}, R.M.W. van Bijnen^{1,2,*}, P. Zoller^{1,2} & W. Lechner^{1,2}

arXiv:1803.00735 A Quantum N-Queens Solver

Valentin Torggler,¹ Philipp Aumann,¹ Helmut Ritsch,¹ and Wolfgang Lechner¹

Summary

Neutral atom qubits

Optical wiring

Rydberg interactions for entangling gates

Atom-photon interface for connectivity

Xiaoyu

Jiang

Graham

Ebert

Garrett Hickman

Cody Poole