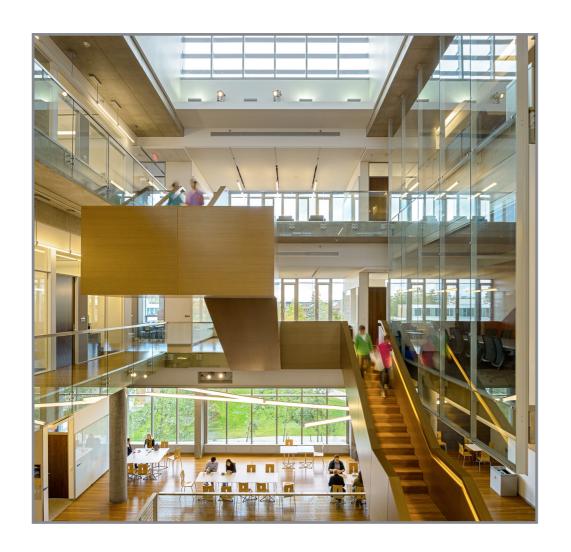
Quantum simulations of models from high energy physics

Christine Muschik

Quantum Optics Theory



Postdoc positions available

How can we we use quantum systems to achieve a quantum advantage?

How can this be done in practice?

Quantum Optics Theory

Quantum Networks

Quantum Simulations

Quantum Optics Theory

Quantum Networks

Quantum Simulations

New design concepts for 2D quantum networks

Vision: 'quantum internet'

Autonomous quantum error correction

Nat. Commun. 8, 1822 (2017).

See also: Work by David Schuster and Eliot Kapit

Quantum Optics Theory

Quantum Networks

Quantum Simulations

QUANTUM SIMULATIONS FOR HIGH ENERGY PHYSICS

Use quantum methods to develop new tools for basic science

We want to understand:

- Why is there more matter than antimatter in the universe?
- What happens inside neutron stars?
- What happened in the early universe?
- What happens in heavy ion collisions in particle accelerators?

We want to understand:

- Why is there more matter than antimatter in the universe?
- What happens inside neutron stars?
- What happened in the early universe?
- What happens in heavy ion collisions in particle accelerators?

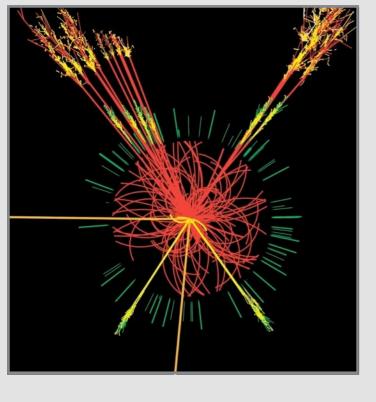
To find answers to these question we need:

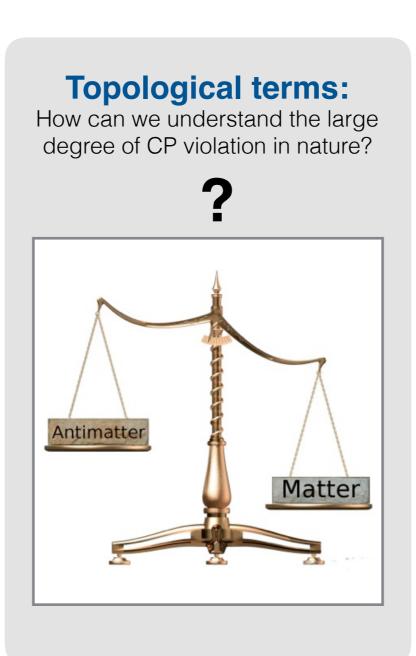
New methods for gauge theories

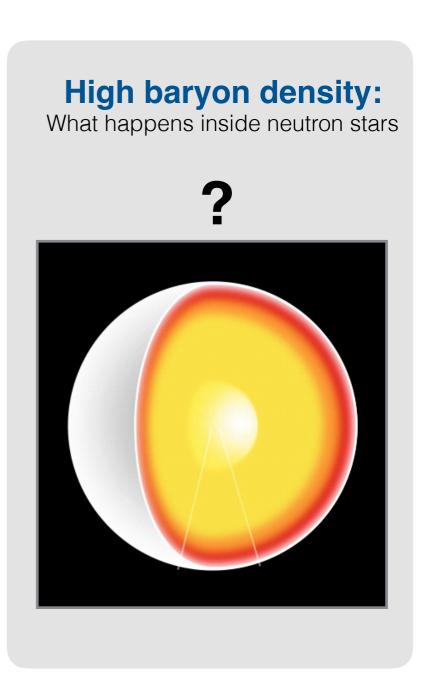
- underlie our understanding how fundamental particles interact (for example: Quantum Electrodynamics, Quantum Chromodynamics)
- are the backbone of the **standard model**
- play an important role in many areas of physics, including the description of condensed matter systems displaying frustration or topological order

Hard questions in gauge theories (plagued the sign-problem)

Dynamical problems: What happens in heavy ion collisions







Quest to find sign-problem free methods

- Quantum Simulations
- Numerical methods based on tensor network states

Quest to find sign-problem free methods

- Quantum Simulations
- Numerical methods based on tensor network states → Frank Verstraete

Quest to find sign-problem free methods

- Quantum Simulations
- Numerical methods based on tensor network states

Two routes towards the same goal.

Both paths are actively explored.

This talk: Quantum simulations

Short-term goal:

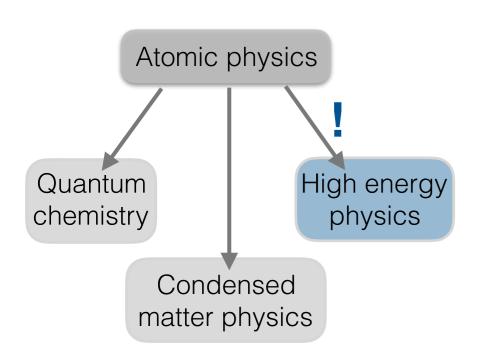
Develop a new type of Quantum Simulator

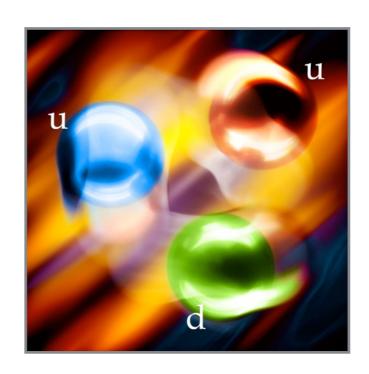
Perform proof-of-concept Experiments

Long-term vision:

Simulate Quantum Chromo Dynamics

Answer questions that can not be tackled numerically

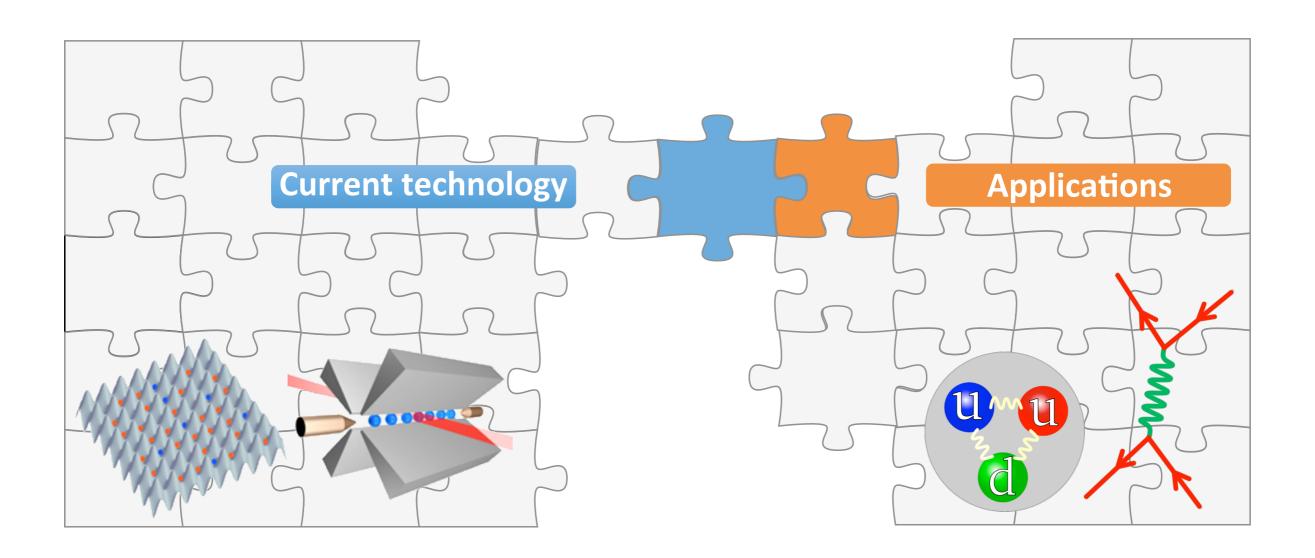




Time

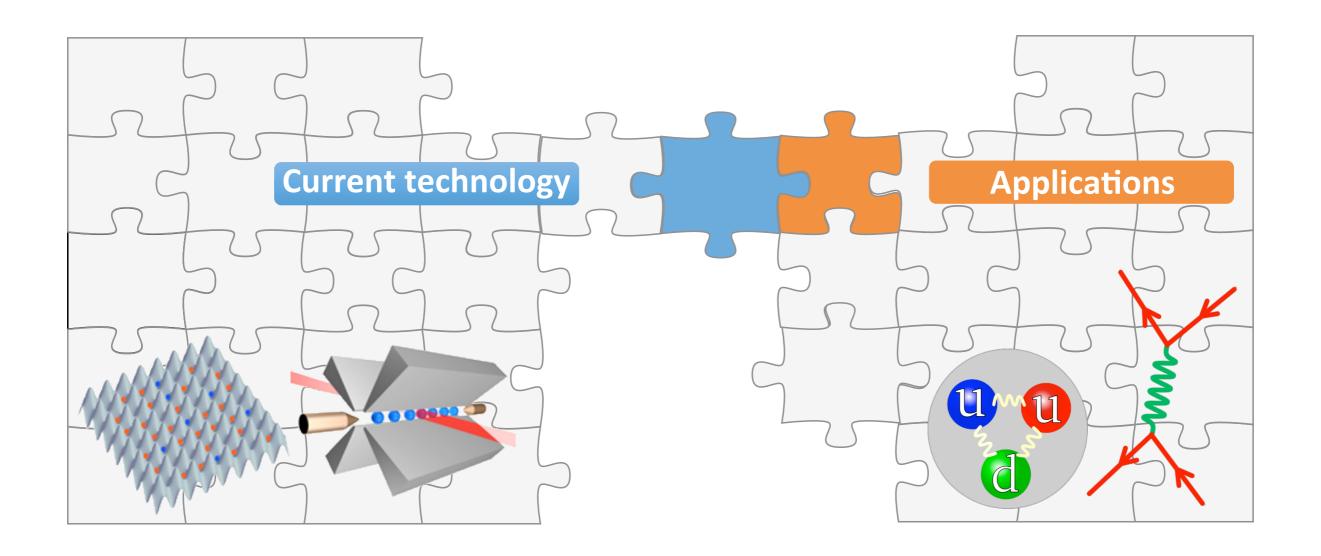
Quantum information science

High energy physics



Quantum information science

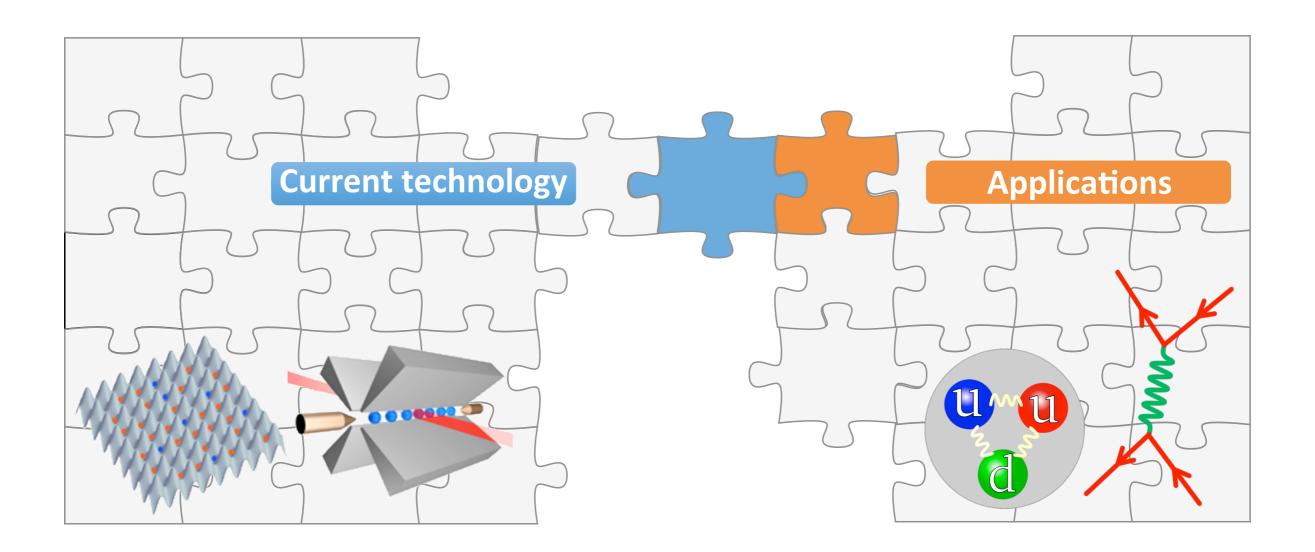
High energy physics



Review by Erez Zohar

Quantum information science

High energy physics



- E. Martinez et al, Nature 534, 516 (2016).
- X. Zhang, et al, Nature Commun. 9, 95 (2018).
- N. Klco et al, arXiv:1803.03326 (2018).

New Experiments under way:

Waterloo: Chris Wilson (superconducting qubits)

Heidelberg: Fred Jendrzejewski, Marklus Oberthaler (cold atoms)

Review Articles: Ann. Phys. 525, 777 (2013); Rep. Prog. Phys. 79, 014401 (2016); Contemporary Physics 57 388 (2016).

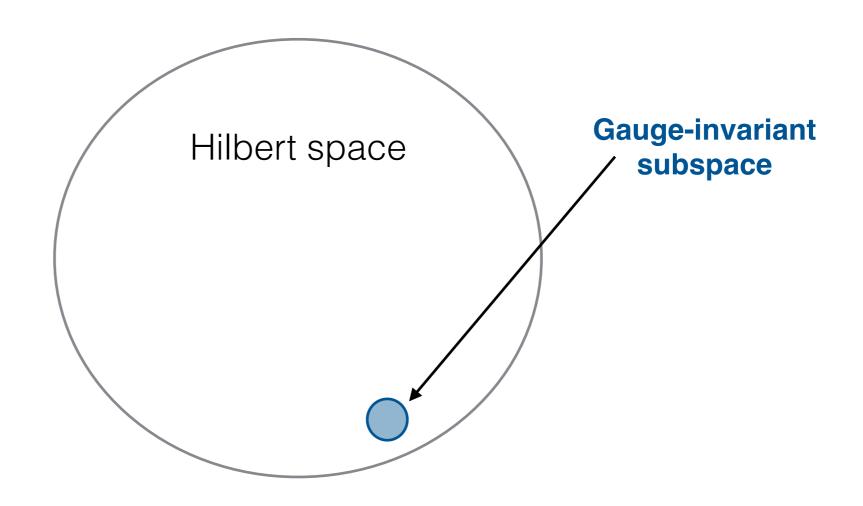
Simulated states and dynamics must be gauge-invariant

Simulated states and dynamics must be gauge-invariant

Difficulty for realizing quantum simulations of lattice gauge theories: Implement a quantum many-body Hamiltonian and a large set of local constraints ('Gauss law', in the case of QED: $\nabla E(r) = \rho(r)$)

Simulated states and dynamics must be gauge-invariant

<u>Difficulty for realizing quantum simulations of lattice gauge theories</u>: Implement a quantum many-body Hamiltonian and a large set of local constraints ('Gauss law', in the case of QED: $\nabla E(r) = \rho(r)$)



Review Articles: Ann. Phys. 525, 777 (2013); Rep. Prog. Phys. 79, 014401 (2016); Contemporary Physics 57 388 (2016).

QED in (1+1) dimensions

Electromagnetic fields:

Vector potential: $A_0(x), A_1(x)$

Electric field: $E(x) = \partial_0 A_1(x)$

$$[E(x), A_1(x')] = -i\delta(x - x')$$

Matter fields:

$$\Psi(x) = \left(\begin{array}{c} \Psi_1(x) \\ \Psi_2(x) \end{array}\right)$$

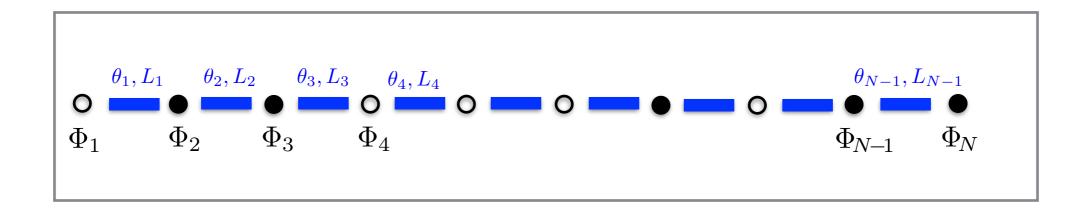
Hamiltonian:

$$H_{\rm cont} = \int dx \left[-i \Psi^{\dagger}(x) \gamma^1 \left(\delta_1 - i g A_1 \right) \Psi(x) + m \Psi^{\dagger}(x) \Psi(x) + \frac{1}{2} E^2(x) \right]$$

$$\gamma_1 = -i \sigma_y \quad \text{coupling strength (charge)} \quad \text{Fermion mass}$$

The lattice Schwinger Model

The lattice Schwinger Model



Continuum

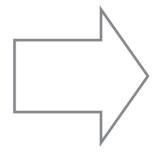
Vector potential $A_1(x)$

Electric field E(x)

$$[E(x), A_1(x')] = -i\delta(x - x')$$

Dirac spinor

$$\Psi(x) = \left(\begin{array}{c} \Psi_1(x) \\ \Psi_2(x) \end{array}\right)$$



Lattice

$$\theta_n = agA_1(x_n)$$

$$L_n = \frac{1}{g}E(x_n)$$

$$[\theta_n, L_m] = i\delta_{n,m}$$

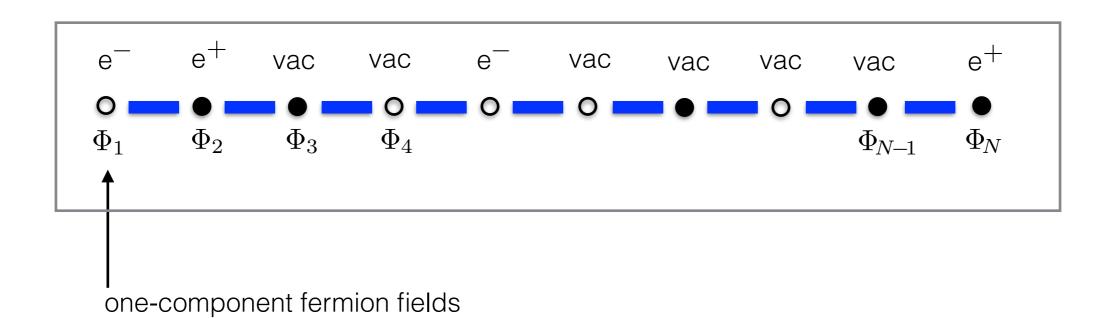
odd lattice sites:

$$\Phi_n = \sqrt{a}\Psi_1(x_n)$$

even lattice sites:

$$\Phi_n = \sqrt{a}\Psi_2(x_n)$$

Wilson's staggered Fermions



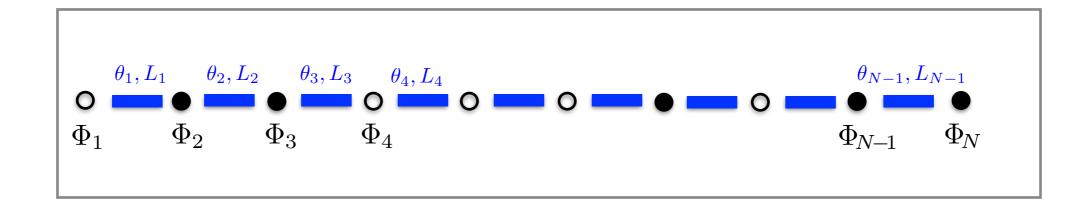
odd sites:

- \bullet \cong vac
- $o \cong e^-$

even sites:

- \bullet \cong e^+
- o \simeq vac

The lattice Schwinger Model



Continuum

$$H_{\text{cont}} = \int dx \left[-i\Psi^{\dagger}(x)\gamma^{1} \left(\delta_{1} - igA_{1}\right)\Psi(x) + m\Psi^{\dagger}(x)\Psi(x) + \frac{1}{2}E^{2}(x) \right]$$

Lattice

$$H_{\text{lat}} = -iw \sum_{n=1}^{N-1} \left[\Phi_n^{\dagger} e^{i\theta_n} \Phi_{n+1} - H.C. \right] + m \sum_{n=1}^{N} (-1)^n \Phi_n^{\dagger} \Phi_n + J \sum_{n=1}^{N-1} L_n^2$$

$$w = \frac{1}{2a}$$

$$J = \frac{g^2 a}{2}$$

Hamiltonian formulation of the Schwinger model:

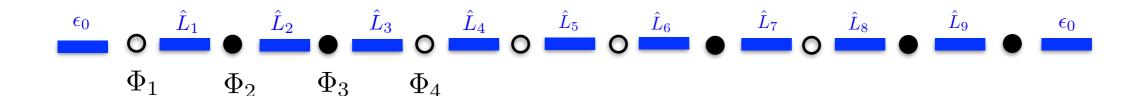
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).

$$\hat{H} = -iw \sum_{n=1}^{N-1} \left[\hat{\Phi}_n^{\dagger} e^{i\hat{\theta}_n} \hat{\Phi}_{n+1} - \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^{N} (-1)^n \hat{\Phi}_n^{\dagger} \hat{\Phi}_n$$

The dynamics is constraint by the Gauss law:

In the continuum in 3D: $\nabla E = \rho$

Here: $\hat{L}_n - \hat{L}_{n-1} = \hat{\Phi}_n^{\dagger} \hat{\Phi} - \frac{1}{2} \left[1 - (-1)^n \right]$



Local (gauge) symmetries

Local symmetry generators: $\{G_n\}$

The Hamiltonian is invariant under gauge transformations of the form:

$$H' = \left(\Pi_n e^{i\alpha_n G_n}\right) H \left(\Pi_n e^{-i\alpha_n G_n}\right) \qquad [H, G_n] = 0$$

For 1D QED:
$$G_n = L_n - L_{n-1} - \Phi^{\dagger}\Phi - \frac{1}{2}\left[1 - (-1)^n\right]$$

The Hamiltonian does not mix eigenstates of G_n with different eigenvalues λ_n .

In the following, we restrict ourselves to the zero-charge subsector: $\lambda_{G_n} = 0$, $\forall n$ (# of particles = # of antiparticles).

$$G_n |\Psi_{\text{physical}}\rangle = 0 \quad \forall n$$

Real time dynamics in lattice gauge theories with a trapped ion computer

Theory:

C. Muschik, M. Heyl, M. Dalmonte, P. Hauke, and P. Zoller

Experiment:

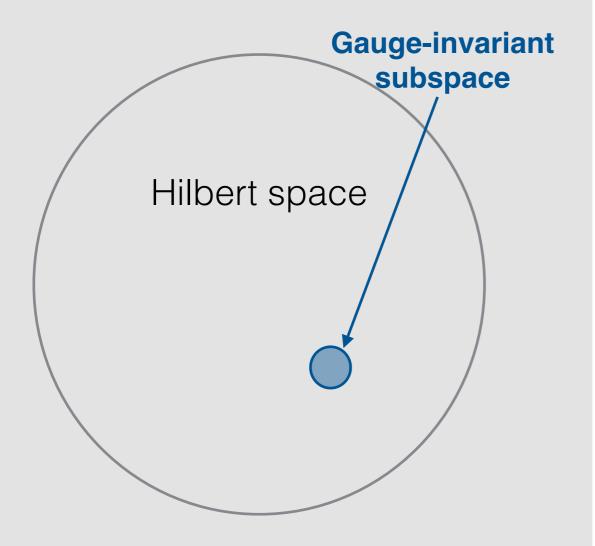
E. Martinez, P. Schindler, D. Nigg, A. Erhard, T. Monz, and R. Blatt

Nature 534, 516-519 (2016).

NJP 19, 103020 (2017).

Previous approaches:

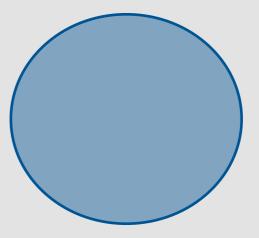
Introduce the full Hilbert space [matter + gauge fields] and enforce constraints



Encoding approach:

Schwinger model: A given matter configuration and choice of background field completely determines the gauge degrees of freedom.

Elimination of the gauge fields results in a pure matter model with long-range interactions



Ideal case: exact gauge invariance by construction (on all energy scales).

C. Hamer, Z. Weihong, and J. Oitmaa, Phys. Rev. D 56 55 (1997).

Encoding

Elimination of the gauge fields —— Pure spin model with long-range interactions (+ Jordan Wigner transformation)

Encoding

Elimination of the gauge fields — Pure spin model with long-range interactions (+ Jordan Wigner transformation)

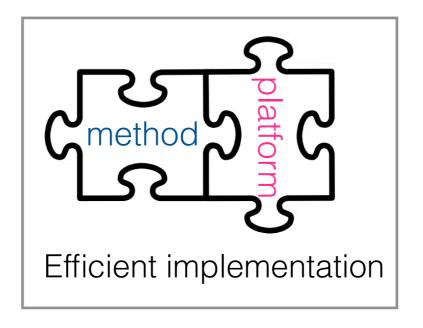
The gauge fields don't appear explicitly in the encoded description. Instead, they act in the form of a non-local interaction.

Encoding

Elimination of the gauge fields — Pure spin model with long-range interactions (+ Jordan Wigner transformation)

The gauge fields don't appear explicitly in the encoded description. Instead, they act in the form of a non-local interaction.

The required long-range interactions can be realised efficiently in a robust digital scheme in a trapped ion quantum computer.



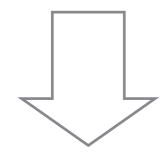
Two simple transformations:

$$\Phi_n = \prod \left[i\sigma_l^z \right] \sigma_n^-$$

(1) Fermions —> spins
$$\Phi_n = \prod_{l < n} [i\sigma_l^z] \sigma_n^-$$

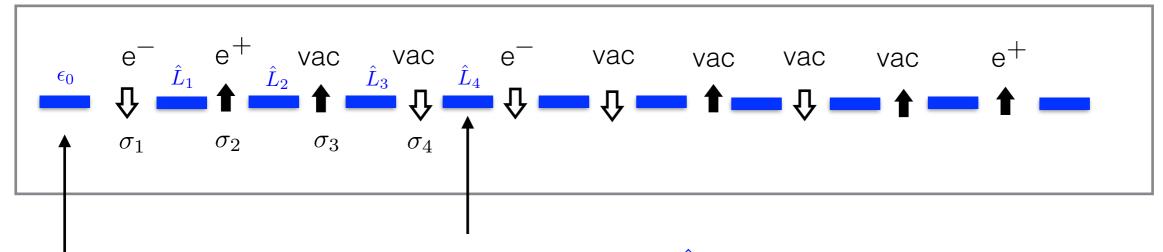
(2) Elimination of $\hat{\theta}_n$ $\hat{\sigma}_n^- \to \prod_{l < n} \left[e^{-i\hat{\theta}_l}\right] \hat{\sigma}_n^-$

$$\hat{\sigma}_n^- \to \prod_{l < n} \left[e^{-i\hat{\theta}_l} \right] \hat{\sigma}_n^-$$



Hamiltonian in terms of spins and electric fields

$$\hat{H} = w \sum_{n=1}^{N-1} \left[\hat{\sigma}_n^+ \hat{\sigma}_{n+1}^- + \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^{N} (-1)^n \hat{\sigma}_n^z$$



background field

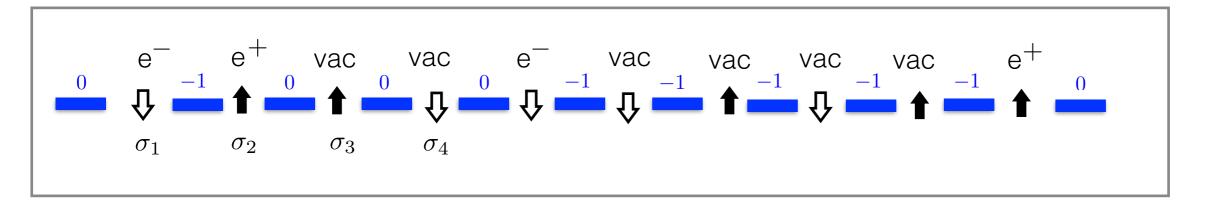
The operators \hat{L}_n represent the electric fields on the links. They take eigenvalues $\hat{L}_n=0,\pm 1,\pm 2,\pm 3...$

Odd lattice sites:

$$egin{array}{lll} lackbox{0} & lackbox{0} & lpha & lackbox{1} & lpha & lackbox{0} & L_n = L_{n-1} & -1 \ lackbox{0} & lpha & lackbox{0} & lpha &$$

$$igodentom_n\congigodentom_n\cong e^+ \qquad L_n=L_{n-1}+1$$
 $oldsymbol{O}_n\cong igodentom_n\cong ext{vac} \qquad L_n=L_{n-1}$

$$\hat{H} = w \sum_{n=1}^{N-1} \left[\hat{\sigma}_n^+ \hat{\sigma}_{n+1}^- + \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^{N} (-1)^n \hat{\sigma}_n^z$$



A given configuration of spins and choice of background field completely determines the gauge degrees of freedom.

Odd lattice sites:

$$igoplus_n\cong igoplus_n\cong \operatorname{vac} \quad L_n=L_{n-1}$$

$$\stackrel{n}{\circ} \cong \stackrel{n}{\downarrow} \cong e^{-} \qquad \stackrel{L_{n}}{\smile} = L_{n-1} - 1$$

Even lattice sites:

$$igodent_n^{igodentarrow}\congigodent_n^{igodentarrow}\congigodentarrow^+$$
 $L_n=L_{n-1}+1$ $L_n=L_{n-1}$

$$egin{array}{c} oldsymbol{\circ}_n \ \cong \ oldsymbol{\downarrow}_n \ \cong \ ext{vac} & L_n = L_{n-1} \end{array}$$

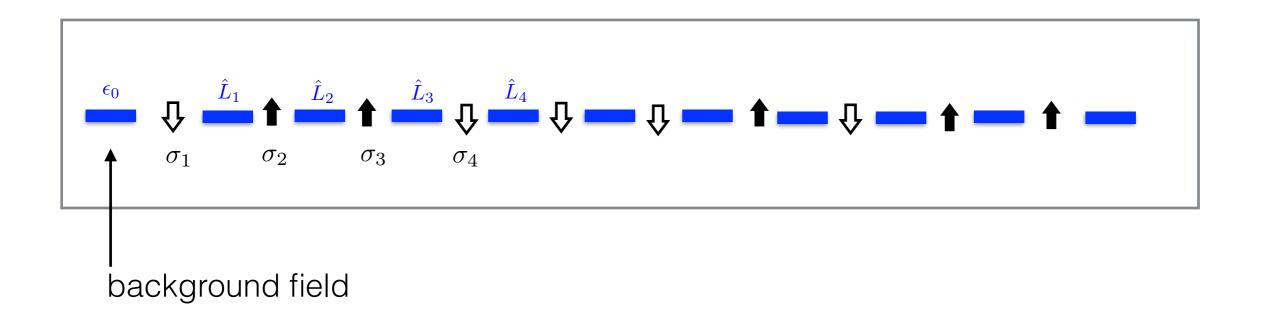
Transformed Gauss law:

$$\hat{L}_n - \hat{L}_{n-1} = \frac{1}{2} \left[\hat{\sigma}_n^z + (-1)^n \right]$$

$$\hat{H} = w \sum_{n=1}^{N-1} \left[\hat{\sigma}_n^+ \hat{\sigma}_{n+1}^- + \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^{N} (-1)^n \hat{\sigma}_n^z$$

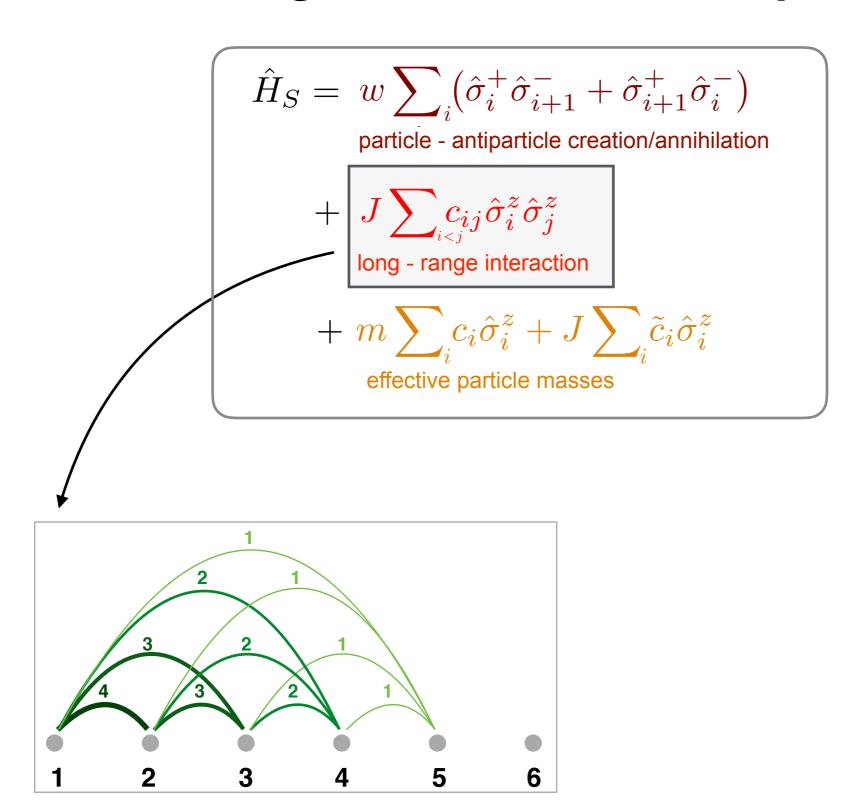
$$+ J \sum_{n=1}^{N-1} \left[\epsilon_0 + \frac{1}{2} \sum_{m=1}^{n} \left[\hat{\sigma}_m^z + (-1)^m \right] \right]^2$$

$$\hat{L}_n - \hat{L}_{n-1} = \frac{1}{2} \left[\hat{\sigma}_n^z + (-1)^n \right]$$



Elimination of the gauge fields ——— Pure spin model with long-range interactions

The gauge fields don't appear explicitly in the encoded description. Instead, they act in the form of a non-local interaction that corresponds to the Coulomb-interaction between the simulated charged particles.



$$\hat{H}_S = w \sum_i (\hat{\sigma}_i^+ \hat{\sigma}_{i+1}^- + \hat{\sigma}_{i+1}^+ \hat{\sigma}_i^-)$$
particle - antiparticle creation/annihilation
$$+ J \sum_{i < j} c_{ij} \hat{\sigma}_i^z \hat{\sigma}_j^z$$
long - range interaction
$$+ m \sum_i c_i \hat{\sigma}_i^z + J \sum_i \tilde{c}_i \hat{\sigma}_i^z$$
effective particle masses

- Efficient implementation on an ion-quantum computer
- N spins simulate N matter fields and N-1 gauge fields

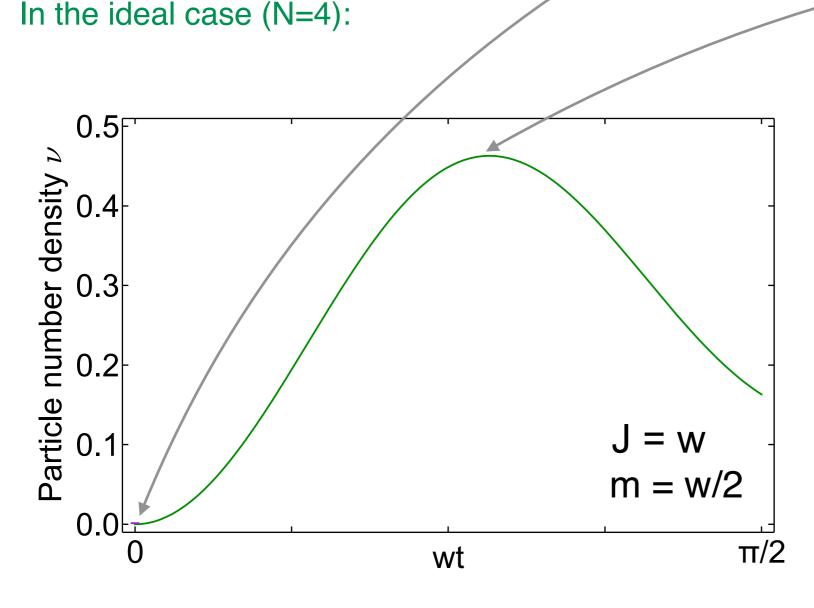
Quantum simulation of 1+1-dimensional QED on a lattice

We explore:

- Coherent real-time dynamics of particleantiparticle creation
- Entanglement generation during pair creation

Particle number density:
$$\nu(t) = \frac{1}{N} \sum_{n=1}^{N} \langle (-1)^n \sigma_n^z(t) + 1 \rangle$$

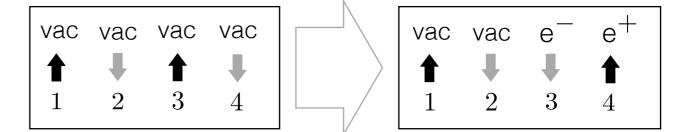
Creation of a particle antiparticle pair:



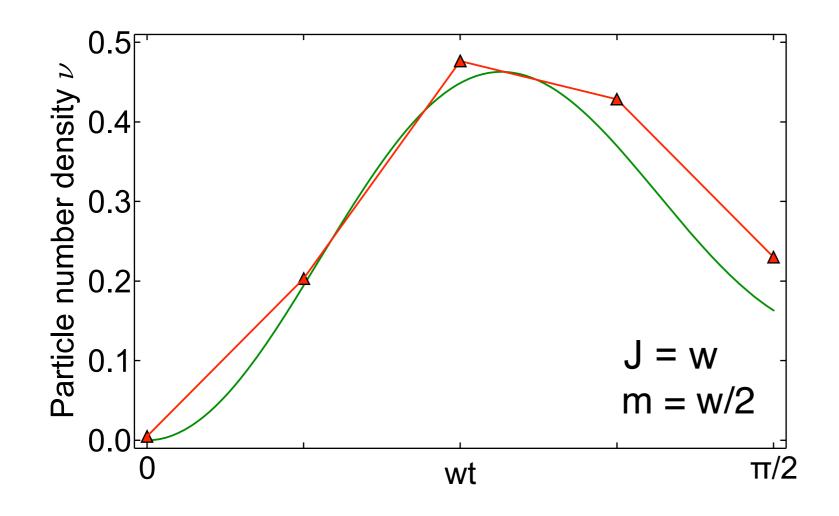
$$\begin{split} \hat{H}_S &= w \sum_i (\hat{\sigma}_i^+ \hat{\sigma}_{i+1}^- + \hat{\sigma}_{i+1}^+ \hat{\sigma}_i^-) \\ & \text{particle - antiparticle creation/annihilation} \\ &+ J \sum_{i < j} c_{ij} \hat{\sigma}_i^z \hat{\sigma}_j^z \\ & \text{long - range interaction} \\ &+ m \sum_i c_i \hat{\sigma}_i^z + J \sum_i \tilde{c}_i \hat{\sigma}_i^z \\ & \text{effective particle masses} \end{split}$$

Particle number density:
$$\nu(t) = \frac{1}{N} \sum_{n=1}^{N} \langle (-1)^n \sigma_n^z(t) + 1 \rangle$$

Creation of a particle antiparticle pair:

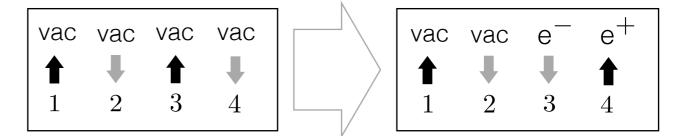


Including discretisation errors (N=4):

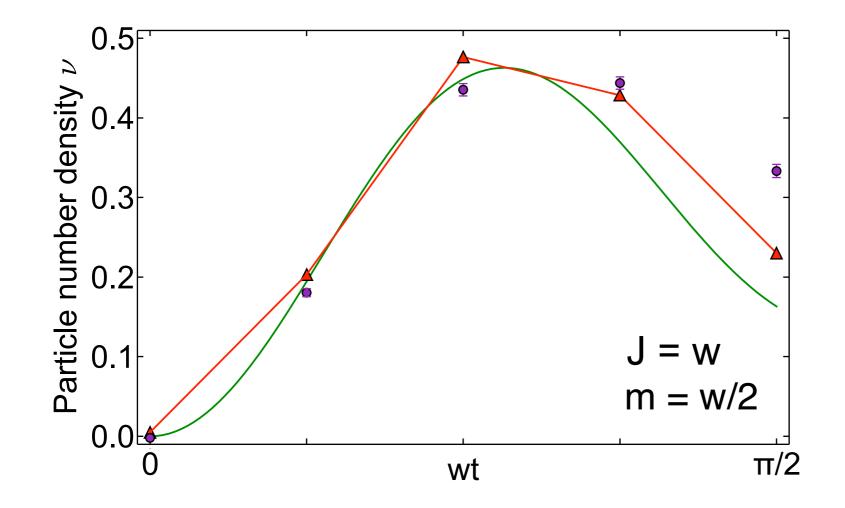


Particle number density: $\nu(t) = \frac{1}{N} \sum_{n=1}^{N} \langle (-1)^n \sigma_n^z(t) + 1 \rangle$

Creation of a particle antiparticle pair:

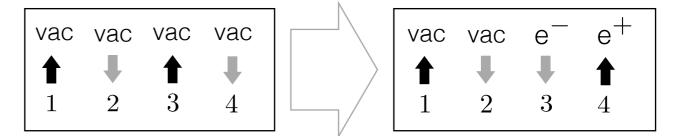


Experimental data (after postselection):

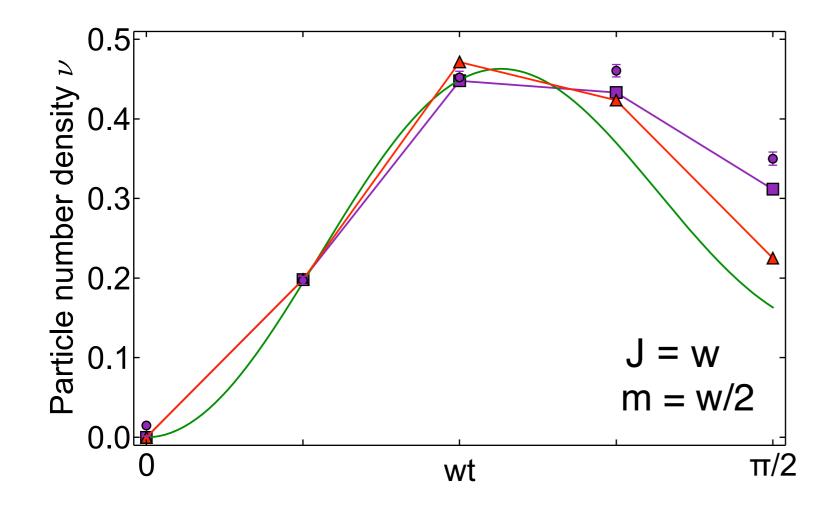


Particle number density: $\nu(t) = \frac{1}{N} \sum_{n=1}^{N} \langle (-1)^n \sigma_n^z(t) + 1 \rangle$

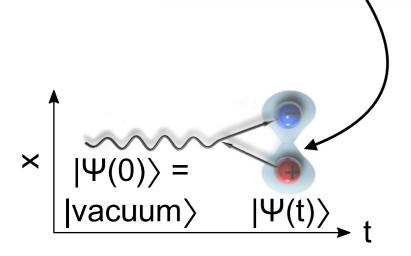
Creation of a particle antiparticle pair:



Simple error model (uncorrelated dephasing):

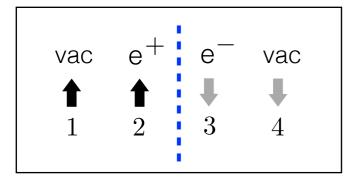


Entanglement in the Schwinger mechanism

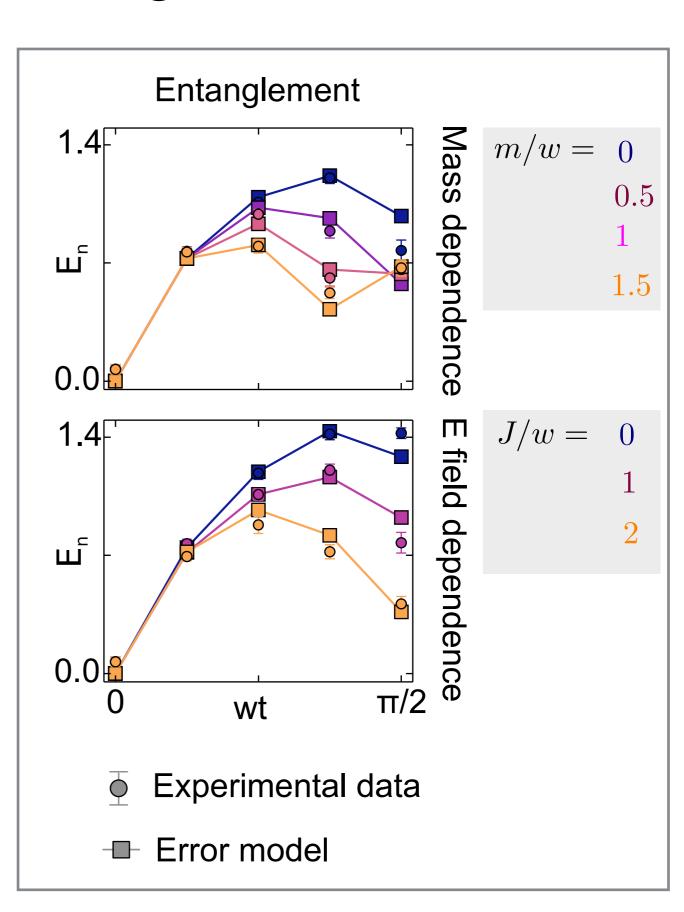


State tomography: access to the full density matrix

 E_n : logarithmic negativity evaluated with respect to this bipartition:



Entanglement between the two halves of the system.



Next challenges:

- Realisation of 2D models
- Simulate increasingly complex dynamics
- Realisation of non-Abelian theories
- ...

Thank you very much for your attention!

Variational Quantum Simulation

Controllable Quantum System

Trotter Simulator

Time evolutions

$$e^{-iH_Tt}$$

Quench dynamics Real-time dynamics

Mode B:

Variational Simulator

Ground state preparation

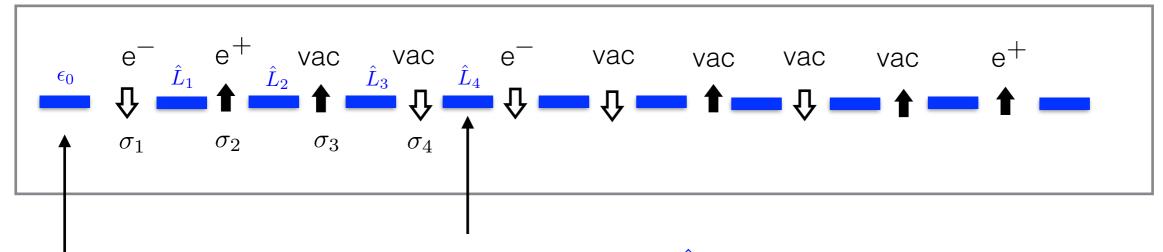
$$|\Psi_0\rangle_{H_T}$$

Equilibrium physics
Ground state properties

Combined application, e.g.:

- (1) Prepare the true vacuum of the Schwinger mode A
- (2) Perform real-time dynamics in mode B

$$\hat{H} = w \sum_{n=1}^{N-1} \left[\hat{\sigma}_n^+ \hat{\sigma}_{n+1}^- + \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^{N} (-1)^n \hat{\sigma}_n^z$$



background field

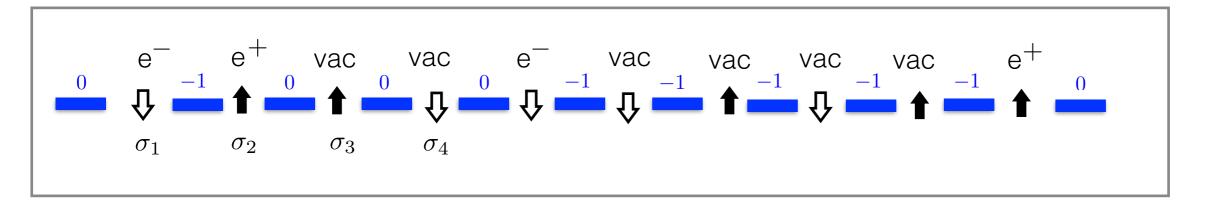
The operators \hat{L}_n represent the electric fields on the links. They take eigenvalues $\hat{L}_n=0,\pm 1,\pm 2,\pm 3...$

Odd lattice sites:

$$egin{array}{lll} lackbox{0} & lackbox{0} & lpha & lackbox{1} & lpha & lackbox{0} & L_n = L_{n-1} & -1 \ lackbox{0} & lpha & lackbox{0} & lpha &$$

$$igodentom_n\congigodentom_n\cong e^+ \qquad L_n=L_{n-1}+1$$
 $oldsymbol{O}_n\cong igodentom_n\cong ext{vac} \qquad L_n=L_{n-1}$

$$\hat{H} = w \sum_{n=1}^{N-1} \left[\hat{\sigma}_n^+ \hat{\sigma}_{n+1}^- + \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^{N} (-1)^n \hat{\sigma}_n^z$$



A given configuration of spins and choice of background field completely determines the gauge degrees of freedom.

Odd lattice sites:

$$igoplus_n\cong igoplus_n\cong \operatorname{vac} \quad L_n=L_{n-1}$$

$$\stackrel{n}{\circ} \cong \stackrel{n}{\downarrow} \cong e^{-} \qquad \stackrel{L_{n}}{\smile} = L_{n-1} - 1$$

Even lattice sites:

$$igodent_n^{igodentarrow}\congigodent_n^{igodentarrow}\congigodentarrow^+$$
 $L_n=L_{n-1}+1$ $L_n=L_{n-1}$

$$egin{array}{c} oldsymbol{\circ}_n \ \cong \ oldsymbol{\downarrow}_n \ \cong \ ext{vac} & L_n = L_{n-1} \end{array}$$

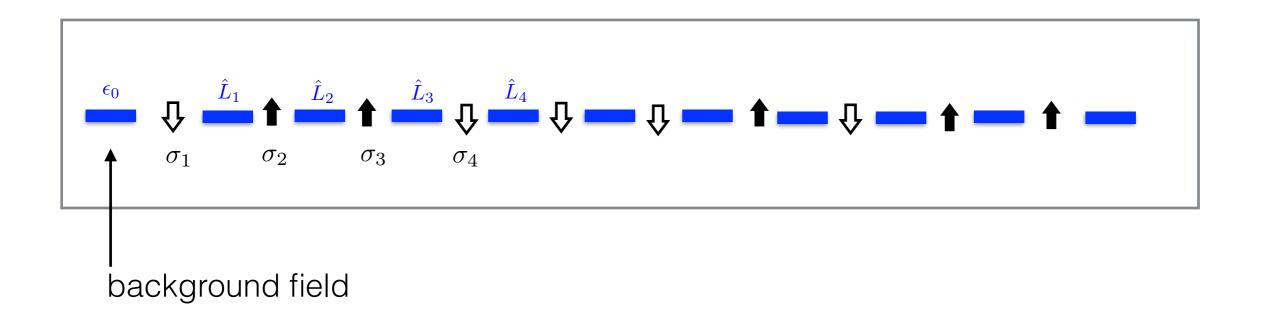
Transformed Gauss law:

$$\hat{L}_n - \hat{L}_{n-1} = \frac{1}{2} \left[\hat{\sigma}_n^z + (-1)^n \right]$$

$$\hat{H} = w \sum_{n=1}^{N-1} \left[\hat{\sigma}_n^+ \hat{\sigma}_{n+1}^- + \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^{N} (-1)^n \hat{\sigma}_n^z$$

$$+ J \sum_{n=1}^{N-1} \left[\epsilon_0 + \frac{1}{2} \sum_{m=1}^{n} \left[\hat{\sigma}_m^z + (-1)^m \right] \right]^2$$

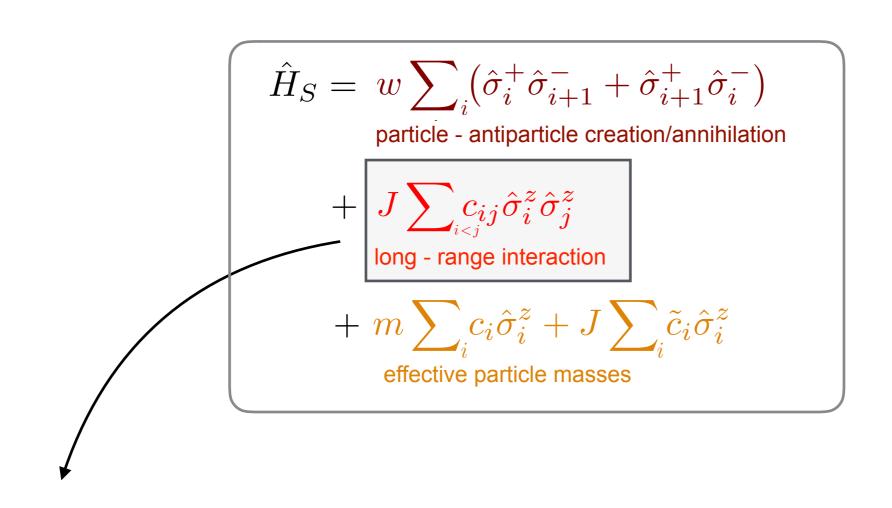
$$\hat{L}_n - \hat{L}_{n-1} = \frac{1}{2} \left[\hat{\sigma}_n^z + (-1)^n \right]$$

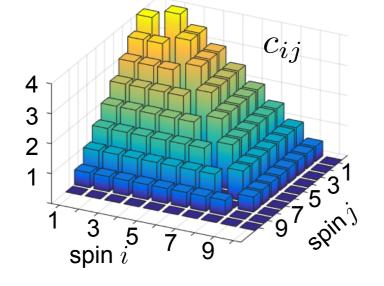


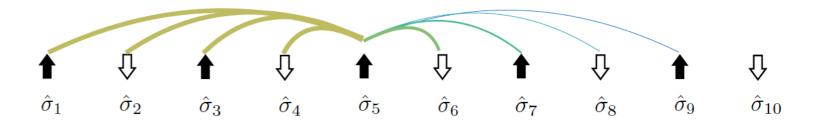
Elimination of the gauge fields ——— Pure spin model with long-range interactions

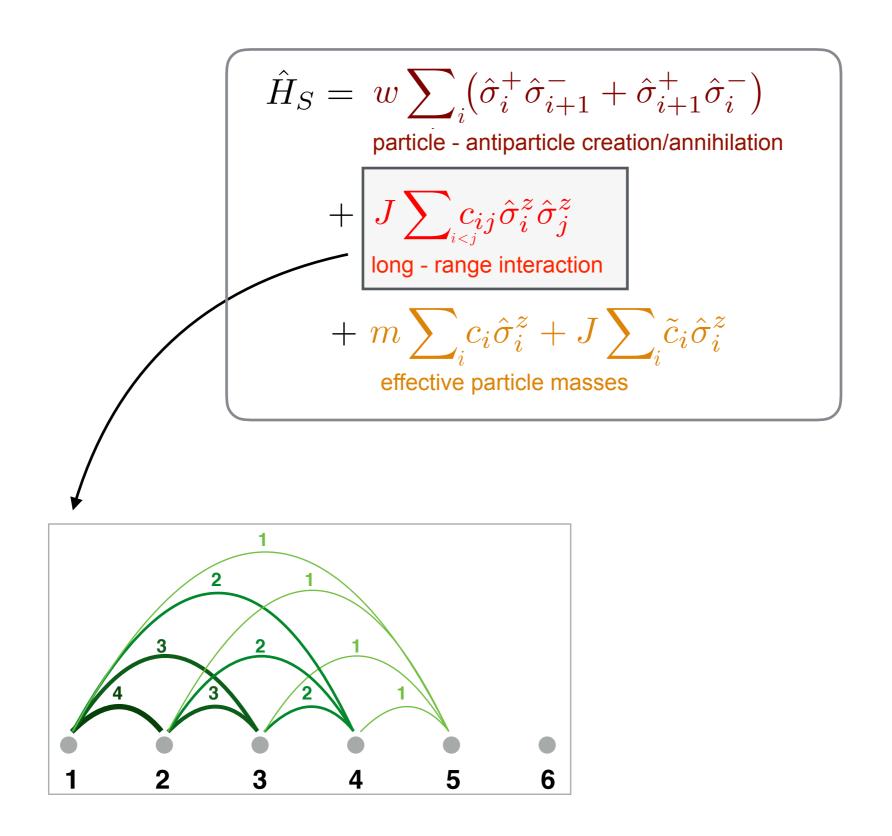
The gauge fields don't appear explicitly in the encoded description. Instead, they act in the form of a non-local interaction that corresponds to the Coulomb-interaction between the simulated charged particles.

$$\begin{split} \hat{H}_S &= w \sum_i (\hat{\sigma}_i^+ \hat{\sigma}_{i+1}^- + \hat{\sigma}_{i+1}^+ \hat{\sigma}_i^-) \\ \text{particle - antiparticle creation/annihilation} \\ &+ J \sum_{i < j} c_{ij} \hat{\sigma}_i^z \hat{\sigma}_j^z \\ \text{long - range interaction} \\ &+ m \sum_i c_i \hat{\sigma}_i^z + J \sum_i \tilde{c}_i \hat{\sigma}_i^z \\ \text{effective particle masses} \end{split}$$









$$\hat{H}_S = w \sum_i (\hat{\sigma}_i^+ \hat{\sigma}_{i+1}^- + \hat{\sigma}_{i+1}^+ \hat{\sigma}_i^-)$$
 particle - antiparticle creation/annihilation
$$+ J \sum_{i < j} c_{ij} \hat{\sigma}_i^z \hat{\sigma}_j^z$$
 long - range interaction
$$+ m \sum_i c_i \hat{\sigma}_i^z + J \sum_i \tilde{c}_i \hat{\sigma}_i^z$$
 effective particle masses

- Efficient implementation on an ion-quantum computer
- N spins simulate N matter fields and N-1 gauge fields
- Exotic spin interactions can be simulated efficiently: Digital scheme

Digital quantum simulation

Approximate time evolution by a stroboscopic sequence of gates

The evolution under a desired Hamiltonian is realised on a coarse-grained time scale

$$H = H_1 + H_2$$

$$U(t) \equiv e^{-iHt/\hbar} = e^{-iH\Delta t_n/\hbar} \dots^{-iH\Delta t_1/\hbar}$$

Trotter expansion:

$$e^{-iH\Delta t/\hbar} \simeq e^{-iH_1\Delta t/\hbar} \, e^{-iH_2\Delta t/\hbar} \, e^{\frac{1}{2}\frac{(\Delta t)^2}{\hbar^2}[H_1,H_2]}$$
 first term second term Trotter errors for non-commuting terms

S. Lloyd, Science 273, 1073 (1996).

Digital quantum simulation

Approximate time evolution by a stroboscopic sequence of gates

The evolution under a desired Hamiltonian is realised on a coarse-grained time scale

$$U_{\rm S} = e^{-i\hat{H}_{\rm S}t}$$

$$U_{\text{sim}} = \left(e^{-iH_1t/n}...e^{-iH_nt/n}\right)^n$$

Operations that can be performed straightforwardly

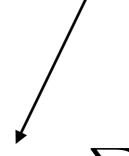
Trotter error:
$$U_{\mathrm{S}} - U_{\mathrm{sim}} = \frac{t^2}{2n} \sum_{i,j} [H_i, H_j] + \epsilon_i$$

This scheme: Trotter errors do not violate gauge invariance

Our toolbox

Ion trap quantum computers:

- Fast and accurate single qubit operations
- Entangling gates: Mølmer-Sørensen interaction



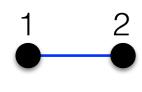
All-to-all 2-body interaction: $H_0 = J_0 \sum_{i,j} \sigma_i^x \sigma_j^x$

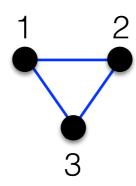
Our toolbox

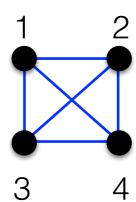
Ion trap quantum computers:

- Fast and accurate single qubit operations
- Entangling gates: Mølmer-Sørensen interaction

All-to-all 2-body interaction: $H_0 = J_0 \sum \sigma_i^x \sigma_j^x$



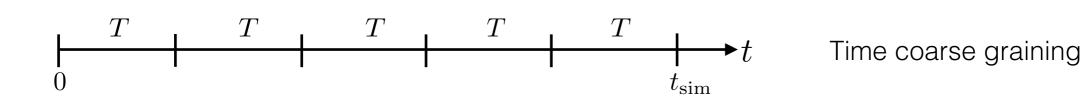


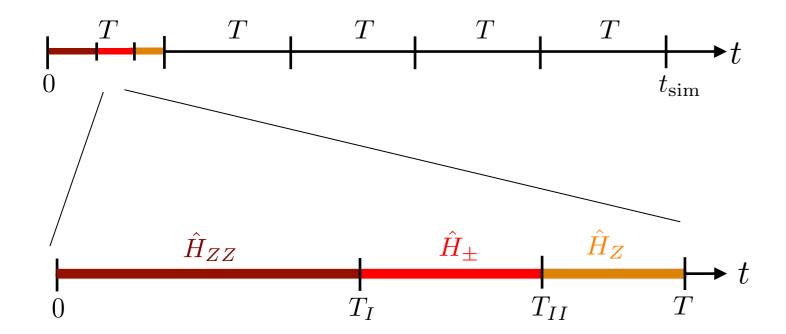


$$\sigma_1^x \sigma_2^x$$

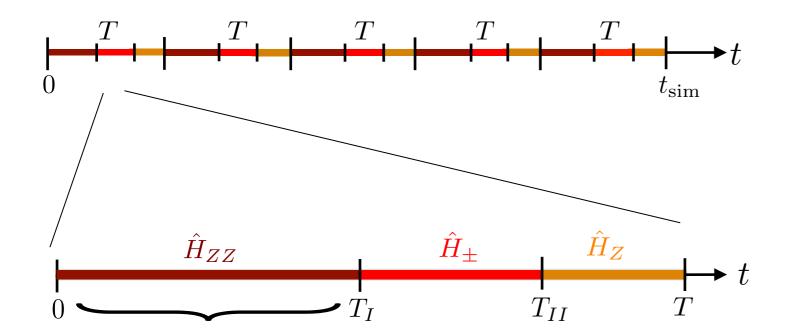
$$\sigma_1^x \sigma_2^x + \sigma_2^x \sigma_3^x + \sigma_1^x \sigma_3^x$$

$$\sigma_1^x \sigma_2^x + \sigma_2^x \sigma_3^x + \sigma_1^x \sigma_3^x \qquad \qquad \sigma_1^x \sigma_2^x + \sigma_1^x \sigma_3^x + \sigma_1^x \sigma_4^x + \sigma_2^x \sigma_3^x + \sigma_2^x \sigma_4^x + \sigma_3^x \sigma_4^x$$

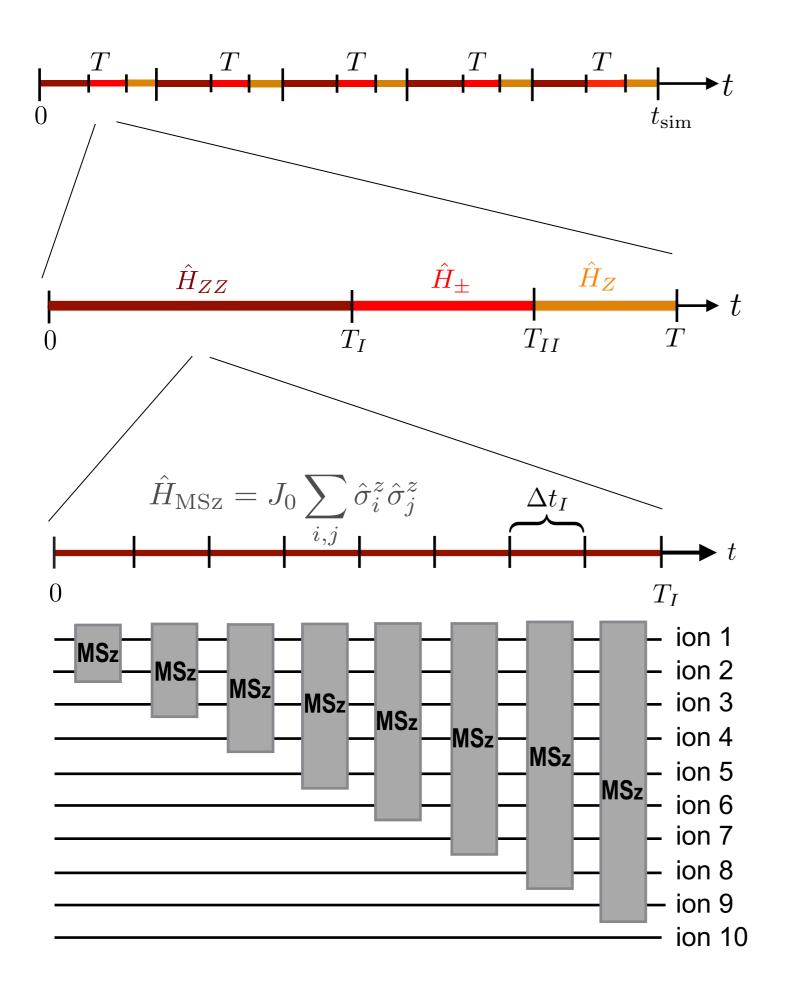




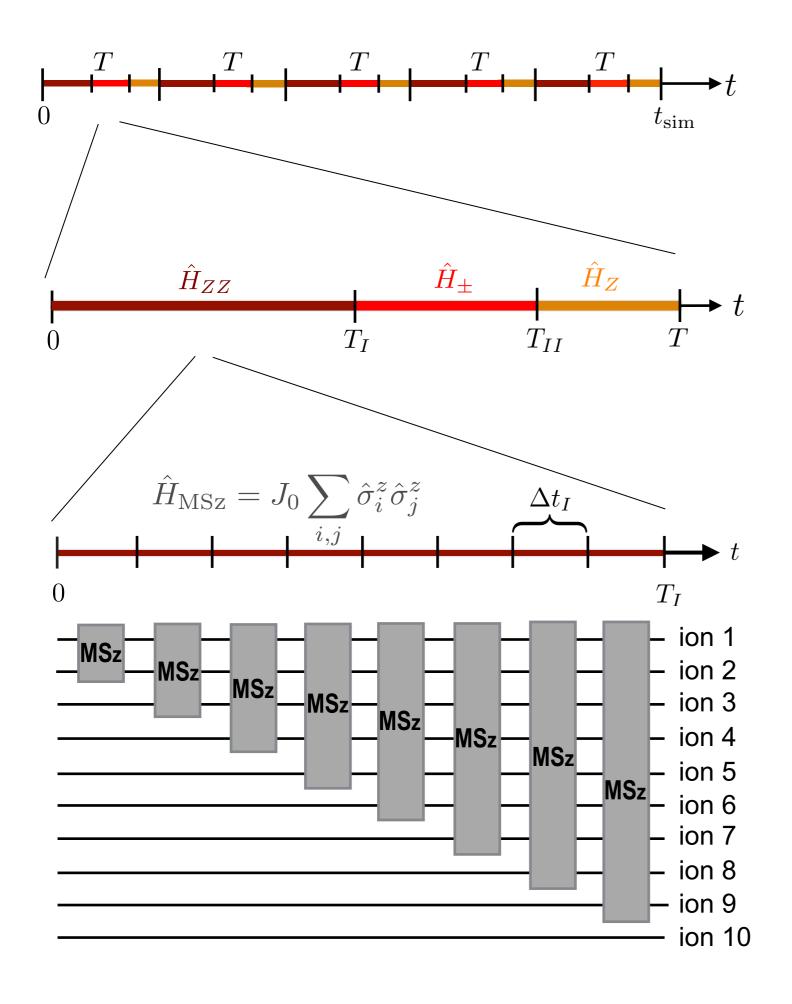
$$\begin{split} \hat{H}_S &= J \sum_{\substack{i < j \\ i < j}} \hat{\sigma}_i^z \hat{\sigma}_j^z \\ & \text{long - range interaction} \\ &+ w \sum_{\substack{i \\ i < j}} (\hat{\sigma}_i^+ \hat{\sigma}_{i+1}^- + \hat{\sigma}_{i+1}^+ \hat{\sigma}_i^-) \\ & \text{particle - antiparticle creation/annihilation} \\ &+ m \sum_{\substack{i \\ i < j}} c_i \hat{\sigma}_i^z + J \sum_{\substack{i \\ i < j}} \tilde{c}_i \hat{\sigma}_i^z \end{split}$$



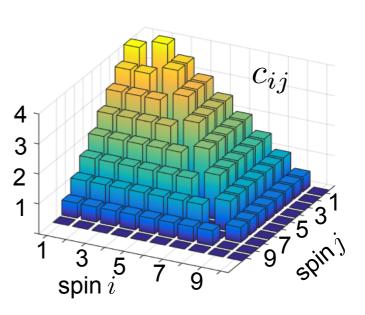
$$\begin{split} \hat{H}_S &= J \sum_{\substack{i < j \\ i < j}} \hat{\sigma}_i^z \hat{\sigma}_j^z \\ & \text{long - range interaction} \\ &+ w \sum_{\substack{i \\ i < j}} (\hat{\sigma}_i^+ \hat{\sigma}_{i+1}^- + \hat{\sigma}_{i+1}^+ \hat{\sigma}_i^-) \\ & \text{particle - antiparticle creation/annihilation} \\ &+ m \sum_{\substack{i \\ i < j}} c_i \hat{\sigma}_i^z + J \sum_{\substack{i \\ i < j}} \tilde{c}_i \hat{\sigma}_i^z \end{split}$$

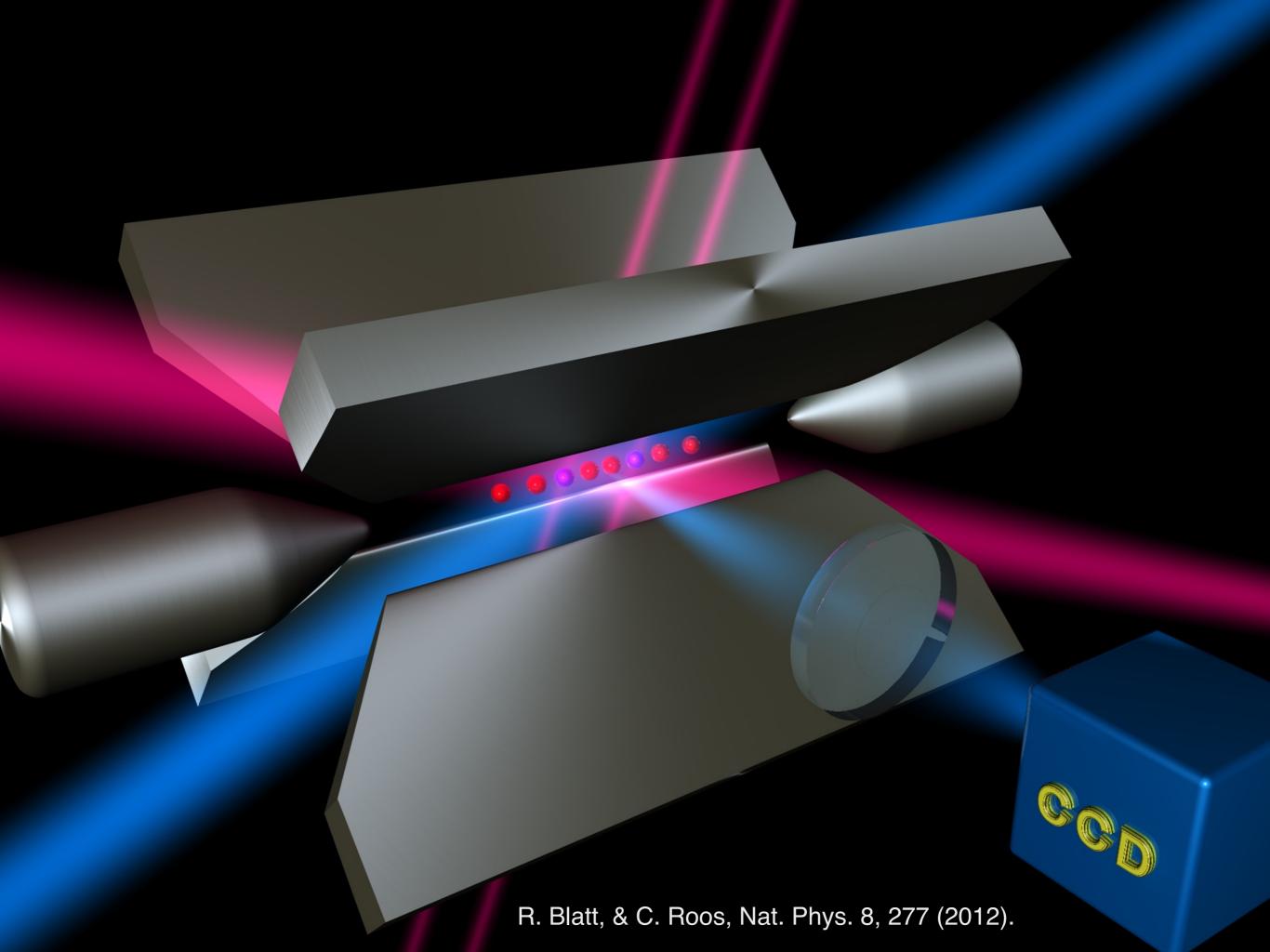


$$\begin{split} \hat{H}_S &= J \sum_{i < j} c_{ij} \hat{\sigma}_i^z \hat{\sigma}_j^z \\ & \text{long - range interaction} \\ &+ w \sum_{i} \left(\hat{\sigma}_i^+ \hat{\sigma}_{i+1}^- + \hat{\sigma}_{i+1}^+ \hat{\sigma}_i^- \right) \\ & \text{particle - antiparticle creation/annihilation} \\ &+ m \sum_{i} c_i \hat{\sigma}_i^z + J \sum_{i} \tilde{c}_i \hat{\sigma}_i^z \end{split}$$



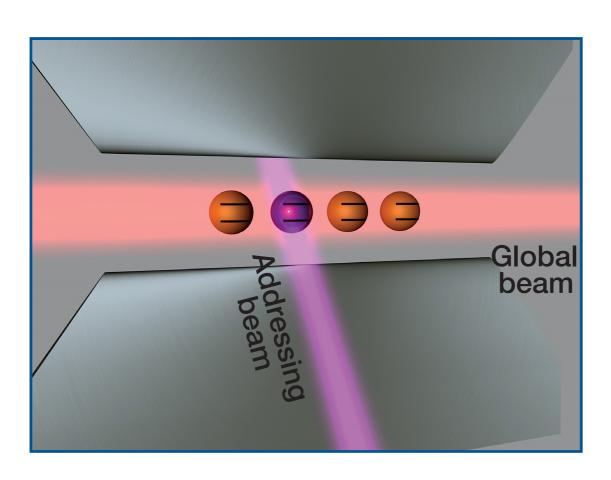
$$\begin{split} \hat{H}_S &= J \sum_{i < j} c_{ij} \hat{\sigma}_i^z \hat{\sigma}_j^z \\ & \text{long - range interaction} \\ &+ w \sum_{i} \left(\hat{\sigma}_i^+ \hat{\sigma}_{i+1}^- + \hat{\sigma}_{i+1}^+ \hat{\sigma}_i^- \right) \\ & \text{particle - antiparticle creation/annihilation} \\ &+ m \sum_{i} c_i \hat{\sigma}_i^z + J \sum_{i} \tilde{c}_i \hat{\sigma}_i^z \end{split}$$



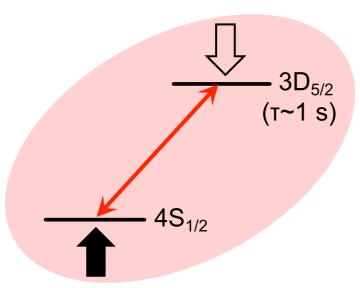


Experiment

E. Martinez, P. Schindler, D. Nigg, A. Erhard, T. Monz, and R. Blatt



Qubit



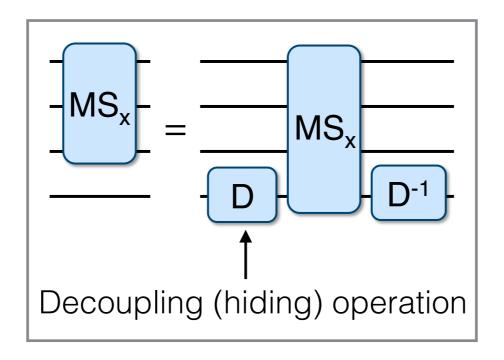
Tools for universal digital quantum simulation are available:

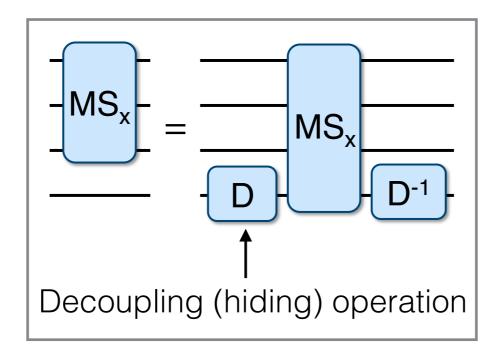
B. Lanyon, et al. Science 334, 57 (2011).

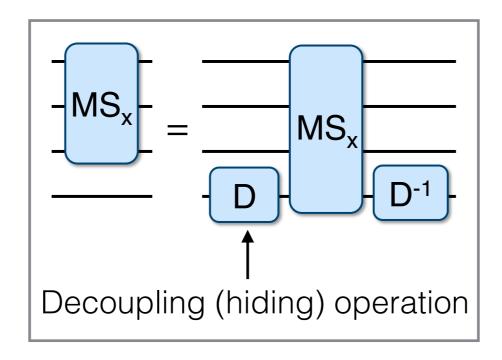
Entangling gates

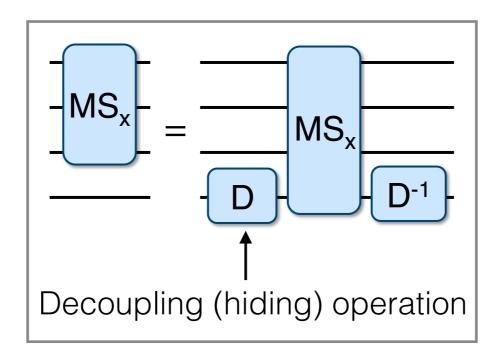
Mølmer-Sørensen interaction

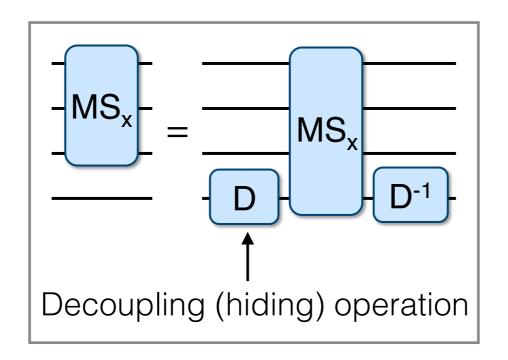
$$H_0 = J_0 \sum_{i,j} \sigma_i^x \sigma_j^x$$





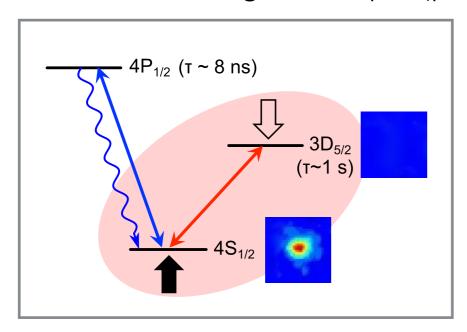




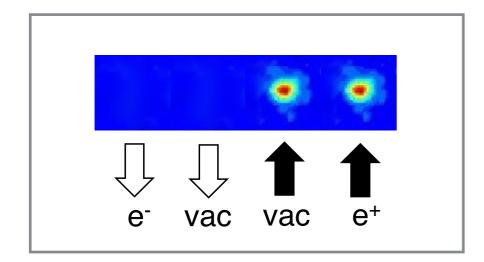


Measurements

Electron shelving technique (projective measurement in the z-basis)



Imaging of the whole ion chain on a CCD camera



Change of the measurement basis: full state tomography

Quantum Simulation of pair creation

Particle number density:
$$\nu(t) = \frac{1}{N} \sum_{n=1}^{N} \langle (-1)^n \sigma_n^z(t) + 1 \rangle$$

Creation of a particle antiparticle pair:

