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The neutron-rich 6He and 8He isotopes exhibit an exotic nuclear structure that consists of a tightly

bound 4He-like core with additional neutrons orbiting at a relatively large distance, forming a halo.

Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare

helium atoms and have measured the atomic isotope shifts along the 4He-6He-8He chain by

performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic

structure theory, including relativistic and QED corrections, has reached a comparable degree of

accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope

shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques

employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear

laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser

spectroscopy, the charge radii of these light halo nuclei have now been determined for the first

time independent of nuclear structure models. The results are compared with the values predicted by

a number of nuclear structure calculations and are used to guide our understanding of the nuclear

forces in the extremely neutron-rich environment.
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I. INTRODUCTION

The 4He nucleus, or � particle, is a stable and tightly
bound nuclear system, to which an additional neutron cannot
be attached. The would-be 5He nucleus is unbound; its
resonance state has an energy width corresponding to a
lifetime of 10�20 s (Firestone and Shirley, 1996). On the
other hand, an � particle and two neutrons can form a 6He
nucleus that is stable under the strong interaction and unstable
only under the influence of the weak interaction; it decays by
� emission with a half-life of 0.8 s. Here the pairing between
the two additional neutrons and the three-body nuclear force
plays an essential role in stabilizing the 6He nucleus, which
can be viewed as a three-body system �-n-n. If any one of the
three constituents is removed, the remaining two bodies
become unbound. This interesting property is analogous to
the topological properties of the Borromean rings (Fig. 1),
thus earning 6He the nickname ‘‘Borromean nucleus’’
(Zhukov et al., 1993). The pairing of neutrons continues
along the isotope chain; 7He is unbound, and 8He is bound
with a half-life of 0.1 s due to � decay. While a typical
nucleus has a neutron-to-proton ratio in the range of 1–1.5,
for 8He the ratio is 3. Indeed 8He holds the highest neutron-to-
proton ratio among all known nuclides. At the same time, 6He
and 8He have some of the lowest two-neutron separation
energies. Both 6He and 8He consist of a tightly bound

� core with additional neutrons orbiting at a relatively large
distance, forming a halo (Fig. 2).

These exotic nuclear phenomena are interesting to explore
in their own right. Recent review articles covered studies of
halo structure in nuclei (Frederico et al., 2012; Tanihata,
Savajols, and Kanungo, 2013) and in quantum systems in
general (Jensen et al., 2004). Moreover, they offer oppor-
tunities to study nuclear forces under extreme conditions
in relatively simple systems (mass number A < 10), which
in turn helps the development of effective models of
nuclear forces that can be used to accurately describe nuclear
structure, interactions, and reactions. This Colloquium
reviews recent advances toward this goal in areas including
nuclear theory, atomic theory, and laser trapping and probing
of short-lived isotopes.

II. NUCLEAR RADII

A. Radii defined

The size of a nucleus is a fundamental property and, along
with its binding and excitation energy, is used to probe the
depth and range of the nuclear potential. Since the spatial
distribution of the protons and neutrons may differ, a phe-
nomenon that is particularly pronounced in halo nuclei, there
are several ways to describe the nuclear size. For example, the
rms charge radius (rc) is defined as

r2c ¼ 1

Z

Z
�cðrÞr2d3r; (1)

where �cðrÞ is the nuclear charge density normalized to the
number of protons Z. This is the radius that is directly probed
in atomic transition frequency measurements (see Sec. III).
Alternatively, when only concerned with the spatial distribu-
tion of the protons, one can define the rms point-proton radius
(rp) as

r2p ¼ 1

Z

Z
�pðrÞr2d3r; (2)

where �pðrÞ is the density of the protons under the assump-

tion that each proton is a point particle. In other words, only
the center of mass of each proton is considered. This is a
theoretical concept introduced for the benefit of not having to
compute the size of the proton itself—a quantity beyond the

FIG. 1. Borromean rings depicted here as a marble inlay in the

Church of San Pancrazio, Florence. The topology is such that the

three rings are linked even though no two-ring pairs are linked.

Analogies are found in certain nuclear bindings such as the �-n-n
structure of 6He.

FIG. 2 (color). Illustration of the nuclear structure of 4He, 6He, and 8He. Red spheres represent protons, and blue spheres represent

neutrons. The red shadows indicate the areas of motion of the protons; the blue shadows indicate the areas of motion of the neutrons.

The nuclear charge radius is predominantly a measure of the center-of-mass motion of the charge carrying a 4He-like core in 6He and 8He and
depends on the correlation of the halo neutrons.
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realm of nuclear structure theories. Similarly, one can define
the rms point-neutron radius (rn) and the rms point-nucleon
radius (rm or matter radius) where all nucleons, both neutrons
and protons, are included. These are related by

r2m ¼ Z

A
r2p þ N

A
r2n; (3)

where N is the number of neutrons. The charge radius
is related to the point-proton radius as (ℏ ¼ c ¼ 1)
(Friar, Martorell, and Sprung, 1997)

r2c ¼ r2p þ
�
R2
p þ 3

4M2
p

�
þ N

Z
R2
n þ r2so þ r2mec: (4)

Here Rp is the charge radius of the proton itself. Its value

accepted by CODATA 2010 and the Particle Data Group
(PDG) is 0.8775(51) fm (Beringer et al., 2012; Mohr,
Taylor, and Newell, 2012), leading to R2

p ¼ 0:770ð9Þ fm2.

The Darwin-Foldy term 3=ð4M2
pÞ ¼ 0:033 fm2 accounts for

the charge distribution by virtual particle-antiparticle pairs
that both surround and are polarized by the ‘‘bare’’ proton.
Even a hypothetical point proton would have a nonzero
charge radius due to the ‘‘Zitterbewegung’’ effect, a rapid
oscillating motion of the proton resulting from the interfer-
ence between the positive and negative frequency parts of the
proton’s wave function (Baym, 1969). One could argue that
the Darwin-Foldy term should have been absorbed into the
R2
p term to represent the apparent mean square charge radius

of the proton (Friar, Martorell, and Sprung, 1997). Alas, the
electron scattering community chose by convention to have
these two terms separated so that R2

p represents the contribu-

tion purely due to the proton’s ‘‘internal structure.’’ The mean
square charge radius of the neutron R2

n has a PDG value of
�0:1161ð22Þ fm2. This negative value reflects the fact that
the neutron consists of a positively charged core surrounded by
negative charges on the outside. The spin-orbit term r2so is due
to the spin-orbit coupling of the nucleons with nonzero orbital
angular momenta. It can be viewed as a contribution to the
charge density due to Lorentz boosting of anomalousmagnetic
moments (Ong, Berengut, and Flambaum, 2010). Finally, r2mec

represents the contribution of meson-exchange currents
binding the nucleons and adding a small contribution to the
nuclear charge density (Friar, Martorell, and Sprung, 1997).

B. Charge radii of 4He and of the proton

The charge radius of a stable, abundant isotope can be
accurately determined using elastic scattering between a
medium energy (�102 MeV) electron beam and a target
made of this isotope (Sick, 2001). The differential scattering
cross section can be expressed as the formula of Mott
scattering (for a point nucleus) modified by the form factor
of the nucleus (Ottermann et al., 1985)

�
d�

d�

�
exp

¼
�
d�

d�

�
Mott

F2ðq2Þ; (5)

where q2 is the square of the four-momentum transfer during
the collision. At q2 of 0:04 GeV2, the electron beam probes
structure at a distance scale of�1 fm. In the case of 4He, with
zero nuclear spin and no magnetic moment, the form factor is

simply the Fourier transform of the charge density and can be
expressed in a Taylor expansion as

Fðq2Þ ¼ 1� 1

3!
q2r2c þ � � � : (6)

For 3He or the proton, with nonzero magnetic moment, the
form factor consists of both an electric and a magnetic part,
which can be separated according to their dependencies on
the scattering angle. The charge radius can then be extracted
from the electric form factor as in Eq. (6) (Ottermann et al.,
1985).

The charge radii of 4He and 3He have been measured many
times using the electron scattering method. For example,
using an electron beam from the Mainz 400 MeV electron
linear accelerator, and targets made of high-pressure gas
cells, Ottermann et al. (1985) determined the charge radii
to be 1.671(14) fm for 4He and 1.976(15) fm for 3He.
A recent comprehensive study of the world data on elastic
electron-helium scattering resulted in a more precise value of
the charge radius of 4He, 1.681(4) fm (Sick, 2008).

The charge radius of the proton has also been measured in
various electron scattering experiments. Recent measure-
ments were performed at Jefferson Laboratory (Zhan et al.,
2011) using a 1.2 GeV polarized electron beam incident on a
liquid hydrogen target and at the Mainz University Microtron
MAMI (Bernauer et al., 2010) with electron beam energies
ranging from 180 to 855 MeV. The charge radius of the
proton was determined to be 0.875(10) and 0.879(8) fm,
respectively, consistent with the CODATA value 0.8775
(51) fm (Mohr, Taylor, and Newell, 2012), which is mainly
inferred from atomic hydrogen spectroscopy.

Spectroscopy of muonic rather than electronic atoms is
much more sensitive to nuclear charge radii because the muon
is heavier than the electron and, thus, closer to the nucleus
inside the atom. Recently, the Lamb shift of the 2s-2p
transition in muonic hydrogen was measured for the first
time at the cyclotron facility of Paul Scherrer Institute (PSI)
(Pohl et al., 2010). The new result for the charge radius of the
proton Rp ¼ 0:840 87ð39Þ fm deviates from the CODATA

value by 7� (Antognini et al., 2013). This, of course, has
caused great excitement in the field and motivated further
work in both experiment and theory (Jentschura, 2011a,
2011b). Muonic 4He ion has also been studied, but no
transition sensitive to Lamb shift has been observed yet
(Hauser et al., 1992). A more sensitive experiment is being
prepared at PSI (Antognini et al., 2011).

Because of their needs for a macroscopic target, experi-
ments of both electron scattering and muonic atom spectros-
copy have so far been attempted on stable isotopes only, with
the notable exception of tritium (Collard et al., 1963). New
techniques are being proposed and developed to perform
electron scattering measurements on short-lived isotopes.
The collaboration for electron-ion scattering experiments
(ELISe) proposed to build an eA collider between a circulat-
ing beam of electrons and exotic isotopes in a storage ring at
the Facility for Antiproton and Ion Research (FAIR) in
Darmstadt, Germany (Antonov et al., 2011). In another
scheme, named self-confining radioactive isotope target
(SCRIT), Suda and Wakasugi (2005) proposed to have radio-
active ions trapped directly by the colliding electron beam.
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In principle, an eA collision could be arranged in inverse
kinematics with a short-lived isotope beam scattering off
a target containing electrons. However, the difficulty with
this experimental design is that the momentum transfers
are too low for measurements of the nuclear form factors
and radii. At a beam energy of 0:7 GeV=u, the q2 is only
6� 10�7 GeV2 for eA collisions.

For these reasons, the determination of nuclear charge radii
for short-lived isotopes such as halo nuclei has not yet been
possible, except by the isotope shift method discussed in
Sec. III. Therefore, it provides a unique measurement tool
for this purpose.

III. THEORY OF THE HELIUM ATOM

The measurement of nuclear sizes by the isotope shift
method depends as much on accurate and reliable atomic
structure calculations as it does on the isotope shift measure-
ments themselves. This section discusses the relevant atomic
states in question and the theoretical methods used to calcu-
late the mass-dependent contributions to the isotope shift.
Figure 3 presents the helium atomic energy levels of interest.
Laser excitation of helium atoms from the ground state
requires vacuum ultraviolet photons at a wavelength of
58 nm—a region where precision lasers are not yet readily
available, although much progress has been made recently in
this area by using high-order harmonic generation of a
frequency-comb laser (Kandula et al., 2011; Cingoz et al.,
2012). Instead, most helium spectroscopy so far has been
performed on the long-lived metastable states (Vassen et al.,
2012). In a neutral helium atom, the nucleus occupies a
fractional volume on the order of 10�13, yet the minute
perturbation on the atomic energy level due to the finite
size of the nucleus can be precisely measured and calculated.
Figure 4(a) shows the electrostatic potential of a hypothetical
point nucleus with zero charge radius. The electrostatic
potential goes toward negative infinity as the electron

approaches the nucleus at the origin. On the other hand,
inside a real nucleus as depicted in Fig. 4(b), charge is
distributed over the volume of the nucleus, and the electro-
static potential approaches a finite value at the origin. This
effectively lifts the energy levels of the atomic states, with
particularly significant results on the s states whose electron
wave functions do not vanish within the nucleus. For ex-
ample, the transition frequencies of 2 3S1-3

3PJ in a helium

atom are shifted down by a few MHz, or a fractional change
of 10�8, due to the finite nuclear charge radius.

This section covers the necessary high-precision theory of
the helium atom. In calculations and discussions, it is conve-
nient to arrange the various contributions to the energy of the
atom in the form of a double perturbation expansion in
powers of the fine-structure constant � ’ 1=137 and the ratio
of the reduced electron mass over the mass of the nucleus
�=M ’ 10�4. Table I summarizes the various contributions
to the energy, including the QED corrections and the finite
nuclear size term. Since all the lower-order terms can now be
calculated to very high precision, including the QED terms of
order �3, the dominant source of uncertainty comes from the
QED corrections of order �4 or higher. Yet, this QED uncer-
tainty (�10 MHz) is larger than the finite nuclear size effect,
thus preventing an extraction of the nuclear size directly from

FIG. 3 (color online). The energy level diagram of the neutral

helium atom. The 2 3S1 state is metastable. Laser excitation on the

2 3S1-2
3P2 transition at 1083 nm was used to trap and cool helium

atoms. Laser excitation on the 2 3S1-3
3PJ transition at 389 nm was

used to detect the trapped atoms and measure their isotope shifts.

Details are provided in Sec. IV.A.

FIG. 4 (color online). The electrostatic potential and energy of

bound s- and p-electronic levels are illustrated in (a) for a hypo-

thetical point nucleus, and in (b) for the real case of a nucleus with a

finite volume. The higher potential within the finite-sized nucleus

causes the electrons to be less bound. This so-called volume effect is

most pronounced for s electrons.

TABLE I. Contributions to the electronic binding energy and
their orders of magnitude in atomic units. a0 is the Bohr radius,
� � 1=137. For helium, the atomic number Z ¼ 2, and the mass
ratio �=M� 1� 10�4. gI is the nuclear g factor. �d is the nuclear
dipole polarizability.

Contribution Magnitude

Nonrelativistic energy Z2

Mass polarization Z2�=M
Second-order mass polarization Z2ð�=MÞ2
Relativistic corrections Z4�2

Relativistic recoil Z4�2�=M
Anomalous magnetic moment Z4�3

Hyperfine structure Z3gI�
2
0

Lamb shift Z4�3 ln�þ � � �
Radiative recoil Z4�3ðln�Þ�=M
Finite nuclear size Z4hrc=a0i2
Nuclear polarization Z3e2�d=ð�a40Þ
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a single atomic transition frequency measurement. On the
other hand, for the isotope shift, the QED terms independent
of �=M cancel, and so it is only the radiative recoil terms of
order �4�=M (�10 kHz) that contribute to the uncertainty.
Since this is much less than the finite nuclear size correction
of about 1 MHz, the comparison between theory and experi-
ment clearly provides a means to determine the difference of
the mean square radii between two isotopes of the same
element. For example, the isotope shift of 6He-4He for the
transition 2 3S1-3

3P2 is calculated to be (see Table III)

IS6�4ðMHzÞ ¼ 43 196:171ð2Þ � 1:010½r2c;6 � r2c;4�: (7)

The first term on the right-hand side, which dominates in the
case of helium or other light nuclides, is referred to as the
mass shift (due to electronic structure), and the second term
as the volume shift (due to the finite nuclear volume).
The radii are in the units of fm. In order to extract the nuclear
charge radius of 6He from an isotope shift measurement, it is
essential to have precise calculations of both the mass shift
and the coefficient of the volume shift. This in turn requires
the precisely determined masses of both isotopes.

Direct mass measurements of both 6He and 8He have been
performed recently with the TRIUMF’s Ion Trap for Atomic
andNuclear Science (TITAN) Penning trapmass spectrometer
at the Tri-University Meson Facility (TRIUMF) Isotope
Separator and Accelerator Facility (ISAC) facility (Ryjkov
et al., 2008; Brodeur et al., 2012). Once produced in a
spallation reaction, 6He or 8He atoms were ionized, mass
selected, and transported to the TITAN facility, where they
were first thermalized and accumulated using a hydrogen-
filled radio-frequency quadrupole ion trap and then injected
into a Penning trap for mass measurements. For 6He, the new
result 6.018 885 883(57) u (atomicmass unit) deviates from the
previous value (AME03) by 4�, while improving the precision
by a factor of 14. For 8He, the new result 8.033 934 44(11) u
agrees with the previous value (AME03) within 1:7�, while
improving the precision by a factor of 12. Prior to these
direct measurements, the mass uncertainties would cause
uncertainties in the radii at the 1% level. The new measure-
ments are so precise that mass uncertainties have become
negligible in the current extraction of nuclear charge radii.

A. Solution to the nonrelativistic Schrödinger equation

The starting point for the calculation is to find accurate
solutions to the nonrelativistic Schrodinger equation. This is
the foundation upon which are built the relativistic and QED
corrections by perturbation theory. The usual methods of
theoretical atomic physics, such as the Hartree-Fock approxi-
mation or configuration-interaction methods, are not capable
of yielding results of spectroscopic accuracy. Hence, speci-
alized techniques have been developed (Drake and Yan, 1992;
Drake, 1993a, 1993b).

Considering first the case of infinite nuclear mass, the non-
relativistic Hamiltonian for a two-electron atom is given by

H1 ¼ � 1

2
r2

1 �
1

2
r2

2 �
Z

r1
� Z

r2
þ 1

r12
; (8)

where atomic units are usedwith ℏ ¼ me ¼ e ¼ 1 and�ir1;2

representing the momentum operators. Because of the

electron-electron repulsion term 1=r12, with r12 ¼ jr1 � r2j
being the interelectronic separation, the Hamiltonian is non-
separable, and so the Schrödinger equation cannot be solved
exactly. Hylleraas (1929) long ago suggested expanding the
wave function in an explicitly correlated variational basis set
of the form (in modern notation)

�1ðr1; r2Þ ¼
X
i;j;k

aijkr
i
1r

j
2r

k
12e

��r1��r2YM
l1l2L

ðr̂1; r̂2Þ; (9)

where YM
l1l2L

is a vector-coupled product of spherical

harmonics to form a state of total angular momentum L
and component M. The coefficients aijk are linear variational

parameters; � and � are nonlinear variational parameters
that set the distance scale for the wave function. As shown
by Klahn and Bingel (1977a, 1977b), the basis set is com-
plete in the limit that the number of powers tends to infinity.
This important property ensures that the results converge to
the correct answer, including all correlation effects. In the
calculation, � and � are separately optimized for each set of
angular momentum terms. For excited states, it is desirable
to double the basis set so that each combination of powers
fi; j; kg is included two (or more) times with different values
�1, �1, �2, �2, etc. in different blocks (Drake, Cassar,
and Nistor, 2002). This optimization produces a natural
partition of the basis set into distinct sectors representing
the asymptotic and short-range parts of the wave function.

The most studied example is the 1s2 1S0 ground state of

helium. Convergence to 20 or more figures can be readily
obtained using conventional quadruple precision (32 decimal
digit) arithmetic (Drake, Cassar, and Nistor, 2002). Recently,
even higher accuracy was obtained by Schwartz (2006), and
by Nakashima and Nakatsuji (2008). High-precision results
for all states of helium up to n ¼ 10 and angular momentum
L ¼ 7 are available in Drake and Yan (1992, 1994) and Drake
(1993a). Combined with asymptotic expansion methods for
high L and quantum defect methods for high n (Drake, 1994),
this provides a complete coverage of the entire spectrum of
singly excited states for helium.

B. Mass, relativistic, and QED corrections

In a calculation of the isotope shift, it is necessary to also
include the motion of the nucleus. A transformation to the
center-of-mass frame plus relative coordinates results in the
mass polarization term �ð�=MÞr1 � r2 to be added to H1
(Bethe and Salpeter, 1957). Its effect is calculated up to the
second order ð�=MÞ2.

Relativistic corrections corresponding to the term of order
�2Z4 (Table I) come from the nonrelativistic form of the Breit
interaction (Bethe and Salpeter, 1957). There are also
relativistic recoil terms of the order �2Z4�=M (Drake,
1993a), arising from the mass scaling of the terms in the
Breit interaction, a transformation to center-of-mass coordi-
nates (Stone, 1961, 1963), and mass-dependent corrections to
the wave function due to the mass polarization term in the
Hamiltonian.

Accurate calculations of QED corrections to the lowest
order �3 and �3�=M once presented a major limitation on
the accuracy that could be achieved in atomic structure
calculations. However, this problem has now been solved
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[see, for example, Drake and Goldman (2000)], and higher-
order corrections can be estimated from combinations of
known hydrogenic results (Yan and Drake, 1998). The orders
of magnitude for higher-order corrections are discussed by
Drake and Martin (1999) for helium. Their contribution to the
transition energy is taken to be the QED uncertainty. A
comprehensive tabulation of energy levels for 3He and 4He,
including hyperfine structure, has been given by Morton, Wu,
and Drake (2006). Further improved calculations on the
hyperfine structure by Pachucki, Yerokhin, and Cancio
Pastor (2012) are in excellent agreement with experiment.

C. Atomic isotope shifts

The results of Sec. III.B can now be assembled to calculate
the total mass-dependent contribution to the total isotope shift
for the transition in question. This is the quantity that must be
subtracted from the measured isotope shift [see Eq. (7)] in
order to isolate the nuclear volume effect. As examples, the
various contributions to the isotope shift are listed in Table II
for 6He relative to 4He. The results are expressed as contri-
butions to the isotope shift for the ionization energy of each
state so that the isotope shift for the transition is obtained by
subtracting the entries for the corresponding initial and final
states. The terms are classified according to their dependence
on�=M and �, as given in Table I. The term of order ð�=MÞ2
comes from second-order mass polarization. The relativistic
recoil terms of order �2�=M come from mass scaling, mass
polarization, and the Stone terms (Stone, 1961, 1963). The
radiative recoil terms similarly come from a combination of
mass scaling, mass polarization, and higher-order recoil
corrections as discussed by Pachucki and Sapirstein (2003).
In addition, Puchalski, Moro, and Pachucki (2006) discussed
a correction to the isotope shift due to nuclear polarizability.
The correction is given by

�Epol ¼ �mc2�
X
i

h�ðriÞi�d; (10)

where �d is an averaged nuclear dipole polarizability
(Puchalski, Moro, and Pachucki, 2006). For the case of 6He
(�d ¼ 24:7� 5:0 fm3), this gives significant additional con-
tributions to the isotope shifts (Pachucki and Moro, 2007).
The correction is negligibly small for 8He. Finally, the cor-
rection for the finite nuclear size is given in the lowest
order by

�Enuc ¼ 2�Ze2r2c
3

X
i

h�3ðriÞi: (11)

Because of the dependence on r2c, the measured isotope shift
�� for a transition i ! f is then related to the calculated mass
shift ��MS by an equation of the form

�� ¼ ��MS � Ki;f½r2c;A � r2c;B�; (12)

and

Ki;f ¼ ð2�Ze2=3ÞX
j

½h�3ðrjÞii � h�3ðrjÞif�

is nearly independent of the particular isotopes A and B. The
calculated values of the parameters ��MS and Ki;f are listed

in Table III for the transitions of interest.
Table III indicates that the coefficient for the volume shift

is constant at the 10�3 level among the fine-structure triplet of
transitions between 2 3S1 and 3

3PJ (J ¼ 0, 1, 2), and for both
the 6He-4He and 8He-4He isotope shifts. On the other hand,
the mass shifts differ greatly between 6He-4He and 8He-4He.
Interestingly, the mass shift for the 2 3S1-3

3P1 transition

stands out among the fine-structure triplet. This is caused
by state mixing between 3 3P1 and 3 1P1 due to spin-orbit

coupling. This peculiar effect has been verified in the case of
6He-4He where the isotope shifts were measured for all three
transitions between 2 3S1 and 3 3PJ (Mueller et al., 2007)

(see Sec. IV).

IV. LASER TRAPPING AND PROBING

The main challenge for laser spectroscopy of 6He and 8He
is the combination of requirements on sensitivity and preci-
sion. In addition to the short half-lives and low yields of these
two isotopes, the efficiency of placing the atoms into the
metastable state 2 3S1 using electron impact excitation by a

discharge is only 10�5. On the precision side, a 100 kHz
uncertainty in the isotope shift results in approximately a 1%
uncertainty in the charge radius. In order to meet all these
challenges, laser trapping and cooling of 6He and 8He atoms
was employed, and laser spectroscopy on individual atoms in
the trap realized (Wang et al., 2004; Mueller et al., 2007).
The selective cooling and trapping of helium atoms in a
magneto-optical trap (MOT) was pivotal for this work, pro-
viding single-atom sensitivity, large signal-to-noise ratios,
and high spectroscopic resolution. In addition, the selectivity
of the MOT guarantees that the trapped sample is absolutely

TABLE III. Parameters for the determination of nuclear radii from
the measured isotope shift [see Eq. (12)]. The uncertainties in the
mass shifts are due to the uncertainties in atomic masses, and
higher-order finite mass corrections are not included in the calcu-
lation. The mass shift values do not include the nuclear polarization
correction, which is �0:014ð3Þ MHz for 6He and �0:002ð1Þ MHz
for 8He.

��MS Ki;f

Isotopes Transition (MHz) (MHz=fm2)

6He-4He 2 3S1-3
3P0 43 196.1573(16) 1.0104(1)

2 3S1-3
3P1 43 195.8966(16) 1.0104(1)

2 3S1-3
3P2 43 196.1706(16) 1.0104(1)

8He-4He 2 3S1-3
3P0 64 702.4888(18) 1.0108(1)

2 3S1-3
3P1 64 702.0982(18) 1.0108(1)

2 3S1-3
3P2 64 702.5086(18) 1.0108(1)

TABLE II. Contributions to the isotope shifts in the ionization
energies of 6He relative to 4He. Units are MHz. The term �3�=M,
due to QED correction, includes estimates of the higher-order terms.

Term 2 3S1 2 3P2 3 3P2

�=M 55 195.486(2) 20 730.132(1) 12 000.665(1)
ð�=MÞ2 �3:964 �14:132 �4:847
�2�=M 1.435 3.285 0.724
�3�=M �0:280 �0:206 �0:036
�Epol 0.0157(28) �0:0048ð9Þ �0:0014ð2Þ
Total 55 192.693(3) 20 719.074(1) 11 996.505(1)
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free of any contamination by the dominant 4He isotope

or any other atomic and molecular background (Chen
et al., 1999). The technique was developed at Argonne

National Laboratory and was first applied to laser spectros-

copy of 6He at Argonne’s ATLAS accelerator facility (Wang
et al., 2004). Later, following further developments, the

apparatus was moved to the GANIL accelerator facility

where an improved measurement on 6He and the first mea-
surement on 8He were carried out (Mueller et al., 2007).

A. Trapping and probing of 6;8He

At GANIL, 6He and 8He were simultaneously produced

via spallation from a primary beam of 75 MeV=u 13C
impinging on a heated (2000 K) graphite target. Mass
selected, low-energy (20 keV) beams of either 6He or 8He
with yields of around 1� 108 and 5� 105 ions per second,

respectively, were delivered to an adjacent low-radiation area
(Landré-Pellemoine et al., 2002), where the helium ion beam

was stopped in a hot graphite foil for neutralization and fast

release. Neutral, thermal helium atoms were subsequently
compressed by a turbopump within 0.25 s into the atomic

beam apparatus at the rates of approximately 5� 107 and

1� 105 s�1 for 6He and 8He, respectively.
Figure 5 provides a schematic of the atomic beam and trap

apparatus. A beam of metastable helium atoms with a prob-

able velocity around 1000 m=s was produced through a

liquid-nitrogen-cooled gas discharge. Transverse cooling
and Zeeman slowing were applied to capture the metastable

helium atoms of a selected isotope into the MOT. Cooling and

trapping were based on repeated excitation of the cycling
transition 2 3S1-2

3P2 at the wavelength of 1083 nm (Fig. 3).

Detection and spectroscopy of the atoms captured in the MOT
were performed by exciting one of the three transitions

2 3S1-3
3PJ at 389 nm and imaging the fluorescence light

onto a photomultiplier tube. The signal-to-noise ratio of a

single trapped atom reached 10 within 50 ms of integration
time for photon counts. The total capture efficiency was

1� 10�7. When trapping 6He, there were typically a few
6He atoms in the trap, yielding a capture rate of around 20 000

6He atoms per hour. On the other hand, when trapping 8He,
single 8He atoms were captured at the rate of 30 per hour with
each staying in the trap for an average time of 0.1 s. Samples
of resonance peaks for 8He are given in Fig. 6, including the
spectrum of the very first 8He atom observed in the trap. It
stayed in the trap for a notably long duration of 0.4 s.

FIG. 5 (color online). Schematic of the 6;8He trap apparatus. A beam of metastable helium atoms is provided by a gas discharge source.

Subsequently, the atoms are collimated through transverse cooling, decelerated in a Zeeman slower and captured by a magneto-optical trap

(MOT). Light from the spectroscopy laser beams that is scattered by the trapped atoms is imaged onto a photon detector. More details are

provided in Wang et al. (2004).

FIG. 6. Sample spectra for 8He taken on the 2 3S1-3
3P2 transition

at a probing laser intensity of �3� Isat. Error bars are statistical

uncertainties, and the lines represent least squares fits using

Gaussian profiles. (a) Spectrum of a single 8He atom, the first

observed in the trap. It stayed in the trap for an extra long time

of 0.4 s. The fit results in a statistical frequency uncertainty of

320 kHz with 	2 ¼ 0:84. (b) Spectrum accumulated over 30 trapped

atoms. Uncertainty is 110 kHz with 	2 ¼ 0:87.
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The isotope shifts for 6He and 8He relative to 4He, obtained
in the individual measurements, are plotted in Fig. 7 along

with the extracted field shifts. Table IV lists the weighted

averages of the isotope and field shifts separately for the

different fine-structure levels 3PJ. The isotope shift values

for the different transitions in 6He show variations by

250 kHz as predicted by the atomic theory calculations.

The extracted field shifts for all three transitions agree well

within statistical uncertainties. This is a valuable consistency

test for atomic theory as well as a check for a class of

systematic errors in the experiment, since the strengths of

these three transitions vary by up to a factor of 5. Hence, the

field shifts over all three transitions in 6He were averaged

as independent measurements and likewise for the two

transitions observed in 8He.
The final field shift results for both isotopes are listed in

Table IV along with the contributions from statistical and

systematic uncertainties. A significant systematic uncertainty

is caused by Zeeman shifts that might have varied among

isotopes if the atoms were not located exactly at the zero

B-field position of the MOT. Limits on this effect are set

conservatively at � 30 kHz for the 6He-4He isotope shift

and � 45 kHz for 8He-4He.

B. Study of systematic uncertainties with 3;4He

Studies of 3;4He atoms were carried out with the same

apparatus used for 6;8He as a check for systematic effects, but

the results are interesting in their own right. A small atomic

cloud consisting of tens of 4He atoms was loaded into the

MOT and the 3 3P0;1;2 fine-structure intervals were measured

(Mueller et al., 2005). The standard deviation of 30 mea-

surements under different trap conditions was 40 kHz, which

represents the systematic uncertainty due to trap effects.

Meanwhile, the same fine structure was studied by perform-

ing laser spectroscopy on a collimated atomic beam. The

experimental results from both the trap and atomic beam

methods show excellent agreement with each other and

with the theoretical calculation (Yan and Drake, 1994;

Mueller et al., 2005).
The measurement of the isotope shift between 3He and 4He

in the trap would in principle provide the best test of the

systematic effects in isotope shifts. However, the hyperfine

structure of 3He complicates the situation. After subtracting

the hyperfine shifts, the isotope shift between 4He and 3He in
the 2 3S1-3

3P2 transition is derived to be 42 184.268(40)

(100) MHz, where the first error is due to the measurement,

and the second is from the uncertainty in the hyperfine

shift calculation (Yan and Drake, 1994). This result agrees

with the calculated value of 42 184.299(5) using the input of

the 3He charge radius (Shiner, Dixson, and Vedantham,

1995). It also agrees with an earlier, less precise measurement

(Marin et al., 1995).
More recently, a measurement was made on the 3He-4He

isotope shift for the 2 3S1-2
3PJ manifold of transitions

(Cancio Pastor et al., 2012). Together with an improved

calculation to terms of order m�6 (Pachucki, Yerokhin, and

Cancio Pastor, 2012), it provides the difference in rms charge

radii �r2c ¼ 1:066ð4Þ fm2. Given the charge radius of 4He

FIG. 7. Experimental isotope shifts relative to 4He from the

individual measurements for (a) 8He and (b) 6He. As expected,

the total isotope shift depends on the J of the upper 3 3PJ state. The

extracted field shift values plotted in (c) show no systematic J

dependence for either isotope. The horizontal lines in (c) mark the

weighted averages and statistical error bands of the field shift.

TABLE IV. Weighted averages of the experimental isotope shifts �� (including recoil correction)
for the different transitions in 6He and 8He from Mueller et al. (2007) and Wang et al. (2004). The
field shift ��FS

A;4 ¼ Ki;f�hr2iA;4 was calculated for each transition using the mass shift values listed in

Table III. The errors given in parentheses are the uncorrelated uncertainties. The listed weighted
average of the field shift includes the nuclear polarization correction of �0:014ð3Þ MHz for 6He and
�0:002ð1Þ MHz for 8He. The value given in square brackets denotes the common systematic
uncertainty.

��A;4 ��FS
A;4

Transition (MHz) (MHz) Reference

6He 2 3S1-3
3P0 43 194.740(37) 1.417(37) Mueller et al. (2007)

2 3S1-3
3P1 43 194.483(12) 1.414(12) Mueller et al. (2007)

2 3S1-3
3P2 43 194.751(10) 1.420(10) Mueller et al. (2007)

2 3S1-3
3P2 43 194.772(33) 1.399(33) Wang et al. (2004)

Weighted avgþ nucl polarization 1.430(7)[30]

8He 2 3S1-3
3P1 64 701.129(73) 0.969(73) Mueller et al. (2007)

2 3S1-3
3P2 64 701.466(52) 1.043(52) Mueller et al. (2007)

Weighted avgþ nucl polarization 1.020(42)[45]
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(Sick, 2008), the charge radius of 3He is derived to be 1.973
(4) fm. This new result is more accurate than and consistent
with the earlier one, 1.976(15) fm, obtained using the electron
scattering method (Ottermann et al., 1985). There is also an
isotope shift measurement in the highly forbidden 2 3S1-2

1S0
relativistic M1 transition (van Rooij et al., 2011). The result,
following a reevaluation by Cancio Pastor et al. (2012), is
�r2c ¼ 1:028ð11Þ fm2. The two recent measurements resulted
in two values of �r2c that differ by about 3�. The discrepancy
is yet to be resolved.

Interestingly, investigations of the transitions in 3He led to
the discovery of anomalous line strengths when compared
with estimates from simple L-S coupling (Sulai et al., 2008).
The strengths of two ‘‘allowed transitions,’’ 2 3S1 F ¼ 1=2�
3 3P2 F ¼ 3=2 and 2 3S1 F ¼ 3=2� 3 3P1 F ¼ 3=2, were
found to be 1000 times weaker than that of the strongest
transition in the same manifold, 2 3S1 F ¼ 3=2� 3 3P2 F ¼
5=2. This dramatic suppression of transition strengths is due
to a rare atomic phenomenon; within the 3 3PJ manifold, the

hyperfine interaction is comparable to or even stronger than
the fine-structure interaction. Consequently, the conventional
model based on L-S coupling is no longer applicable. Rather,
an alternative model, referred to as I-S coupling (Sulai et al.,
2008), where the fine-structure interaction is treated as a
perturbation on states obtained by first coupling the nuclear
spin to the total electron spin, provides a good qualitative
explanation of the observed suppression.

V. CHARGE RADII AND POINT-PROTON RADII OF 6;8He

Combining the isotope shift measurements (Sec. IV.A), the
independent determination of the charge radius of 4He
(Sec. II.B), and the modern theory of the helium atom
(Sec. III), the charge radii of 6He and 8He can be extracted
in a way that is independent of nuclear models. The results
are found in Table V.

In order to compare the results with values obtained from
nuclear theory, a conversion needs to be performed between

the charge radius and the point-proton radius following

Eq. (4). Here the 2012 PDG values of the neutron and proton
charge radii (Beringer et al., 2012) were used. The spin-orbit
correction term was calculated in the framework of the
Gamow shell model (Papadimitriou et al., 2011). This value

is close to the spin-orbit term obtained for the case of the halo

TABLE V. Experimental and theoretical charge and point-proton radii rc and rp, binding energies
EB, and two-neutron separation energies E2n of helium isotopes. The experimental rc for

6He and 8He
are extracted from the averaged isotope shifts of all observed transitions and the listed value of rc of
4He is obtained from electron scattering. The experimental rp values are calculated following Eq. (4)

using the PDG values for Rn and Rp (Beringer et al., 2012) and rso from Papadimitriou et al. (2011).

The meson-exchange term rmec is neglected. Units of radii are fm and energies are MeV.

Quantity 4He 6He 8He Reference

rc, e scattering 1.681(4) Sick (2008)

rc, isotope shift 2.059(8) 1.958(16) This work

rp, experiment 1.462(6) 1.934(9) 1.881(17)
rp, AV18þ IL7 1.432(3) 1.92(3) 1.83(2) Brida, Pieper, and Wiringa (2011)

and this work
rp, JISP16 1.436(1) 1.85(5) 1.80(5) Maris (2013)

EB, experiment 28.30 29.27 31.41
EB, AV18þ IL7 28.43(1) 29.20(3) 31.06(15) Brida, Pieper, and Wiringa (2011)

and this work
EB, JISP16 28.299(1) 28.80(5) 29.9(1) Maris (2013)

E2n, experiment � � � 0.98 2.13 Wang et al. (2012)

E2n, AV18þ IL7 � � � 0.97(3) 1.86(15)
E2n, JISP16 � � � 0.50(5) 1.1(1)

This work 

Tanihata, 1988 

Tanihata, 1992 

Al-Khalili, 1996 

Alkhazov, 2002 

Maris, 2013 

This work 

This work 

Tanihata, 1988 
 

Tanihata, 1992 

Alkhazov, 2002 

Maris, 2013 

This work 

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

 Nuclear Radii (fm)

4He
      rms proton              rms matter     
                                     Experiment
                                     Theory

8He

6He

FIG. 8 (color online). Comparison between experimental and

theoretical values of point-proton and matter radii for 6He

(top panel) and 8He (bottom panel) (see also Tables V and VI).
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neutrons in pure p orbitals (Ong, Berengut, and Flambaum,
2010).

The point-proton radii from this work are plotted in Fig. 8
along with matter radii extracted from scattering experiments
(Table VI). While the latter are dependent on nuclear models,
different methods give qualitatively consistent matter radii, as
indicated by the gray bands in the figure. In both 6He and 8He,
the matter radii are significantly larger than the point-proton
radii, a clear signature of the core-halo structure of these
nuclei. The matter radius for 4He should be the same as the
indicated point-proton radius. Also given in Fig. 8 are the
values from ab initio calculations based on the no-core
shell model (NCSM) (Maris, 2013) and Green’s function
Monte Carlo (GFMC) techniques. The nuclear models and
their calculations of the radii are discussed in Sec. VI.

It should be noted that the experimental point-proton radii
of 4He, 6He, and 8He would be larger by 0.021, 0.016, and
0.017 fm, respectively, were the PDG value of the proton
charge radius replaced with that obtained from the recent
muonic hydrogen studies (see Sec. II.B). This change would
be significant compared to the experimental uncertainties;
however, it would not alter the conclusion on the nuclear
structure of these isotopes that are predominantly based on
relative changes in the charge radii along the isotope chain.

VI. MATTER RADII OF 6;8He

As discussed in previous sections, charge radii are deter-
mined by the precisely known electromagnetic interactions
and, hence, have no dependence on models of nuclear struc-
ture or hadronic interaction. Point-proton radii can be derived
from the charge radii via Eq. (4) with weak dependence in the
correction terms on nuclear models. On the other hand, point-
neutron radii or matter radii can be probed only with hadronic
interactions whose quantitative understanding depends
strongly on nuclear models. Furthermore, such probes can
significantly modify the target nucleus as they interact with it.
Thus, the extraction of matter radii is subject to significant
model dependence in the analysis of the experiments,
particularly in nuclear reaction measurements.

Although the short-lived isotopes are thus far too scarce to
form a target, it has been possible since the mid-1980s to have

these isotopes produced and selected in flight to form a
secondary beam for scattering experiments. Such measure-
ments are now regularly performed at the world’s premier
radioactive isotope facilities to study nuclear reactions,
nuclear structure, and to determine nuclear properties includ-
ing radii.

A. Nuclear reaction measurements

Tanihata et al. (1985b) first demonstrated the use of
radioactive isotope beams to measure interaction cross sec-
tions, defined as total nuclear reaction cross sections, based
on which radii of the He isotopes (3;4;6;8He) were deduced.
The radii of 6He and 8He were found to increase from 4He
faster than the canonical A1=3 rule, thus providing the first
observational support for the neutron halo picture. This
method has also been used to study other exotic isotopes
including Li, Be, B, and C (Tanihata et al., 1985a, 1988).

A series of experiments was performed at the Bevalac
accelerator facility of the Lawrence Berkeley National
Laboratory. Secondary beams of He isotopes were produced
through projectile fragmentation of an 800 MeV=u 11B pri-
mary beam, separated by a magnetic analyzer, and directed
onto a target made of either Be, C, or Al. The transmission of
the He isotopes through the various targets was measured
using a spectrometer-detector assembly. The interaction cross
section was determined with a relative accuracy of 1%.

The matter radius can be extracted from the interaction
cross section using a semiclassical optical model (Karol,
1975) based on both the free nucleon-nucleon collision cross
section and a model of the spatial distribution of nucleons
inside the nucleus. The top three rows of Table VI list matter
radii extracted from the same set of interaction cross sections
under three different models of the nucleon distribution. The
extracted matter radii of 4He and 8He appear to be insensitive
to the models. On the other hand, the extracted matter radius
of 6He ranges from 2.33 to 2.71 fm, perhaps due to its weak
binding energy and halo nature (Tanihata et al., 1988, 1992;
Al-Khalili, Tostevin, and Thompson, 1996). The measure-
ments do not distinguish between a proton and a neutron.
When it is assumed that a 6He or 8He nucleus is formed by an
undistorted 4He-like core and valence neutrons, both the

TABLE VI. Experimental and theoretical matter radii of 4;6;8He. In the top three rows, the values
were extracted from the same set of interaction cross sections but with nucleon distribution functions
derived from three different limits of the Glauber model. The values in the fourth row were extracted
from elastic scattering data. The ones in the fifth row were derived from the same elastic scattering
data, but with a distribution model that included a long tail of neutrons on the outside. Theoretical
matter radii extracted using Green’s function Monte Carlo (GFMC) and no-core shell model (NCSM)
methods are listed in the last two rows.

Matter radii (fm)
Method 4He 6He 8He Reference

Interaction 1.57(4) 2.48(3) 2.52(3) Tanihata et al. (1988)
Interaction 1.63(3) 2.33(4) 2.49(4) Tanihata et al. (1992)
Interaction 1.58(4) 2.71(4) Al-Khalili, Tostevin,

and Thompson (1996)
Elastic 1.49(3) 2.30(7) 2.45(7) Alkhazov et al. (2002)
Elastic, tail 2.45(10) 2.53(8) Alkhazov et al. (2002)

GFMC, AV18þ IL7 1.435(3) 2.58(7) 2.55(4) This work
NCSM, JISP16 1.45(1) 2.38(7) >2:5 Maris (2013)
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point-proton radius and the point-neutron radius can be
deduced. In the case of 6He, the extracted value of its
point-proton radius ranges from 1.72 to 2.21 fm (Tanihata
et al., 1988, 1992). However, the point-proton radius of 4He
extracted from the precisely measured charge radius using
Eq. (4) is rp ¼ rm ¼ 1:462 fm, which is much smaller than

the Tanihata values, but in good agreement with the analysis
of Alkhazov et al. (2002) (see Table VI).

B. Elastic scattering measurements

At the Schwerionensynchrotron (SIS) heavy-ion synchrotron
of Gesellschaft für Schwerionenforschung (GSI), secondary
beams of 4;6;8He with an energy of approximately 0:7 GeV=u
were produced by fragmentation, isotopically selected by the
fragment separator (FRS), and were then incident upon a
hydrogen-filled target chamber. Differential cross sections for
p-6He and p-8He elastic scattering were measured in inverse
kinematics at small momentum transfers up to 0:05 GeV2,
based on which nuclear radii were extracted with a relative
precision of 3% (Alkhazov et al., 1997, 2002). This versatile
method has also been applied to the exotic Li (Dobrovolsky
et al., 2006) and Be isotopes (Ilieva et al., 2012).

The basic principle of this method is similar to that of eA
collisions: the slope of the differential cross section versus q2

near q2 ¼ 0 is related simply to the matter radius. In practice,
this method, like the interaction cross section one, depends on
nuclear models. For example, it requires detailed knowledge
of the scattering amplitudes of proton-proton collisions,
which are well determined, and proton-neutron collisions,
where data are scarce. Furthermore, due to the short-range
nature of the interaction potential among nucleons, the radii
also depend on the assumed model of the spatial distribution
of nucleons inside the nucleus. Assuming that 6He (or 8He) is
formed by a 4He-like core and a neutron halo, Alkhazov et al.
(2002) showed that the matter radius changes little between a
halo of a Gaussian distribution and a halo of a 1p harmonic
oscillator distribution, even though these two distributions
differ significantly in their values at the origin. The resulting
matter radii are listed in the fourth row of Table VI. Under
these assumptions, the core radii are equivalent to the point-
proton radii and were derived to be 1.88(12) fm for 6He and
1.55(15) fm for 8He. On the other hand, for 6He, a halo
distribution with an assumed long tail causes the matter
radius to shift up by 0.15 fm, or 6% (fifth row of Table VI).

VII. AB INITIO CALCULATIONS OF 4;6;8He RADII

The goal of ab initio calculations of light nuclei is to
understand these systems as collections of nucleons interact-
ing via realistic interactions through solutions of the many-
nucleon Schrödinger equation. In this Colloquium, those
methods that ignore the nucleon structure of the 4He core
or that do not use realistic forces (forces that reproduce
observed two-nucleon scattering data) are not considered.
There are two main challenges in microscopic few- and
many-nucleon calculations: (1) determining the proper
Hamiltonian, and (2) given a Hamiltonian, accurately solving
the Schrödinger equation for A nucleons. The Hamiltonian is
discussed in Sec. VII.A and two ab initio methods are

presented next. Finally, there is a more qualitative discussion
of the nuclear density distributions.

A. The Hamiltonian

QCD has been firmly established as the fundamental the-
ory of the strong interaction. However, at the low-energy
scale comparable to the binding energy of the nucleus, the
theory is nonperturbative and still cannot be used to calculate
the interacting potential between nucleons. Instead, the
Hamiltonian is developed based on effective nuclear potential
models of the form

H ¼ X
i

Ki þ
X
i<j

vij þ
X

i<j<k

Vijk: (13)

Here Ki is the nonrelativistic kinetic energy, taking into
account the mass difference between the neutron and proton,
vij is the nucleon-nucleon (NN) potential, and Vijk is the

three-nucleon NNN potential.
In the 1990s, a number of NN potentials were formu-

lated based on meson-exchange principles. Among them,
Argonne V18 (Wiringa, Stoks, and Schiavilla, 1995)
(AV18) is the most commonly used. A local potential written
in operator format, AV18 contains a complete representation
of the pp, pn, and nn electromagnetic terms, the long-ranged
one-pion exchange terms, and phenomenological shorter-
ranged terms; the strong-interaction terms are expressed
as 18 local spin-isospin operators. The parameters of these
terms are determined by fitting the large body of NN scatter-
ing data.

It has long been known that calculations with just NN
potentials fail to reproduce the binding energies of nuclei;
three-nucleon (NNN) potentials are also required. [The
J-matrix inverse-scattering potentials (JISP) described below
are a special exception.] These arise naturally from an under-
lying meson-exchange picture of the nuclear forces or from
chiral effective field theories. Unfortunately, much NNN
scattering data are well reproduced by calculations using
just NN forces, so the NNN forces have to be determined
from properties of light nuclei. Illinois-7 (Pieper, 2008a)
(IL7) is the latest of the series of the Illinois three-body
potentials (Pieper et al., 2001) that were developed for use
with AV18. It consists of two- and three-pion terms and
simple phenomenological repulsive terms. The two-pion
term contains the well-known Fujita-Miyazawa term (Fujita
and Miyazawa, 1957) present in all realistic NNN potentials.
In it, a pion is exchanged between two nucleons, exciting one
of them to a resonance. The resonance then decays back to a
nucleon by emitting a pion to the third nucleon. This is the
longest-range NNN potential and is attractive in all nuclei
and in nuclear matter.

Nucleon-nucleon scattering determines only the on-shell
properties of the NN potential. This is sufficient to com-
pletely specify the potential if one requires it to be local, as is
the case with AV18. However, many choices of nonlocal
behavior can be made. This freedom has been used to con-
struct NN potentials that give correct binding energies of
nuclei without an additional NNN potential (Shirokov et al.,
2007). Inverse scattering methods are used to construct a
potential with parameters that can be fit to nuclear binding
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energies without changing the fit to NN phase shifts. The
most recent version of these potentials is JISP16, which gives
a good reproduction of energies of light nuclei (Maris, Vary,
and Shirokov, 2009).

More recently, systematic expansions based on chiral ef-
fective field theory (	EFT) have been developed (Epelbaum,
2006; Machleidt and Entem, 2011). An up-to-date review of
this subject, including a discussion of the three-nucleon
potentials, is provided by Epelbaum and Meissner (2012).
The expansion is carried out to the third order: N3LO. As in
AV18, these potentials also contain a large number of
parameters that must be determined by fits to NN scattering
data. Three-nucleon potentials generated systematically for
the 	EFT potentials are now available up to only second
order; these are used with the third-order NN potential. They
contain two parameters that must be determined from fits to
properties of nuclei. We are not aware of calculations of 6;8He
radii using these potentials.

B. Green’s function Monte Carlo

Once the Hamiltonian is given, many-nucleon calculations
can be carried out using the GFMC method. (GFMC is often
referred to as diffusion Monte Carlo in other areas of
physics.) Heuristic introductions to the nuclear variational
Monte Carlo (VMC) and GFMC methods are given in Pieper
and Wiringa (2001) and Pieper (2008b) and detailed de-
scriptions are in Pieper, Wiringa, and Carlson (2004) and
references therein.

For the first step of the calculation, in VMC, the parameters
of a trial wave function �T are varied to minimize the
expectation value of H,

ET ¼ h�TjHj�Ti
h�Tj�Ti 	 E0: (14)

The resulting energy ET is, by the Raleigh-Ritz variational
principle, greater than or equal to the true ground-state energy
for the quantum numbers (J�, Jz, T, and Tz) of �T .

The wave function�T contains one-, two-, and three-body
correlations. The radial parts of these terms can be chosen at
will; they are tabulated on a radial grid as opposed to being
expanded in a basis set. This is important for the weakly
bound helium isotopes; the one-body correlations are bound-
state wave functions that are computed as solutions of the
Woods-Saxon wells and have long tails. The two-body cor-
relations are of the Jastrow form (a product over all nucleon
pairs) containing both central and noncentral operators. The
central part is small at short distances and serves to keep
the nucleon pairs from seeing the strong repulsive core in vij.

The noncentral part contains the important operators of vij, in

particular, the tensor correlation. Finally the three-body cor-
relation also contains important operators from Vijk. Because

of the complicated structure of �T , the 3A-dimensional in-
tegral in h�TjHj�Ti cannot be factorized. It is evaluated by
the Metropolis Monte Carlo method (Metropolis et al.,
1953).

Despite their complexity, the VMC trial wave functions are
not good enough for p-shell nuclei. They contain admixtures
of excited state components in addition to the desired exact
ground-state component �0. To overcome this problem,

GFMC is used to project �0 out of �T by propagating in
imaginary time 
:

�ð
Þ¼exp½�ðH0� ~E0Þ
��T; lim

!1�ð
Þ/�0; (15)

where H0 is an approximation to the desired Hamiltonian H,
and ~E0 is a guess for the exact energy E0. The evaluation of
exp½�ðH0 � ~E0Þ
� is made by a sequence of small steps �

in imaginary time using an approximation to expð�H�
Þ.
Each step involves a full 3A-dimensional integral done by
Monte Carlo. These steps are made until there are only
statistical fluctuations in the energy at each step. They are
then continued until an average over these statistically
fluctuating values has the desired precision.

GFMC calculations using AV18 with the Illinois Vijk are

successful in reproducing the energies of nuclear states for
A � 12 (Pieper, Wiringa, and Carlson, 2004; Pieper, 2005,
2008b). The He isotope energies and corresponding two-
neutron separation energies E2n obtained for AV18þ IL7
are given in Table V. Quantities other than energy may
converge at a much slower pace. This is particularly true
for the radii of weakly bound states. For 8He, and especially
for 6He, there are long-term fluctuations in the radii as GFMC
calculations propagate in imaginary time. These fluctuations
are associated with the small two-neutron separation ener-
gies; according to the calculations, Esep ¼ 0:97 MeV for 6He

and 1.86 MeV for 8He. Figure 9 displays the results of
multiple GFMC calculations with different initial conditions.
Even though GFMC can compute the binding energies pre-
cisely, its relative errors in Esep are significant since, for

6He,

Esep is only 3% of the binding energy. For example, changes

in the starting wave function �T and other aspects of the
GFMC calculations can result in changes of 0.2 MeV in Esep,

or a few percent change in the radius. For these weakly bound
nuclei, more precise values of radii can be obtained by
selecting those calculations that simultaneously yield the
experimentally known Esep value, marked with a star in

Fig. 9, with its associated range interpreted as an uncertainty
of the computed radii. The same procedure is used to get the
matter radii rm (Table VI). The computed point-proton radii
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FIG. 9 (color online). 6He point-proton radius vs two-neutron

separation energy obtained from a number of GFMC calculations

with different initial conditions and three-body potentials.

1394 Z.-T. Lu et al.: Colloquium: Laser probing of neutron-rich . . .

Rev. Mod. Phys., Vol. 85, No. 4, October–December 2013



rp for all three helium isotopes are in excellent agreement

with the experimental values (Fig. 8). The computed matter

radii rm are in reasonable agreement with the results of

nuclear scattering experiments.
Figure 10 presents the point-proton and point-neutron

densities of 4;6;8He extracted from GFMC calculations that

give Esep close to the experimental values. 4He is extremely

compact. Its central density is twice that of nuclear matter,

and it has essentially identical proton and neutron densities.

Figure 10 clearly indicates that 6;8He have large neutron halos
due to the weak binding of the extra neutrons. The neutron

halo of 6He is more diffuse than that of 8He as is expected

from the smaller Esep of
6He.

C. No-core shell model

The ab initio NCSM is another approach for solving the

nuclear many-body problem for light nuclei (Navrátil, Vary,

and Barrett, 2000; Barrett, Navrátil, and Vary, 2013). In the

traditional shell model, only the valence nucleons outside an

inert core are treated. NCSM employs many techniques

developed for the traditional shell model calculations, but

treats all nucleons as active. In NCSM, a nucleus is consid-

ered as a system of A pointlike nonrelativisitic nucleons that

interact via realistic NN and NNN potentials. The operators

and wave functions are expressed in a finite space of a

harmonic oscillator (HO) basis, truncated by a judiciously

chosen maximal HO excitation energy that defines the size of

the model space. In order to account for short-range correla-

tions and to speed up convergence, an effective interaction

potential is constructed from the original potentials by means

of a unitary transformation. The results depend upon both

the frequency ! and number of shells Nmax of the HO basis.

As Nmax is increased, the dependence on ! is reduced and

converged results are obtained. Extrapolation of Nmax to

infinity is sometimes necessary. The HO basis has the wrong

asymptotic behavior for bound-state wave functions. This

can cause particular difficulties for extracting rms radii, as

discussed in Cockrell, Vary, and Maris (2012).
The ground-state properties of 4He, 6He, and 8He were

calculated with NCSM using the JISP16 NN potential (Maris,

2013). The calculations for 6He and 8He were performed in

model spaces up to Nmax ¼ 16 and 14, respectively, for a

wide range of HO frequencies. Figure 11 shows the HO

frequency dependence of the values of the 6He point-proton
and point-neutron radii for different HO Nmax. A general
feature is a decrease of the HO frequency dependence with
increasing Nmax. However, the extrapolation to Nmax ¼ 1 is
still substantial, and only a lower limit can be placed on the
point-neutron radius of 8He. The extrapolated results are
summarized in Tables V and VI and Fig. 8. The 6He values
of E2n ¼ 0:50ð5Þ and rp ¼ 1:85ð5Þ are considerably off the

trend of the GFMC values of Fig. 9.

D. Contributions to the charge radii of 6;8He

The proton distribution in 6;8He is much more spread out
than the density of 4He (see Sec. VII.B), even though 6;8He
have only extra neutrons added to the 4He core. This might be
thought to indicate the so-called ‘‘core swelling’’ effect—the
core of 6;8He is enlarged by the presence of the valence
neutrons. This effect can be studied by computing �pp, the

pair density which is proportional to the probability for
finding two protons a given distance apart (Pieper, 2008a)
(Fig. 12). Unlike the one-body densities, these distributions

FIG. 10 (color online). Point-proton and point-neutron densities

of the even helium isotopes as extracted from GFMC calculations.
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are not sensitive to center-of-mass effects. GFMC calcula-
tions indicate that the pp distribution spreads out only

slightly with neutron number in the helium isotopes, with
an increase of the pair rms radius of approximately 4% in
going from 4He to 6He, and 8% from 4He to 8He. While this
could be interpreted as a swelling of the � core, it might also
be due to charge-exchange correlations induced by terms in
vij which exchange protons and neutrons and, thus, transfer

charge from the core to the valence nucleons. Since these
correlations are rather long range, they can have a significant
effect on the pp distribution. VMC calculations of 4He with
wave functions modified to give �pp distributions close to

those of 6;8He suggest that the � cores of 6;8He are excited by
�80 and �350 keV, respectively, which corresponds to only
a 0.4%–2% admixture of the first 0þ excited state of 4He at

20 MeV. Thus, the observed increase in the rms radius of the
proton density is largely due to the � core of 6;8He being
‘‘pushed around’’ by the neutrons in the so-called recoil
effect.

The correlation of valence neutrons has been studied
within the complex-energy configuration-interaction frame-
work (Hagino and Sagawa, 2005; Kikuchi et al., 2010;
Papadimitriou et al., 2011) (Fig. 13). The density distribution
of the valence neutrons exhibits two maxima: (1) a dineutron

configuration that corresponds to a small opening angle and a
large radial extension, and (2) a cigarlike configuration that
corresponds to a radially localized region with large angles.
They found that the reduction of the charge radius from 6He
to 8He is not due to a more even distribution of valence
neutrons around the core, but rather to the reduction of the
amplitude of the dineutron configuration in the ground-state

wave function, resulting in a smaller core recoil radius.

VIII. THREE-ELECTRON ATOMS: Li AND Beþ

Just as for helium [see Eq. (9)], the precision theory of a
three-electron system, such as a neutral atom of lithium (Li)
or singly charged ion of beryllium (Beþ), requires fully
correlated calculations in Hylleraas coordinates, but involv-
ing now all six interparticle distances r1, r2, r3, r12, r23, and

r31. This makes the calculations much more difficult because

the number of terms in the basis set grows very rapidly with

the highest powers included, and the nine-dimensional inte-

grals are much more difficult to calculate analytically. Recent

advances have now achieved the level of accuracy needed for

both the nonrelativistic energies and the relativistic correc-

tions (Yan and Drake, 2000; Puchalski and Pachucki, 2008;

Yan, Nörtershäuser, and Drake, 2008; Nörtershäuser et al.,

2011b; Krieger et al., 2012). Of particular importance and

difficulty are the three-electron Bethe logarithms needed

to calculate the QED energy shift and its mass dependence

(Yan, Nörtershäuser, and Drake, 2008; Puchalski, Kedziera,

and Pachucki, 2013). As a result, atomic spectroscopic mea-

surements on an isotope of Li or Beþ can be used to deduce

its corresponding nuclear charge radius and nuclear moments

(Table VII). Extensive studies have since been carried out on

the neutron-rich Li and Beþ isotopes, revealing halo and

cluster formation in these nuclei.

A. Laser spectroscopic studies of 6;7;8;9;11Li

Laser spectroscopy has been performed on every lithium

isotope with a bound nucleus; i.e., 6;7;8;9;11Li (Bushaw et al.,

2007; Sánchez et al., 2009; Nörtershäuser et al., 2011a,

2011b). 8Li and 9Li were produced with moderate yields

using a 12C beam of 11:4 MeV=u at GSI (Ewald et al.,

2004), and with high yields using fragmentation in a tantalum

target induced by a 500 MeV proton beam at TRIUMF. In

both cases the reaction products were surface ionized, mass

separated in a sector magnet, and transported to the experi-

mental setup as an ion beam at a beam energy of about

40 keV. The reaction used at TRIUMF provided also the

halo isotope 11Li at a rate of 30 000 s�1 (Sánchez et al.,

2006). This isotope is demanding because of its very short

half-life of only 8.5 ms. Therefore, the spectroscopic tech-

nique had to provide a high efficiency while being fast and

highly accurate. This was achieved combining a Doppler-

free two-photon transition in the atomic system for high-

resolution spectroscopy with an efficient detection by means

of resonance ionization mass spectrometry (Fig. 14).

FIG. 13 (color online). Density distributions of valence neutrons

in 6He for the special case of both neutrons being equally distant

from the 4He core. The densities are shown as a function of the

distance of the neutrons from the core and the angle between them

relative to the 4He core. From Papadimitriou et al., 2011.

TABLE VII. Parameters for the determination of nuclear radii
from the measured isotope shifts in three-electron atomic cases:
lithium atom and beryllium ion [see Eq. (12)]. The field shift
constant K includes a relativistic correction (Puchalski, Moro, and
Pachucki, 2006). A nuclear polarization correction �Epol of 39

(4) kHz is included for 11Li (Puchalski, Moro, and Pachucki, 2006)
and 208(21) kHz for 11Be (Puchalski and Pachucki, 2008). It is
negligible for most other isotopes, but a finite contribution of
<60 kHz is estimated for 12Be (Krieger et al., 2012).

��MS K
Isotopes Transition (MHz) (MHz=fm2)

7Li-6Li 2 2S1=2-3
2S1=2 �11 452:8211ð28Þ 1.572

8Li-6Li 2 2S1=2-3
2S1=2 �20 087:8026ð50Þ 1.572

9Li-6Li 2 2S1=2-3
2S1=2 �26 784:6213ð67Þ 1.572

11Li-6Li 2 2S1=2-3
2S1=2 �36 554:325ð9Þ 1.570

7Be-9Be 2 2S1=2-2
2P1=2 �49 225:779ð38Þ 17.02

10Be-9Be 2 2S1=2-2
2P1=2 17 310.441(12) 17.03

11Be-9Be 2 2S1=2-2
2P1=2 31 560.294(24) 17.02

12Be-9Be 2 2S1=2-2
2P1=2 43 390.168(39) 17.02
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The spectroscopic approach required the short-lived spe-

cies to be prepared as neutral atoms at low energy. Thus, the

lithium ions were stopped in a graphite foil of approximately

300 nm thickness and quickly boiled out as neutral atoms

with little loss by heating the foil to a temperature of 2000 K

with a CO2-laser beam of approximately 4 W. After drifting a

few mm through the entrance hole of a quadrupole mass

filter’s (QMF) ionization region, being at a slightly positive

potential to suppress surface ions, the thermal atoms cross the

superimposed beams of a titanium:sapphire laser at 735 nm

and a dye laser at 610 nm. Doppler-free, two-photon excita-

tion of the 2s-3s transition was induced with the 735-nm

beam. The excited atoms decay into the 2p 2P1=2;3=2 manifold

from which they are resonantly ionized through the 3d
2D3=2;5=2 levels as shown in Fig. 14. The nonlinear two-

photon excitation as well as the nonresonant ionization re-

quires relatively high beam intensities. Therefore, both laser

beams were resonantly enhanced by a factor of 50–100 in a

two-color optical cavity. The ions produced inside the ion-

ization region are extracted with the QMF’s ion optics, mass

filtered, and detected individually by a continuous dynode

electron multiplier. Recording the number of ionized atoms as

a function of the Ti:Sa laser frequency, tuned typically across

a 200–400 MHz region, both hyperfine components of the

2s-3s transition were detected and fitted with an appropriate

line profile. The isotope shifts for this transition, relative to
6Li, were precisely determined. The ac-Stark shift contribu-

tion was considered by extrapolating back to zero laser

intensity and the possibility of isotope-dependent contribu-

tions to this shift was carefully investigated. With reference to

the charge radius of 6Li, a value independently determined by

electron scattering experiments, the nuclear charge radii of all

the other Li isotopes were deduced (Table VIII and Fig. 15).
The results were compared to the predictions of a number

of nuclear structure models (Nörtershäuser et al., 2011a).

Among those, cluster models showed the best agreement with

the experimental charge radii, but the comparison with the

experimentally determined nuclear moments is often not as

convincing (Neugart et al., 2008). While many microscopic

models are able to reproduce the trend of nuclear charge radii
from 6Li to 9Li, they face a tough challenge in the description
of 11Li. Table VIII and Fig. 15 provide the results of the
GFMC calculations of rp with the same AV18þ IL7

Hamiltonian that was also used for the helium isotopes.
At present, these calculations have been done only up to
A ¼ 10. The agreement with experiment is good for 6;7Li,
but then the theoretical values fall too rapidly. It should be
noted that a combination of the nuclear charge radii, matter
radii, and information from Coulomb dissociation provides
in principle sufficient information to separate the contribu-
tions from center-of-mass motion and from intrinsic core
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FIG. 14 (color online). Laser excitation scheme (left) and experi-

mental setup (right) to measure the 2s 2S1=2 ! 3s 2S1=2 electronic

transition in lithium. CDEM, continuous dynode electron multiplier;

QMF, quadrupole mass filter; PZT, piezoelectric transducer.

Adapted from Nörtershäuser et al., 2011b.

TABLE VIII. Half-lives, spin parities, experimental charge radii,
and experimental and GFMC point-proton radii in the Li and Be
isotope chains. Charge radii are based on isotope shift measure-
ments in Li atoms (Nörtershäuser et al., 2011a) and Beþ ions
(Krieger et al., 2012) and are referenced to the values of the stable
6Li and 9Be, respectively, which are independently determined from
electron scattering experiments. The first uncertainty of the charge
radii has been determined from the quoted error of the isotope shift,
whereas the second one includes the uncertainty of the reference
radius. Radii are in fm. The GFMC values (Pastore et al., 2013) are
for the AV18þ IL7 Hamiltonian.

rp
Isotope t1=2 J� rc Expt GFMC

6Li Stable 1þ 2.589(0)(39) 2.45(4) 2.39(1)
7Li Stable 3=2� 2.444(4)(43) 2.31(5) 2.28(1)
8Li 840 ms 2þ 2.339(7)(45) 2.20(5) 2.10(1)
9Li 180 ms 3=2� 2.245(7)(47) 2.11(5) 1.97(1)
11Li 8.5 ms 3=2� 2.482(14)(44) 2.38(5)
7Be 53 d 3=2� 2.646(10)(16) 2.507(17) 2.47(1)
9Be Stable 3=2� 2.519(0)(12) 2.385(13) 2.37(1)
10Be 1.5 Myr 0þ 2.361(9)(17) 2.224(18) 2.19(1)
11Be 14 s 1=2þ 2.466(8)(15) 2.341(16)
12Be 24 ms 0þ 2.503(9)(15) 2.386(16)
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isotopes obtained from isotope shift measurements (Nörtershäuser

et al., 2011a; Krieger et al., 2012). Error bars are based on the

isotope shift uncertainty only. The additional systematic uncertainty
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excitations (Esbensen et al., 2007; Nörtershäuser et al.,
2011a). Unfortunately, the accuracy of the available data
and the remaining model dependence still do not allow for
an unambiguous separation.

The difference between the charge radii of the stable 6Li and
7Li has already been determined for four transitions in two
charge states as summarized in Nörtershäuser et al. (2011b).
While the 1s2s 3S1-1s2p

3P2 transition in Liþ and the 2s-3s
two-photon transition in neutral Li lead to consistent values of
�hr2ci, inconsistent values were reported for the D1 and D2
lines in neutral Li. This inconsistencywas recently resolved by
including the contribution of the quantum interference effects
to the line shapes, particularly of the D2 transition with
unresolved hyperfine structure (Sansonetti et al., 2011).
Taking this into account, the charge radii determined from
different transitions are all in agreement within the reported
uncertainties (Brown et al., 2013). Moreover, the splitting
isotope shift between the D1 and the D2 line is now also in
agreement with the theoretical prediction, corroborating the
internal consistency of the calculations.

B. Laser spectroscopic studies of 7;9;10;11;12Beþ

Laser spectroscopy has been performed on 7;9;10;11;12Beþ
produced by fragmentation in a uranium-carbide target
induced by a 1.4 GeV proton beam at CERN’s Isotope
Separator On-Line Device (ISOLDE) (Nörtershäuser et al.,
2009; Krieger et al., 2012). The most neutron rich among the
bound beryllium isotopes 14Be (half-life ¼ 4:4 ms) remains a
challenge due to its low yield of only a few ions per second at
the Isotope Separator On-Line (ISOL) facilities. Among the
isotopes studied, 12Be had the lowest yield: approximately
8000 12Be nuclei were produced for a proton pulse that hits
the target every 3–4 s. The beryllium ions were transported at
an energy of 40–60 keV through a beam line where
frequency-comb based collinear and anticollinear laser spec-
troscopy was performed on the 2s 2S1=2-2p

2P1=2;3=2 transi-

tions. While collinear laser spectroscopy has been applied for
isotope shift measurements on-line already for about three
decades, it was so far not possible to determine nuclear
charge radii of isotopes lighter than neon. This is caused by
the large uncertainty of the artificial isotope shift induced by
the imprecisely known acceleration potential. The typical
relative accuracy of the high-voltage measurement at the
ISOLDE target and ion source platform is about 10�4. This
corresponds to an uncertainty of about 40 MHz in the isotope
shift between the stable isotopes 9Be and 12Be, a factor of
40 larger than the required accuracy of about 1 MHz. The
lightest short-lived isotope of which the charge radius was
determined before by collinear spectroscopy was 17Ne in
order to study a possible onset of a two-proton halo in this
nucleus (Geithner et al., 2008). To overcome this major
technical difficulty, the absolute frequencies of both the
collinear resonance (fc) and the anticollinear resonance
(fa) were measured using a frequency comb. Therefore,
two frequency-doubled dye lasers at 624 nm (collinear) and
628 nm (anticollinear) were locked to a reference transition in
iodine and directly to the frequency comb, respectively.
Resonance fluorescence was measured as a function of the
acceleration voltage applied to the optical detection region.

In order to suppress the background from scattered laser light
during the measurement of the rarely produced 12Be, the
cleanliness of the beam at mass A ¼ 12 was exploited and
a photon-ion delayed-coincidence technique applied to record
only photons detected while a 12Beþ ion was inside the
optical detection region. From the fitted line centers the
resonance frequencies in the laboratory system fc and fa
were determined and the transition frequency in the rest
frame of the ion was deduced as f0 ¼

ffiffiffiffiffiffiffiffiffiffi
fcfa

p
.

Relative to the charge radius of 9Be, a value independently
determined from electron scattering experiments, the nuclear
charge radii of all the other Be isotopes were deduced
(Table VIII). In addition, the magnetic moments of the
unstable odd-mass nuclei were determined with improved
accuracy. It should be mentioned that the beryllium isotopes
7;9;11Be were also investigated using laser-cooled ions cap-
tured in a linear Paul trap (Takamine et al., 2009). While the
magnetic dipole moment of 7Be was determined with high
accuracy (Okada et al., 2008), no final values have been
reported for the charge radii so far.

The results obtained with the collinear technique are
shown in Fig. 15 and are in good agreement with nuclear
structure calculations using fermionic molecular dynamics
and NCSM. The charge radius decreases monotonically along
the 7Be-9Be-10Be isotope chain, probably due to the cluste-
rization of 7Be into an �þ 3He cluster, whereas 9;10Be are
considered to be �þ �þ n and �þ �þ nþ n systems,
respectively. The charge radius increases monotonically
along 10Be-11Be-12Be. 11Be may be viewed as a two-body
system consisting of a frozen 10Be core and a halo neutron,
approximately 8 fm apart. The charge radius of 12Be provides
important new information to understand its structure. In the
fermionic molecular dynamics model, its large radius is
related to a breakdown of the N ¼ 8 shell closure with 70%
admixture of the ðsdÞ2 state. The GFMC results using
AV18þ IL7 are in excellent agreement with the data.

IX. OUTLOOK

The study of neutron-rich nuclei provides important insight
into the nuclear forces that hold these loosely bound systems
together. Until recently, there was no effective method to
measure the nuclear charge radii for short-lived, light nuclei.
Advances in both atomic structure theory and laser spectros-
copy techniques have now changed this situation, leading to
the precisionmeasurements presented in this Colloquium. The
results serve as a proving ground to improve both the descrip-
tions of the nuclear force and nuclear structure calculations.

There are more challenging cases for nuclear charge
radius measurements that can be addressed by the laser
spectroscopists: 3H (t1=2 ¼ 12 yr), one of the two simplest

three-body systems; 14Be (t1=2 ¼ 4:6 ms), the most neutron-

rich case among the known beryllium isotopes; and 8B
(t1=2 ¼ 770 ms), the lightest isotope believed to exhibit an

extended proton distribution.
For boron and elements of higher Z, the collinear-

anticollinear approach developed for beryllium can in prin-
ciple be used. However, without further advances on the
theoretical side, spectroscopy has to be performed on multi-
ply charged ions, which makes the production of the ion beam
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and finding an appropriate transition difficult. Future advan-

ces on the high-precision variational techniques used in the

atomic structure calculations could extend the results to

include atoms with more than three electrons, so that a wider

range of atomic species and ions can be studied by the isotope

shift method. Moreover, calculations of even higher-order

QED terms could reduce the uncertainty of atomic structure

theory to the point that the nuclear charge radius could be

directly extracted from its effect on the atomic transition

frequency, without the need both for the isotope shift method

and for a reference isotope with a known radius. A solution to

these problems would pave the way to even more profound

advances at the interface between atomic and nuclear physics.
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