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Two anomalously weak transitions within the 2 3S1 � 3 3PJ manifolds in 3He have been identified.

Their transition strengths are measured to be 1000 times weaker than that of the strongest transition in the

same group. This dramatic suppression of transition strengths is due to the dominance of the hyperfine

interaction over the fine-structure interaction. An alternative selection rule based on IS coupling (where

the nuclear spin is first coupled to the total electron spin) is proposed. This provides qualitative

understanding of the transition strengths. It is shown that the small deviations from the IS coupling

model are fully accounted for by an exact diagonalization of the strongly interacting states.
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Persistent efforts in both theory and experiment have
yielded increasingly precise understanding of the helium
atom. Because of its simplicity, the helium atom has been a
proving ground for precision atomic measurements and
calculations of few-body quantum systems. The knowl-
edge gained from this effort is used to test bound-state
quantum electrodynamics [1–3], determine the fine-
structure constant [4,5], and explore exotic nuclear struc-
ture [6–9]. We report results of a combined theoretical and
experimental study on the strengths of 2 3S1 � 3 3PJ tran-
sitions in 3He.

Surprisingly, we observe that the strengths of two ‘‘al-
lowed’’ transitions, 2 3S1; ðF ¼ 3

2Þ � 3 3P1; ðF ¼ 3
2Þ and

2 3S1; ðF ¼ 1
2Þ � 3 3P2; ðF ¼ 3

2Þ, are 1000 times weaker

than that of the strongest transition 23S1;ðF¼ 3
2Þ�

33P2;ðF¼ 5
2Þ. The level scheme showing these transitions

is presented in Fig. 1. This dramatic suppression of tran-
sition strengths is due to a rare atomic phenomenon: within
the 3 3P manifold, the hyperfine interaction is comparable
to or even stronger than the fine-structure interaction.
Consequently the conventional model based on LS cou-
pling is no longer applicable. Rather, we find that an
alternative model where the fine-structure interaction is
treated as a perturbation on states obtained by first coupling
nuclear spin to the total electron spin provides a good
qualitative explanation of the observed suppression. We
refer to this coupling scheme as IS coupling. We start by
discussing the details of the experiment and compare the
data with the predictions from the different coupling
schemes. Finally, we discuss an exact diagonalization
method to account for the small differences between ex-
periment and the IS coupling scheme.

We measure the ratio of transition strengths using a
cross-beam laser induced fluorescence method. A beam
of metastable helium atoms in the 2 3S1 state is prepared in

a liquid-nitrogen cooled rf-driven discharge. A retrore-
flected beam of linearly polarized 389 nm light is incident
perpendicular to the atomic beam. The polarization of the
light is along the direction of the atomic beam. A uniform
external magnetic field of 5 G is applied along the direction
of the laser to provide an axis of quantization. As the
frequency is scanned across different resonances, the
atoms are excited, and fluorescence from the atoms is
detected in the direction normal to the atomic and laser
beams. The metastable atomic beam is collimated using a
collimator, made of a stack of microscope cover slips

FIG. 1. Level scheme of 3He showing the levels investigated,
with the arrows indicating the suppressed transitions observed.
The level positions are drawn to scale within each manifold. The
large hyperfine splitting with respect to the fine-structure split-
ting is evident. With a nuclear spin I ¼ 1=2 for 3He, the levels
are designated by the familiar term symbols, with J ¼ Lþ S,
F ¼ Jþ I on the left. The levels are labeled on the right using
the quantum number K ¼ Iþ S, F ¼ KþL.
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which provides high collimation in the direction along the
laser beam [10]. We are able to obtain Doppler broadened
lines of 20 MHz linewidth. The natural linewidth of the
transitions is 1.6 MHz. Approximately 4 mW of 389 nm
light is obtained by frequency doubling infrared light at
778 nm. The frequency of the 778 nm light is referenced to
a temperature stabilized Fabry-Perot cavity. The power of
the laser and its wavelength are monitored continuously.

The nine E1 allowed transitions are repeatedly probed in
a random order and the spectra are recorded. Each spec-
trum is fitted using a statistically weighted Voigt profile.
The integrated area of the profile divided by the power of
the probing laser beams is taken as a measure of the
transition strength. As the absolute atomic beam flux and
efficiency of detecting the fluorescence photons are not
measured in this experiment, only the ratios of transition
strengths are determined. By defining the strength of the
strongest transition, 2 3S1; ðF ¼ 3

2Þ � 3 3P2; ðF ¼ 5
2Þ, to be

unity, we determine the relative strengths of the other eight
transitions. The results are presented in Fig. 2 and in
Table I.

The intensity of the probing laser beam is varied depend-
ing on the transition under study. For example, when
probing the two highly suppressed transitions, the intensity
of the probe is increased by 2 orders of magnitude. In all
cases, however, the laser intensity is kept well below the
saturation intensity of the particular transition under study.
Indeed, the intensity is chosen so that on average less than

one photon is scattered by each atom as it passes the laser
beams in approximately 2 �s. This is to avoid nonlinear
effects in the measurements due to optical pumping and
mechanical effects of the light on the atomic beam. Such
systematic effects are studied by examining the depen-
dence of transition signal on the laser beam power.
Additional corrections are made and systematic errors
generated due to changing background in the measured
laser power and the anisotropic angular distribution of the
fluorescence emission. The final error estimates are given
in Table I.
The textbook strategy [11] to estimate theoretically the

atomic transition strengths is based on the presumed hier-
archy that hyperfine splittings be small in comparison with
fine-structure splittings. Consequently, approximate eigen-
states of the total Hamiltonian may be constructed by first
coupling L (total orbital angular momentum quantum
number) and S (total electronic spin quantum number) to
form the total electronic angular momentum J; coupling J
and I (nuclear spin quantum number) then gives the total
atomic angular momentum F. Within this LS coupling
model, the total strength for an electric dipole transition
may be evaluated using standard angular momentum alge-
bra [12].
The results of this LS coupling model are compared with

the experimental data in Fig. 2. It is apparent that there is
not even qualitative agreement. The origin of the failure of
the LS coupling model may be understood as follows. In
3He, the hyperfine structure is almost entirely due to the
magnetic dipole interaction of the tightly bound 1s electron
with the nucleus. The fine structure is a consequence of
both one-body spin-orbit coupling of the excited nL elec-
tron and two-body spin-other-orbit and spin-spin interac-
tions of the nL electron with the 1s electron [13]. As n
increases, the fine-structure splittings decrease as n�3. The
hyperfine interaction of the 1s electron, on the other hand,
tends for large n to the constant hyperfine interaction
strength in 3Heþ. Note that the hyperfine splitting in the
ground state of 3Heþ is 8.7 GHz [14], which is comparable
to, or larger than, the level spacings within the 2 3S and
3 3P manifolds (see Fig. 1).
The relative strength of the hyperfine interaction in 3He

has been recognized before [15–21] and has been taken as
an indication that a simple angular momentum coupling
model describing transitions in 3He is not available and
that a numerical diagonalization of an effective
Hamiltonian is necessary. We demonstrate in the following
that although n is quite small in the 3 3P manifold, the
assumption of relatively weak fine-structure interactions
does provide a simple model that allows us to understand
qualitatively the strengths of transitions from 2 3S to 3 3P.
For 3 3P, S is still a good quantum number, since the

separation of this manifold from 3 1P is large (�104 GHz)
in comparison with the hyperfine and fine-structure split-
tings. Therefore, the basic idea underlying what we refer to

FIG. 2. Comparison of relative transition strengths for all E1
allowed transitions between the 2 3S1 and 3 3PJ manifolds. All

values are normalized with respect to the 2 3S1; ðF ¼
3
2Þ � 3 3P2; ðF ¼ 5

2Þ transition.
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as the IS coupling model is that the electrostatic exchange
interaction between the two electrons preserves S, the
hyperfine interaction couples S and I to form a new
intermediate angular momentumK, and F is then obtained
by couplingL andK. In this picture, the 3He eigenstates of
relevance here are not labeled in terms of nLSðJÞI; F, but
in terms of nISðKÞL; F. An immediate consequence of the
fact that the electric dipole operator acts on neither S nor I
is that K must be conserved in an E1 transition; i.e.,

jh�ðn0L0S0IÞ
K0F0 k D̂ k �ðnLSIÞ

KF ij2 vanishes if K differs from K0.
A similar model was used in 1933 for a case in which S is
not conserved [22], but that appears to be the only other
study employing an extreme hyperfine-coupling picture to
develop a basic understanding of transition strengths in-
volving hyperfine multiplets.

As shown in Fig. 2, there is good qualitative agreement
between experiment and the IS coupling model, thus sug-
gesting that already for n ¼ 3, the fine-structure interac-
tions may be considered perturbations to the hyperfine
structure. For instance, within the IS coupling model, the
suppression of the transition from 2 3S1, F ¼ 3

2 (K ¼ 3
2 ) to

3 3P1, F ¼ 3
2 (K ¼ 1

2 ) follows from the K-selection rule in

E1 transitions. On the other hand, according to experiment,
the transition from 2 3S1, F ¼ 3

2 (K ¼ 3
2 ) to 3 3P0, F ¼ 1

2

(K ¼ 1
2 ) is weakly allowed, in slight deviation from the IS

coupling model. We note that the observed suppressions
for certain transitions from 2 3S to 5 3P [19,21] are fully
consistent with the K-selection rule.

In order to characterize the nature of the perturbations to
the IS coupling model for 3He, and account for the slight
deviations, we have performed an exact diagonalization of
the total Hamiltonian H within the manifold of 3 3P and
3 1P states, including both fine and hyperfine structure. The
total Hamiltonian of 3He in the absence of external fields is
of the form

H ¼ HNR þHfs þHhfs; (1)

where HNR is the nonrelativistic Hamiltonian, Hfs repre-
sents the fine-structure interaction for helium as described

by many authors (see Drake [23,24] for a review), and Hhfs

represents the hyperfine structure interaction, see, for ex-
ample, Bethe and Salpeter [13]. In this picture, Hhfs is
treated as a small perturbation relative to the large electro-
static splitting between states with different principal quan-
tum number n, and by exact diagonalization within the
manifold of strongly mixed states with the same n. The
technique is basically the same as that described by Hinds,
Prestage, and Pichanick [25].
Using these methods, a comprehensive investigation of

the fine and hyperfine structure of 3He has recently been
carried out by Morton, Wu, and Drake [2]. All fine-
structure and hyperfine structure parameters required to
diagonalize the complete fine and hyperfine interaction
matrix in the basis set of singlet and triplet states are
accurately calculated by using double basis set variational
wave functions in Hylleraas coordinates as described by
Drake [23,24]. For the 3P state, instead of using directly
the theoretical energies for 3He, we combined the theoreti-
cal isotope shifts for 3He relative to 4He [2] with the best
experimental ionization energies for 4He [2,26]. This gives
higher accuracy due to cancellations of the mass-
independent QED uncertainties in the calculated isotope
shifts.
The final step is to calculate the electric dipole transition

line strengths between the perturbed hyperfine states of
2 3S and 3 3P in terms of standard angular momentum
theory, in which the perturbed hyperfine states are linearly
expanded in terms of unperturbed eigenstates. The expan-
sion coefficients are obtained by the above diagonalization
of the complete matrix. The final results and the compari-
son with experiment are given in Table I. The calculations
show that the mixing between hyperfine states of 3 3P with
different K but the same F of 3He precisely accounts for
the deviations shown in Table I from the IS coupling
model. This mixing is due to the fine-structure interactions.
We find that both the one-body spin-orbit, and the two-
body spin-spin and spin-other-orbit interactions must be
included, in order to accurately reproduce the strengths. In

TABLE I. Relative transition strengths for all E1 allowed transitions between the 2 3S1 and 3 3PJ manifolds. All values are
normalized with respect to the 2 3S1; ðF ¼ 3

2Þ � 3 3P2; ðF ¼ 5
2Þ transition.

Initial (J; F)
2 3SJ

Final (J; F)
3 3PJ

Experiment LS IS Exact

diagonalization

(1, 3=2)

(2, 5=2) 1 1 1 1

(2, 3=2) 0.69(5) 0.11 0.67 0.67

(1, 1=2) 0.26(4) 0.11 0.33 0.24

(1, 3=2) 0.0012(2) 0.55 0 0.0010

(0, 1=2) 0.10(5) 0.22 0 0.093

(1, 1=2)

(2, 3=2) 0.0011(4) 0.55 0 0.0010

(1, 1=2) 0.08(3) 0.22 0 0.093

(1, 3=2) 0.65(4) 0.11 0.67 0.67

(0, 1=2) 0.27(4) 0.11 0.33 0.24
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the case of the 2S state, this hyperfine mixing is also
important for hyperfine structure, as shown by Riis et al.
[27], but its contribution to the transition strength is neg-
ligible in the present work.

In summary, the hyperfine suppression of 2 3S1; ðF ¼ 3
2Þ

to 3 3P1; ðF ¼ 3
2Þ and 2 3S1; ðF ¼ 1

2Þ to 3 3P2; ðF ¼ 3
2Þ radia-

tive transitions in 3He is caused by a selection rule that
emerges in the limit of strong hyperfine mixing between
states with the same F but different J. In this limit, the
radiative transitions are better described by a coupling
scheme in which I and S are coupled to form K, and
then L is coupled to K to form F. In this limit, the
eigenvalue K is approximately preserved as a good quan-
tum number. The small deviations from the IS coupling
scheme are well accounted for by an exact diagonalization
for the intermediate coupling case. However, with increas-
ing n, the IS coupling scheme should rapidly become more
accurate because the fine-structure interactions decrease in
proportion to 1=n3, while the hyperfine interactions tend to
a constant at the series limit. The surprise is that it already
works so well for n ¼ 3.
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