Laser Driven Source of Spin-Polarized Atomic ^{1,2}H

What I learned from Roy, circa 1989 Adiabatic Following

FIG. 2. Rabi diagram for H atoms in a magnetic field.

Poelker et al., PRA 1994

Laser Driven Source of Spin-Polarized Atomic ^{1,2}H

Atom Trap Trace Analysis (ATTA)

C.-Y. Chen et al., Science (1999); Z.-T. Lu et al., Ear. Sci. Rev. (2014)

Charge Radii of Exotic Helium Nuclei

He-6: Wang *et al.*, PRL (2004) He-8: Mueller *et al.*, PRL (2007) Review: Lu *et al.*, RMP (2013)

⁶He Collaboration, 2005, ATLAS Tunnel

Li-Bang Wang, UIUC 2006 DNP thesis prize

Search for the EDM of Radium-225 (with Roy)

Zheng-Tian Lu Physics Division, Argonne National Laboratory Department of Physics, University of Chicago

EDM Searches in Three Sectors

Sector	Exp Limit (e-cm)	Method	Standard Model
Electron	9 x 10 ⁻²⁹	ThO in a beam	10 ⁻³⁸
Neutron	3 x 10 ⁻²⁶	UCN in a bottle	10 ⁻³¹
¹⁹⁹ Hg	3 x 10 ⁻²⁹	Hg atoms in a cell	10 ⁻³³

M. Ramsey-Musolf (2009)

the the mass number of the most stable isstance

For a description of the data visit physics pist dov/data

NIST SD 966 (Sontombor 2003)

EDM of ²²⁵Ra enhanced and more reliably calculated

- Closely spaced parity doublet Haxton & Henley, PRL (1983)
- Large Schiff moment due to octupole deformation Auerbach, Flambaum & Spevak, PRL (1996)
- Relativistic atomic structure (²²⁵Ra / ¹⁹⁹Hg ~ 3) Dzuba, Flambaum, Ginges, Kozlov, PRA (2002)

Schiff _moment =
$$\sum_{i \neq 0} \frac{\langle \psi_0 | \hat{S}_z | \psi_i \rangle \langle \psi_i | \hat{H}_{PT} | \psi_0 \rangle}{E_0 - E_i} + c.c.$$

Enhancement Factor: EDM (²²⁵Ra) / EDM (¹⁹⁹Hg)

	Isoscalar	Isovector
Skyrme SIII	300	4000
Skyrme SkM*	300	2000
Skyrme SLy4	700	8000

Schiff moment of ²²⁵Ra, Dobaczewski, Engel, PRL (2005) Schiff moment of ¹⁹⁹Hg, Dobaczewski, Engel et al., PRC (2010)

"[Nuclear structure] calculations in Ra are almost certainly more reliable than those in Hg." – Engel, Ramsey-Musolf, van Kolck, Prog. Part. Nucl. Phys. (2013)

Radium atoms trapped! 2007

Preparation of Cold Radium Atoms for EDM

2006 – Atomic transitions identified and studied;

N.D. Scielzo et al., PRA Rapid 73, 010501 (2006)

B & E Fields Installed

E = 100 kV/cm

B = 10 mG

Limits and Sensitivities

• Next 5 years: $10^{-26} - 10^{-27}$ e-cm

(Competitive with ¹⁹⁹Hg limit at 3 x 10⁻²⁹ e-cm)

•2020 and beyond: 1 x 10⁻²⁸ e-cm

Blue Upgrade

Scheme

- 1st slowing laser: 483 nm (strong)
- 2nd slowing laser: 714 nm
- 3 repumpers: 1428 nm, 1488 nm, 2.75 mm
- ¹⁷¹Yb as co-magnetometer
 - * 225 Ra and 171 Yb trapped, < 50 mm apart

Benefits

- 100 times more atoms in the trap
- Improved control on systematic uncertainties

Limits and Sensitivities

• Next 5 years: $10^{-26} - 10^{-27}$ e-cm

(Competitive with ¹⁹⁹Hg limit at 3 x 10⁻²⁹ e-cm)

•2020 and beyond: 1 x 10⁻²⁸ e-cm

Blue Upgrade

Scheme

- 1st slowing laser: 483 nm (strong)
- 2nd slowing laser: 714 nm
- 3 repumpers: 1428 nm, 1488 nm, 2.75 mm
- ¹⁷¹Yb as co-magnetometer
 - * 225 Ra and 171 Yb trapped, < 50 mm apart

Benefits

- 100 times more atoms in the trap
- Improved control on systematic uncertainties

Projected

- FRIB (B. Sherrill, MSU)
 - Beam dump recovery with a ²³⁸U beam ^{------ 225}Ra: 6 x 10⁹/s
 - Dedicated running with a ²³²Th beam ²²⁵Ra: 5 x 10¹⁰ /s
- ISOL@FRIB (I.C. Gomes and J. Nolen, Argonne)
 - Protons on thorium target, 1 mA x 1 GeV = 1 MW ²²⁵Ra: 10¹³/s

"Cold" Atom Trappers

ATOM TRAPPERS

We acknowledge support by DOE, Office of Nuclear Physics