

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Nuclear structure functions at x>1: Searching for Super-fast quarks

Inclusive scattering at x>1

- \cdot Quasielastic \rightarrow SRCs
- · DIS \rightarrow pdfs at x>1: mapping out superfast quarks
- JLab6, 12, EIC?

John Arrington, Argonne National Lab, EIC-NUC2010, April 9th, 2010

SRCs in σ_A / σ_D Ratios

 σ_A/σ_D ratios show that heavy nuclei and deuterium have similar high momentum tails in regions where mean field motion is negligible (x>1.5).

SLAC

Fe data from NE3. Deuterium data is interpolated to NE3 kinematics from previous SLAC measurements.

JLab - Hall C

. . . .

Ratios limited by lack of high-x deuterium data. (89-008 was a short run focussed on heavy nuclei).

Argonne

CLAS: 3N-SRCs

- A/³He ratios for x>2 should show similar plateau if 3N-SRCs dominate and have A-independent structure
- CLAS ratios: first such suggestion of 3N-SRCs

 Q^2 low (dominated by $Q^2 < 1.7 \text{ GeV}^2$)

2011: E08-014, dedicated measurements, x>2

DIS at x>1: Superfast quarks, short range structure

- 12 GeV x>1 proposal → DIS-dominated scattering in SRC-dominated kinematics
- Exotic states, where nucleons share momentum (e.g. 6q bag), yield much larger "EMC" effect at x>1

What do we know about superfast quarks?

- 2 results for high x SFQ distributions (CCFR & BCDMS)
 - both fit F₂ to exp(-sx), where s is the "slope" related to the SFQ distribution fall off.
 - CCFR: s=8.3±0.7 (Q²=125 GeV/c²) "very large short range structure"
 - Poor resolution in x
 - BCMDS: s=16.5±0.5 (Q²: 52-200 GeV/c²) *"little short range structure"*
 - Low statistics (only upper limits above x=1.05)
- Plenty of lower Q² data (SLAC, JLab E89-008 (4 GeV))
 - Not in DIS region (but not clear how to define for x>1)
 - Expect large higher twist contributions at large x
 - However, even at very low Q^2 (to about 3 GeV²), the data showed qualitatively scaling vs Nachtmann ξ

E02-019: Hall C at JLab

Scaling of the nuclear structure functions

- Low Q² JLab data (from E89-008, 4 GeV) are consistent with extrapolated structure function from high Q² SLAC data [fixed dln(F₂)/dln(Q²)]
- Above ξ=0.65, there is a large gap between JLab, SLAC data, but there are indications of scaling up to ξ=0.75

Step 1: Apply target mass corrections

• We want $F_2^{(0)}$, the massless limit structure function as well as its Q² dependence

• Need model for $F_2^{(0)}$ to calculate h_2 , g_2

$$r = \sqrt{1 + \frac{4x^2 M^2}{Q^2}} \equiv \sqrt{1 + \frac{Q^2}{\nu^2}}.$$

$$\xi = \frac{2x}{1 + \sqrt{1 + 4x^2 M^2/Q^2}} = \frac{2x}{1 + \sqrt{1 + 4x^2 M^2/Q^2}}.$$

I. Schienbein et al, J.Phys G, 2008

$F_2^{(0)}$ Model for TMCs

- Factorized ξ, Q² dependence
- ~logarithmic Q² dependence (fit to worlds data at several ξ values)
- For each target, interpolate nearby data to Q²=7, fit $F_2^{(0)}(\xi, Q^2=7)$

Model then used to apply TMC, estimate ~2% model-dependence

Final step: fit $exp(-s\xi)$ to F_2^0 and compare to **CCFR** and **BCDMS**

CCFR (Q²=125 GeV²) s=8.3±0.7

BCMDS (Q²: 52-200 GeV²) s=16.5±0.5

Future

- Apparent consistency of 6 GeV measurements and BCDMS support idea that 12 GeV measurement can constrain superfast quarks
 - Comparison of QCD evolution to our fitted Q² dependence will provide more quantitative measure of scaling violations
- (m/M)E®(h)IC limited by cross section
 - For s=1000, L \approx 10³⁴, statistics running out for x \approx 0.85
 - Might be possible to reach interesting x range
 - Need factor of 10, 100, 1000 to reach x ≈ 1.0, 1.15, 1.30
 - Need to evaluate statistics for lower s
 - Can one run below the nominal minimum with reduced luminosity?
 - Not clear just how high in x required to isolate short-range structure that we're intereste in

Scaling of the nuclear structure functions

