An overview of MC Tools at BNL for an EIC

Matt Lamont Brookhaven National Lab

An overview of MC Tools at BNL for an EIC

Matt Lamont Brookhaven National Lab

From the bestselling author of SHORT HISTORY OF TRACTORS IN UKRAINIAN and TWO CARAVANS

Ξ

EIC Task Force at Brookhaven

- Task Force Leaders
 - Elke Aschenauer (Spin); Thomas Ullrich (Heavy Ions)
- Active Task Force Members
 - MACL, Ramiro Debbe, Jamie Dunlop (Heavy Ions)
 - J-H. Lee, Wlodek Guryn (pp2pp Roman Pot expertise)
 - Pavel Nevski (Simulation framework)
- New Post-doc hires
 - Thomas Burton + I other (spin)
 - Tobias Toll (theory) student of Hannes Jung in Hamburg and background with Lund group
- Students from Stony Brook
 - Michael Savastio, Anders Kirleis, Will Foreman and Peter Schnatz
- + large contribution from Collider-Accelerator Department (CAD)
 - Ied by Vadim Ptitsyn, Vladimir Litvinenko + many others

gmc_trans code (spin physics)

- <u>https://wiki.bnl.gov/eic/index.php/Gmc_trans</u>
- gmc_trans: MC generator for SIDIS
 - simulates single hadron production from lepton scattering off a transversely polarised hadron
 - includes the hadron transverse spin (transversity) distribution and transverse-momentum dependent (TMD) distributions, e.g. Sivers function
- Code developed for HERMES (27.57 GeV electron on stationary proton target)
 - Code re-written by Tom Burton for collider kinematics for arbitrary electron/proton energies
 - Code written in Fortran with small amount of "C"
 - "C" used to interface with Gnu Scientific Library's VEGAS integration routine

gmc_trans code (spin physics)

PEPSI - Polarised Electron Proton Scattering Interaction

- MC code for polarised deep inelastic lepto-production via EM interaction based on LEPTO
 - Generates hard γ*-parton scattering according to polarisation dependent cross-section
 - Has inbuilt $\Delta q(x)$ and $\Delta g(x)$ distributions and supports user-implemented distributions

PEPSI - Polarised Electron Proton Scattering Interaction

Al - helicity asymmetries in γ^{\ast} absorption cross-section

PYTHIA MC Generator

- https://wiki.bnl.gov/eic/index.php/PYTHIA
- MC generator for both DIS and diffractive e+p collisions (no rapidity gaps)
 - ➡ Using version 6.4.13 of PYTHIA for e+p collisions
 - e+p collisions not implemented in version 8 (C++)
 - Radiative corrections are included (radgen)
 - Lots of processes can be simulated
 - elastic VMD, diffractive VMD, LO DIS, QCDC, PGF

PYTHIA MC Generator - diagnostic plots

- Analysis of electron scattering angle in PYTHIA
 - higher energy electrons go at smaller angles wrt beam axis
 - harder to detect!!
 - independent of hadron energy

PYTHIA MC Generator - radiative corrections

PYTHIA MC Generator - radiative corrections

with radiative corrections

Radiative corrections (via RADGEN)

- Smear the t calculation at the ρ vertex
- t calculated from the proton vertex is unaffected but harder to measure experimentally
 - need a proton spectrometer

RAPGAP MC Generator

- https://wiki.bnl.gov/eic/index.php/RAPGAP
- MC generator for both DIS and diffractive e+p collisions (with rapidity gaps).
 - ➡ Diffractive collisions described by:
 - 2 gluon exchange (pQCD)
 - SATRAP
 - Saturation model (colour dipole) implemented by Henri Kowalski
 - Radiative corrections are included (utilising HERACLES)
- Need to use Rapgap version 3.2-beta-01 (released Feb 2010)
 - problem with proton kinematics we discovered has been corrected

RAPGAP kinematics: scattered proton (diffractive)

NATIONAL LABORATORY

Phase-space coverage of an e+p/h experiments

- Large coverage in x-Q² phase space
- Results from both collider and fixed-target experiments complement each other
- Onset of saturation possibly observed in collisions at HERA at very low-x
- calculations are difficult at small Q_{s²} (< 2 GeV²)

Phase-space coverage of an e+p/h experiments

- Large coverage in x-Q² phase space
- Results from both collider and fixed-target experiments complement each other
- Onset of saturation possibly observed in collisions at HERA at very low-x
- calculations are difficult at small Q_s² (< 2 GeV²)

Electron Ion Collider:

• $f(EIC) > 100 \times f(HERA)$ • Electrons - $E_e = 3 - 20 \text{ GeV}$ - polarised • Polarised p

How well are gluons understood in nuclei?

The distribution of valence and sea quarks are relatively well known in nuclei - theories agree well

Large discrepancies exist in the gluon distributions from models for mid-rapidity LHC and forward RHIC rapidities !!

xDVMP MC Generator

- A MC generator for exclusive diffractive vector meson production
 - Thomas Ullrich's implementation of the b-Sat/b-CGC model for e+p and e+A
- Exclusive diffractive vector meson production is one of the most promising ways to study saturation in ep/eA
 - → Naive: $\sigma \sim G(x,Q^2)^2$
- Issues:
 - Experimentally difficult
 - ▶ rapidity gap, breakup, ∫Ldt needed ?
 - reconstruction of t
 - detector requirements (resolution, acceptance)
 - sensitivity to physics (saturation)?
 - need to study in ep and eA

Requirements for a new generator

- Simple, i.e. easy to use, manipulate and modify
 - ⇒ single purpose: e p \rightarrow e' p'V
 - write only the necessary core
 - reuse what is available (and accessible)
- Based on a model that is known to describe data well
 - Dipole model (works well at Hera)
- Extendable to eA
 - Dipole model does that
- Modern
 - C++, integrates with ROOT and other tools
- Output should follow standards as much as possible
- Useful for detector/acceptance studies as well as physics studies (e.g., sensitivity to $xG(x,Q^2)$ etc.)

Dipole Model (I)

Cross-section for production of final state VM:

Many dipole models on the market:

- Use : H. Kowalski, L. Motyka, G. Watt, Phys. Rev. D74, 074016
- Describes Hera data well
- has b-dependence
- Michael & TU have experience with it lacksquare
- Henri is around to ask
- can be "easily" modified to do eA (via b-dependence)

photon and VM wave function

Cross-Section

Dipole Model (II) Cross-section for production of final state VM: $\frac{\mathrm{d}\sigma_{T,L}^{\gamma^*p\to Ep}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \mathcal{A}_{T,L}^{\gamma^*p\to Ep} \right|^2 = \frac{1}{16\pi} \left| \int \mathrm{d}^2 \mathbf{r} \int_0^1 \frac{\mathrm{d}z}{4\pi} \int \mathrm{d}^2 \mathbf{t} \left((\Psi_E^* \Psi)_{T,L} \right) \mathrm{e}^{-\mathrm{i}[b-(1-z)\mathbf{r}]\cdot \Delta} (\Phi_E^* \Psi)_{T,L} \mathrm{e}^{-\mathrm{i}[b-(1-z)$

Overlap between photon and VM wave function Dipole Cross-Section

Wave function:

- •Boosted Gaussian
 - Forshaw, Sandapen, Shaw
- •GausLC
 - Dosch, Gousset, Kulzinger, Pirner, Teaney, Kowalski
- •Parameters tuned for HERA are available
- •any improved wave function can be easily plugged in

Dipole Cross-Section:

•b-Sat

- uses DGLAP evolution from initial G (x,Q)
- can be adapted for A (b-dependence)

•b-CGC

•Parameters tuned for HERA are available

Basic scheme behind xdvmpGenerator

NATIONAL LABORATORY

Implementation

- Follow Pythia8 philosophy
 - main program to be provided by user
 - xdvmpGenerator is a class with simple methods
 - init(), generateEvent(), printEventRecord(), ...
 - event record in plain structure (xdvmpEvent)
 - setup through runcard (txt file) or programmatically
 - xdvmpGenerator uses many other classes and functions
 - class xdvmpDipoleModel (dipole model implementation)
 - = alphaStrong.cpp (fcts to calculate α_s adapted from MRST, rewritten in C++)
 - laguerre.c, dglap.c (for DGLAP from F. Gelis)
 - class xdvmpFinalStateGenerator (generate final state particles from x, Q^2 , s, t)
 - class xdvmpSettings (handle parameter & runcard parsing)
 - Total ~ 4200 lines of code only (requires only GSL, ROOT libs)

Dipole Model Test (I)

Dipole Model Test (II)

Q2 = 0.5, 3.2, 7.0, 22.4 GeV2

Dipole Model Test (III)

xDVMP status

xdvmp Documentation

Getting started	xdvmp Basics	API Reference
 Overview Downloading Installing xdvmp 	 Event Generator Example program: xdvmpMain 	 Overview class xdvmpGenerator class xdvmpSettings class xdvmpDipoleModel class xdvmpFinalStateGenerator class xdvmpEvent (Event Record) Runcard Reference
The Physics Behind the Model	What's New?	Troubleshooting
 The Dipole Model Generation of final state particles References & Credits 		 Known problems To-do list

Last Update: April 6, 20

Some final testing required before it is released into the wild

Detector requirements from physics

• e+p physics

- → Need the same detector for inclusive (ep → e'X), semi-inclusive (ep → e'X + hadrons) and exclusive (ep → e'p+ π) reactions
 - Need to have a large acceptance (both mid- and forward-rapidity)
 - Crucial to have particle identification
 - e, π , K, p, n over wide momentum range and scattering angles
 - excellent secondary vertex resolution (charm)
 - small systematic uncertainty for e/p polarisation measurements
 - small systematic uncertainty for luminosity measurements
- e+A physics
 - most requirements similar to e+p guidelines
 - additional complication arises from the need to tag the struck nucleus in exclusive and diffractive reactions
- Also, important to have the same detector for all energies

Latest IR Design for MeRHIC at IP2

- No DX magnet
- No synchrotron shielding included
- Height of beam from floor ~ 6 feet
- Allows p and A decay product tagging

First attempt at detector design

- Dipoles need to have good forward momentum resolution
 - → Solenoid has no magnetic field for $r \rightarrow 0$
- RICH, DIRC for hadron pid
- High threshold Cherenkov → fast trigger for scattered lepton
- Radiation length very critical \rightarrow low lepton energies

MeRHIC Detector in Geant 3

DIRC is present but not seen

due to position of cut

 Note - no hadronic barrel calorimeter due to height restrictions at IP2

MeRHIC detector in Geant 3

MeRHIC detector in Geant 3

B

Staging all-in tunnel eRHIC: energy of electron beam is increasing³⁰

from 5 GeV to 30 GeV by building-up the linacs

CENTER OF RING

Incorporating eSTAR and ePHENIX

- Without changing DX-D0 both the energy and luminosity will be low in electron-hadron collisions
- Parallel operation of hadron-hadron and electron-hadron collisions does not allow cooling of hadron beam, hence 10-fold lower luminosity for e-p and e-A
- Sequential operation of RHIC as a hadron collider and as an electronhadron collider allows to have both full energy and full luminosities in al modes of operation, including coherent electron cooling
- CeC would provide 10-fold increases in e-p amd e-A luminosities and 6fold increase in polarized p-p luminosity
- We have designs of two IR: low-x (L~3·10³³) and high-lumi (L~2·10³⁴)
- We suggest using crossing angle and crab-cavities to have identical energy-independent geometry of IRs and no synchrotron radiation in detectors

STAR: A Correlation Machine

Kinematics at 4+100

4+100 open kinematics: scatters the electron and jet to mid-rapidity Forward region (FMS): Electron either Q² < 1 GeV, or very high x and Q² Jet either very soft or very hard Note: current thinking has hadron in the blue beam: optimized for high x and Q²

Current PHENIX Detector at RHIC

MPC	3.1 < η < 3.9
	2.5° < ⊖ < 5.2°
Muon Arms	1.2 < η < 2.4
South:	12° < 🖂 < 37°
North:	10° < 🖂 < 37°
Central Arms	η < 0.3
	60° < 🖂 < 110°

electrons will not make it to the south muon arm → to much material

Current PHENIX Detector at RHIC

MPC	3.1 < η < 3.9
	2.5° < ⊖ < 5.2°
Muon Arms	1.2 < η < 2.4
South:	12° < 🖂 < 37°
North:	10° < 🖂 < 37°
Central Arms	η < 0.3
	60° < 🖂 < 110°

electrons will not make it to the south muon arm → to much material

What will the current PheniX see

What will the current PheniX see

How should a ePheniX look like

□ Coverage in $|\eta| = < 3 \rightarrow 0.1 < Q^2 < 100 (5^\circ - 175^\circ)$

need an open geometry detector

planes for next decadal plan

E.C. Aschenauer

replace current central detector with a new one covering $|\eta| = < 1$

replace South muon arm by a endcap spectrometer able to do DY

Summary and Outlook

- Lots of MC generators at BNL (anyone can use)
 - spin: gmc_trans, PEPSI; low-x: PYTHIA, RAPGAP; e+p, e+A: xDVMP
- xDVMP is a promising tool to look at exclusive diffractive vector-meson production in a saturated picture
 - currently works for e+p collisions, needs work to implement in e+A collisions
 - relatively straight forward
 - need to develop a more general e+A generator
 - Yasushi Nara just completed 1 month at BNL, Henri Kowalksi currently at BNL for 3 months, Tobias Toll is a new post-doctoral hire about to start
- Work underway in implementing detector designs in GEANT to study with the generated events
 - Looking at the possible use of eSTAR and ePHENIX concepts
 - eSTAR looks promising and the STAR geometry is in the same format as what we are using for our other studies

BACKUP SLIDES

Accelerator

MeRHIC parameters for e-p collisions

© V.Ptitsyn

	not cooled		With cooling	
	р	e	р	e
Energy, GeV	250	4	250	4
Number of bunches	111		111	
Bunch intensity, 10 ¹¹	2.0	0.31	2.0	0.31
Bunch charge/current, nC/mA	32/320	5/ 50	32/320	5/ 50
Normalized emittance, 1e-6 m, 95% for p / rms for e	15	73	1.5	7.3
rms emittance, nm	9.4	9.4	0.94	0.94
beta*, cm	50	50	50	50
rms bunch length, cm	20	0.2	5	0.2
beam-beam for p /disruption for e	1.5e-3	3.1	0.015	7.7
Peak Luminosity, 1e32, cm ⁻² s ⁻¹	0.93		9.3	

Luminosity for light and heavy ions is the same as for e-p if measured per nucleon!

Luminosity in eRHIC

	eRHIC IR1		eRHIC IR2	
	p/A	e	p /A	e
Energy (max), GeV	325/130	20	325/130	20
Number of bunches	166	74 nsec	166	74 nsec
Bunch intensity (u) , 10 ¹¹	2.0	0.24	2.0	0.24
Bunch charge, nC	32	4	32	4
Beam current, mA	420	50	420	50
Normalized emittance, 1e-6 m, 95% for p / rms for e	1.2	25	1.2	25
Polarization, %	70	80	70	80
rms bunch length, cm	4.9	0.2	4.9	0.2
β*, cm	25	25	5	5
Luminosity, cm ⁻² s ⁻¹	2.8x 10 ³³		1.4 × 10 ³⁴	

Luminosity for 30 GeV e-beam operation will be at 20% level

Nuclear "Oomph"

The Nuclear "Oomph Factor"

- Enhancing Saturation effects:
 - Probes interact over distances L ~ (2m_nx)⁻¹
 - For probes where L > 2R_A (~ A^{1/3}) cannot distinguish between nucleons in front or back of the nucleus. Probe acts coherently with all nucleons!!

The Nuclear "Oomph Factor"

- Enhancing Saturation effects:
 - Probes interact over distances L ~ (2m_nx)⁻¹
 - For probes where L > 2R_A (~ A^{1/3}) cannot distinguish between nucleons in front or back of the nucleus. Probe acts coherently with all nucleons!!

Simple geometric considerations lead to:

Nuclear "Oomph" Factor:

$$(Q_s^A)^2 \approx c \, Q_0^2 \left(\frac{A}{x}\right)^{1/3}$$

The Nuclear "Oomph Factor"

- Enhancing Saturation effects:
 - Probes interact over distances L ~ (2m_nx)⁻¹
 - For probes where L > 2R_A (~ A^{1/3}) cannot distinguish between nucleons in front or back of the nucleus. Probe acts coherently with all nucleons!!

Simple geometric considerations lead to:

Nuclear "Oomph" Factor:

$$(Q_s^A)^2 \approx c \, Q_0^2 \left(\frac{A}{x}\right)^{1/3}$$

44

Diffractive

Activity in proton direction

• Diffractive cross-section $\sigma_{diff}/\sigma_{tot}$ in *e*+A? • Predictions: ~25-40%? Activity in proton direction

- Look inside the "Pomeron"
- Diffractive structure functions
- Exclusive Diffractive vector meson production: $d\sigma/dt \sim [xG(x,Q^2)]^2 !!$

- Exclusive Diffractive vector meson production: $d\sigma/dt \sim [xG(x,Q^2)]^2 !!$
- Distinguish between linear evolution and saturation models

- Significant coverage in x-Q²
 - increases by ~ order of magnitude over EIC energies
- Plotted the distribution of the Most Forward Particle in the event for DIS and Diffractive events
 - significant gap between two classes of events
- Reproduce well the "ZEUS" plot
- Important plot the efficiency vs purity
 - Can place a cut in rapidity for ~90% efficiency and ~90% purity !!

Generated 10⁶ e+p events using RAPGAP for a variety of proposed EIC energies

- Significant coverage in x-Q²
 - increases by ~ order of magnitude over EIC energies

Generated 10⁶ e+p events using RAPGAP for a variety of proposed EIC energies

- Significant coverage in x-Q²
 - increases by ~ order of magnitude over EIC energies

Generated 10⁶ e+p events using RAPGAP for a variety of proposed EIC energies

- Significant coverage in x-Q²
 - increases by ~ order of magnitude over EIC energies
- Plotted the distribution of the Most Forward Particle in the event for DIS and Diffractive events
 - significant gap between two classes of events
- Reproduce well the "ZEUS" plot
- Important plot the efficiency vs purity
 - Can place a cut in rapidity for ~90% efficiency and ~90% purity !!

Effic: frac of Diff events out of all Diff events Purity: frac. Diff events out of all events

Effic: frac of Diff events out of all Diff events Purity: frac. Diff events out of all events

- Studied this effect in the MFP distribution for EIC energies:
- Keeping the 90% Purity level has the following effect:
- I unit cut in rapidity
 - Efficiency falls by factor of 2, rapidity moves 2 units to right
- 2 unit cut in rapidity
 - Efficiency falls by a factor of 4, rapidity cut moves farther to right !!
- When designing a detector, it is essential to be as hermetic as possible !!!

Effic: frac of Diff events out of all Diff events Purity: frac. Diff events out of all events

NATIONAL LABORATORY

8

rapidity

NATIONAL LABORATORY

UNU.RAN Package

Universal Non-Uniform RANdom number generators (Math Department University Vienna)

- provides tools to generate pretty much everything
- xdvmpGenerator:
 - Markov chain samplers for continuous multivariate distributions
 - ► HITRO: Hit-and-Run Sampler
- Bare minimum is implemented in Root/MathCore

•lssues:

NATIONAL LABORATORY

Requires uniform limits (domains)

Kinematically not allowed but generated Need to discard after generation (tries > events)

- pdf is max at $|t| = |t|_{min}$, $x=x_{min}$, $Q=Q_{min}$
 - less obvious for b, z, r

Use MINUIT (TMinuit2)

Random Generator

- Big Problem: generate random numbers according to a given distribution (here 6D PDF)
- Techniques (good overview in Pythia6 manual chapter 4):
 - Inverse transform method (invert cumulative PDF)
 - must integrate pdf and invert (note we have a DGLAP evolution in the PDF)
 - Acceptance-rejection method (Von Neumann)
 - good if pdf is too complex
 - rather easy in I-D, nightmare in N-D
 - and many more
 - General recommendation in all text books for N-dim: factorize
 - Problem is we cannot do that since the 6 parameters are heavily intertwined
 - Largest fraction of code in most simulators is spent on this topic

UNURAN to the rescue (<u>http://statmath.wu.ac.at/unuran/</u>)

Example Main Program

#include "xdvmpGenerator.h"

```
int main(int argc, char *argv[])
{
    xdvmpGenerator generator;
    bool ok = generator.init("xdvmpRuncard.txt");
    xdvmpSettings settings = generator.runSettings(); // for convinience
    TFile *hfile = new TFile(settings.rootfile().c_str(),"RECREATE");
    TH1D *histo_r = new TH1D("histo_r", "r distribution", 200, 0., 2.);
```

int nPrint = settings.numberOfEvents()/settings.timesToShow();

unsigned long maxEvents = settings.numberOfEvents();

generator.printEventHeader(cout);

Example Runcard

```
#
   Comments start with a #
#
   Name and value are separated by a "=": name = value
#
#
   The following settings are currently implemented:
   eBeamEnergy: electron beam energy (GeV) (default = 10)
pBeamEnergy: proton beam energy in (GeV) (default = 250)
numberOfEvents: number of events to generate (default = 10000)
#
#
#
#
   vectorMeson: rho | phi | jpsi (default = rho)
#
   waveFunction: GausLC | BoostedGaussian (default = BoostedGaussian)
#
   dipoleModel: bSat | bCGC (default = bCGC)
#
  timesToShow: # of print-outs to tell how far we are (default=0)
  rootfile: name of root file for histos
xmin: min x value (default = 1e-3)
#
                       name of root file for histos etc. (default ="")
#
  xmin:
                       min Q2 value (GeV<sup>2</sup>) (default = 1.)
#
   Q2min:
eBeamEnergy = 10
pBeamEnergy = 250
vectorMeson = rho
dipoleModel = bSat
waveFunction = BoostedGaussian
numberOfEvents = 10000
timesToShow = 10:
rootfile = bla.root
Q2min = 1;
xmin = 1e-3;
```


Example Output (1)

xdvmGenerator## An event generator for exclusive diffractive vector meson# production using the dipole model.## Code compiled on Jan 20 2010

Example Output (2)

Range of kinematic variables (domain) used in generator:t = [-4, 0]Q = [1, 100.004]x = [0.001, 0.99]b = [0, 2]z =[1e-12, 1]r = [0.001, 2]Finding mode of pdf:mode = (t=0, Q=1, x=0.001, b=0.453883, z=0.5, r=0.526119; value of pdf = 107769)Initializing the random generator:Dimensions used: 6pdf in log: noNumber of events to process: 10000xdvmpGenerator is initialized.

For bCGC this takes < 1 s For bSat ~ 1-2 min (due to DGLAP setup)

Example Event Record

xdvmpGen eve	ent file=====			====iEvent,	, t, Q2, x, y	y, b, z, r,		
S=====================================	======================================	======================================	=i, id, px, py, ==processed 0 e	px, E, m, events1	vx, vy, -0.171395	2.03611	0.0025	64752 0.0799258
0 249.998	-10 250	10 0.000510999 0.93827	0	0	0 03	02 11 -	2212 0.00222092	0 0 1.36871
-9.14977 248.818	9.25157 248.82	0.000510999 0.93827	0 O	0 0	04 05	2212 113	0.214882 -0.212661	0.352692 -1.7214
0.33036 -0.171395	1.92867 2.03611	0.776 0.00254752	0 0.0799258	0 _0.5256	637 <u>0====</u>	===== End .380722	Event Record == 0.554715	2
0.000510999		0	=====1 02	2212	0	0 278540	249.998	250
0.000510999	0	0 0 0	03 04 05	2212	0.390437	-0.278549 -0.134496 0.413045	-9.14977 248.769 0.379414	9.25157 248.771 1.97772
0.776	ΘŬ	0	0=========	= End Event	t Record ====	========	0.373414	1.37772

- Note the VM does not decay (GEANT can do this if needed)
 VM have zero width (should probably change that)
 The event record can be directly written into a ROOT Tree or any other format, the print-out shown here is optional
- Time to generate IM events ~ 4 min on Thomas' 3y old MacBook Pro

x-Q² acceptance vs energy

x-Q² acceptance vs energy

56

x-Q² acceptance vs energy

x-Q² acceptance vs energy

x-Q² acceptance vs energy

electron

electron

electron

electron

electron

electron

NATIONAL LABORATORY

 $\frac{d\sigma}{dt}|_{t=0}(\gamma^*A \to VA) \propto \alpha_s^2[G_A(x,Q^2)]^2 \bigotimes_{q \in \mathbb{Z}}^{\infty}$ • Coherent diffraction == low t

- Can measure the nucleus if it is separated from the beam in Si (Roman Pot) "beamline" detectors
 - $\rightarrow pT^{min} \sim pA\theta_{min}$
 - For beam energies = 100 GeV/n and $\theta_{min} = 0.08$ mrad:
- These are large momentum kicks, >> the binding energy (~ 8 MeV)

A)

$$\frac{d\sigma}{dt}|_{t=0}(\gamma^*A \to VA) \propto \alpha_s^2[G_A(x,Q^2)]^2$$

- Coherent diffraction == low t
- Can measure the nucleus if it is separated from the beam in Si (Roman Pot) "beamline" detectors
 - \rightarrow pT^{min} ~ pA θ_{min}
 - For beam energies = 100 GeV/n and θ_{min} = 0.08 mrad:
- These are large momentum kicks, >> the binding energy (~ 8 MeV)

 $\frac{d\sigma}{dt}|_{t=0}(\gamma^*A \to VA) \propto \alpha_s^2[G_A(x,Q^2)]^2$

- Coherent diffraction == low t
- Can measure the nucleus if it is separated from the beam in Si (Roman Pot) "beamline" detectors
 - $\rightarrow pT^{min} \sim pA\theta_{min}$
 - For beam energies = 100 GeV/n and θ_{min} = 0.08 mrad:
- These are large momentum kicks, >> the binding energy (~ 8 MeV)

species (A)	рт ^{min} (GeV/c)
d (2)	0.02
Si (28)	0.22
Cu (63)	0.51
In (115)	0.92
Au (197)	I.58
U (238)	1.9

 $\frac{d\sigma}{dt}|_{t=0}(\gamma^*A \to VA) \propto \alpha_s^2[G_A(x,Q^2)]^2$

- Coherent diffraction == low t
- Can measure the nucleus if it is separated from the beam in Si (Roman Pot) "beamline" detectors
 - \blacktriangleright pT^{min} ~ pA θ min
 - For beam energies = 100 GeV/n and θ_{min} = 0.08 mrad:
- These are large momentum kicks, >> the binding energy (~ 8 MeV)

species (A)	рт ^{min} (GeV/c)
d (2)	0.02
Si (28)	0.22
Cu (63)	0.51
In (115)	0.92
Au (197)	1.58
U (238)	1.9

For large A, nucleus cannot be separated from beam without breaking up

Activity in proton direction

• Diffractive cross-section $\sigma_{diff}/\sigma_{tot}$ in *e*+A? • Predictions: ~25-40%? Activity in proton direction

- Look inside the "Pomeron"
- → Diffractive structure functions
- Exclusive Diffractive vector meson production: $d\sigma/dt \sim [xG(x,Q^2)]^2 !!$

- Exclusive Diffractive vector meson production: $d\sigma/dt \sim [xG(x,Q^2)]^2 !!$
- Distinguish between linear evolution and saturation models

- Significant coverage in x-Q²
 - increases by ~ order of magnitude over EIC energies
- Plotted the distribution of the Most Forward Particle in the event for DIS and Diffractive events
 - significant gap between two classes of events
- Reproduce the "ZEUS" plot?
- Important plot the efficiency vs purity
 - Can place a cut in rapidity for ~90% efficiency and ~90% purity !!

Generated 10⁶ e+p events using RAPGAP for a variety of proposed EIC energies

- Significant coverage in x-Q²
 - increases by ~ order of magnitude over EIC energies

Generated 10⁶ e+p events using RAPGAP for a variety of proposed EIC energies

- Significant coverage in x-Q²
 - increases by ~ order of magnitude over EIC energies

Generated 10⁶ e+p events using RAPGAP for a variety of proposed EIC energies

- Significant coverage in x-Q²
 - increases by ~ order of magnitude over EIC energies
- Plotted the distribution of the Most Forward Particle in the event for DIS and Diffractive events
 - significant gap between two classes of events
- Reproduce the "ZEUS" plot?
- Important plot the efficiency vs purity
 - Can place a cut in rapidity for ~90% efficiency and ~90% purity !!

- Studied this effect in the MFP distribution for EIC energies:
- Keeping the 90% Purity level has the following effect:
- I unit cut in rapidity
 - Efficiency falls by factor of 2, rapidity moves 2 units to right
- 2 unit cut in rapidity
 - Efficiency falls by a factor of 4, rapidity cut moves farther to right !!
- When designing a detector, it is essential to be as hermetic as possible !!!

62

8

rapidity

NATIONAL LABORATORY

Why 2 o'clock and not 12 o'clock?

- Start at 12 o'clock originally:
 - Detector cost savings
 - fully staged detector from MeRHIC to eRHIC
 - vertical stage much bigger
 - need to buy magnets only once
 - can stage detector components (i.e. hadronic calorimeter)
 - no moving of detector

Summary and Outlook

- First steps made on detector design
- Optimisations needed
 - Do we need 4 T for solenoid and 3 Tm for dipole?
 - What radiation length can be tolerated for low energy electron?
 - Optimise the distance from solenoid to dipole
 - What is the impact of the beam lines through the detector on the physics?
 - Need to optimise acceptance at low scattering angle
 - Need acceptance down to I degree
- Need to add Roman Pots into detector configuration
- Need to include luminosity monitor and lepton polarimeter in IR design

Photon Flux

where

Dipole models provide $\sigma_{L,T}$ ($\gamma * p \rightarrow p' V$)

For generator we need to consider σ (e p $\rightarrow \epsilon' p' V$) Need Photon Flux Γ_T , Γ_L

 $\sigma^{e \ p \rightarrow \epsilon' \ p' \ V} = \Gamma_{I} \quad \sigma_{I} \gamma^{* \ p \rightarrow p' \ V} + \Gamma_{T} \quad \sigma_{T} \gamma^{* \ p \rightarrow p' \ V}$

The full formula is rather complex What is used is a simplification (not always justified): For $Q^2/(4E^2) = 0$ and $Q^2/v^2 = 0$, $m_e = 0$

Pick 2 independent variables best for MC: x, Q²

$$\frac{d^2\sigma}{dxdQ^2} = \frac{\alpha}{2\pi} \frac{1}{xQ^2} \left(\left[1 + (1-y)^2 - 2(1-y) \frac{Q_{min}^2}{Q^2} \right] \sigma_T + 2(1-y)\sigma_L \right)$$

where $Q_{min}^2 = \frac{m_e^2 y^2}{1-y}$ Jacobian!

Jacobian!

Full Shebang ...

Dipole model calculations + flux give:

 $d^6\sigma$

 $dx \ dQ^2 \ dt \ db \ dz \ dr$

6-dim Probability Distribution Function (PDF)
all variables independent

Given (input): beam energies **p**_e, **p**_p

Final State Particles

Given: \mathbf{p}_e , \mathbf{p}_p , s, t, x, Q², y

Need: $\mathbf{p}_{e'}$, $\mathbf{p}_{p'}$, \mathbf{p}_{γ^*} , \mathbf{p}_{VM}

Hannes Jung (DESY) gave me analytic solutions for all. After many checks: $\mathbf{p}_{e'}$, \mathbf{p}_{γ^*} formulas are correct!

p_{p'} is not correct (possible source of problems in RAPGAP?)

New Ansatz:

• t = (**p**-**p**')²,
$$m_{VM}^2 = (\mathbf{p}_{\gamma^*} + \mathbf{p}_p - \mathbf{p}_{p'})^2$$
, $|\mathbf{p}_{p'}| = m_p$

• allows to derive \mathbf{p}_p numerically (root finder)

use Hanne's analytic formula as first guess

fails at times since first guess is off by several GeV

• p_{VM} trough $p_e + p_p = p_{e'} + p_{p'} + p_{VM}$

solution obtained this way is fully consistent

▶ $p_{e'}$, $p_{p'}$, p_{γ^*} , $p_{VM} \implies s$, t, x, Q², y

Kinematic Boundaries

Tricky since some formulas neglect masses others not (something to still work on)

$$s = \frac{Q^2}{xy} + m_p^2 + m_e^2$$

not just
$$Q^2 = s x y$$

Currently implemented (but not sufficient):