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EIC Task Force at Brookhaven
• Task Force Leaders

➡ Elke Aschenauer (Spin); Thomas Ullrich (Heavy Ions)

• Active Task Force Members

➡ MACL, Ramiro Debbe, Jamie Dunlop (Heavy Ions)

➡ J-H. Lee, Wlodek Guryn (pp2pp - Roman Pot expertise)

➡ Pavel Nevski (Simulation framework)

• New Post-doc hires

➡ Thomas Burton + 1 other (spin)

➡ Tobias Toll (theory) - student of Hannes Jung in Hamburg and background with Lund 
group

• Students from Stony Brook

➡ Michael Savastio, Anders Kirleis, Will Foreman and Peter Schnatz

• + large contribution from Collider-Accelerator Department (CAD) 

➡ led by Vadim Ptitsyn, Vladimir Litvinenko + many others
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gmc_trans code (spin physics)
• https://wiki.bnl.gov/eic/index.php/Gmc_trans

• gmc_trans: MC generator for SIDIS

➡ simulates single hadron production from lepton scattering off a transversely 
polarised hadron

➡ includes the hadron transverse spin (transversity) distribution and 
transverse-momentum dependent (TMD) distributions, e.g. Sivers function

• Code developed for HERMES (27.57 GeV electron on stationary proton 
target)

➡ Code re-written by Tom Burton for collider kinematics for arbitrary 
electron/proton energies

➡ Code written in Fortran with small amount of “C”

‣ “C” used to interface with Gnu Scientific Library’s VEGAS integration 
routine

https://wiki.bnl.gov/eic/index.php/Gmc_trans
https://wiki.bnl.gov/eic/index.php/Gmc_trans
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gmc_trans code (spin physics)
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PEPSI - Polarised Electron Proton Scattering Interaction

•MC code for polarised deep inelastic lepto-production 
via EM interaction based on LEPTO  

➡Generates hard γ*-parton scattering according to 
polarisation dependent cross-section

➡Has inbuilt Δq(x) and Δg(x) distributions and supports 
user-implemented distributions
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PEPSI - Polarised Electron Proton Scattering Interaction

A1 - helicity asymmetries in γ* absorption cross-section
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PYTHIA MC Generator

• https://wiki.bnl.gov/eic/index.php/PYTHIA

• MC generator for both DIS and diffractive e+p 
collisions (no rapidity gaps)

➡ Using version 6.4.13 of PYTHIA for e+p collisions

‣ e+p collisions not implemented in version 8 (C++) 

➡ Radiative corrections are included (radgen)

➡ Lots of processes can be simulated

‣ elastic VMD, diffractive VMD, LO DIS, QCDC, PGF ….
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PYTHIA MC Generator - diagnostic plots

• Analysis of electron scattering angle in PYTHIA 

➡ higher energy electrons go at smaller angles wrt beam axis

‣ harder to detect!!

‣ independent of hadron energy

Ee = 4 GeV Ee = 10 GeV Ee = 20 GeV
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PYTHIA MC Generator - radiative corrections
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PYTHIA MC Generator - radiative corrections

• Radiative corrections (via RADGEN)
➡ Smear the t calculation at the ρ vertex

➡ t calculated from the proton vertex is unaffected but harder to measure 
experimentally

‣ need a proton spectrometer

with radiative corrections

Smearing
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RAPGAP MC Generator
• https://wiki.bnl.gov/eic/index.php/RAPGAP

• MC generator for both DIS and diffractive e+p collisions (with 
rapidity gaps).

➡ Diffractive collisions described by:

‣ 2 gluon exchange (pQCD)

‣ SATRAP

- Saturation model (colour dipole) implemented by Henri Kowalski

➡ Radiative corrections are included (utilising HERACLES)

• Need to use Rapgap version 3.2-beta-01 (released Feb 2010)

➡ problem with proton kinematics we discovered has been 
corrected

https://wiki.bnl.gov/eic/index.php/Gmc_trans
https://wiki.bnl.gov/eic/index.php/Gmc_trans
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RAPGAP kinematics: scattered proton (diffractive)

4x50 4x100

4x250 10x250
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Phase-space coverage of an e+p/h experiments

• Onset of saturation possibly 
observed in collisions at 
HERA at very low-x

• calculations are difficult at small 
Qs2 (< 2 GeV2) 

LHeC e+Pb
70 GeV + 5.5TeV/n

• Large coverage in x-Q2 phase 
space

• Results from both collider and 
fixed-target experiments 
complement each other
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Phase-space coverage of an e+p/h experiments

• Onset of saturation possibly 
observed in collisions at 
HERA at very low-x

• calculations are difficult at small 
Qs2 (< 2 GeV2) 

Electron Ion Collider:
•L(EIC) > 100 × L(HERA)•Electrons-Ee = 3 - 20 GeV-polarised•Polarised p

LHeC e+Pb
70 GeV + 5.5TeV/n

• Large coverage in x-Q2 phase 
space

• Results from both collider and 
fixed-target experiments 
complement each other
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Eskola, Paukkonen, Salgado: arXiv0902.4154
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The distribution of valence and sea quarks are relatively well 
known in nuclei - theories agree well

Large discrepancies exist in the gluon distributions from 
models for mid-rapidity LHC and forward RHIC rapidities !!

How well are gluons understood in nuclei?
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xDVMP MC Generator
• A MC generator for exclusive diffractive vector meson production

➡ Thomas Ullrich’s implementation of the b-Sat/b-CGC model for e+p and e+A 

• Exclusive diffractive vector meson production is one of the most promising 
ways to study saturation in ep/eA

➡ Naive:   σ ~ G(x,Q2)2

• Issues:

➡  Experimentally difficult 

‣ rapidity gap, breakup, ∫Ldt needed ?

‣ reconstruction of t

‣ detector requirements (resolution, acceptance)

‣ sensitivity to physics (saturation)?

‣ need to study in ep and eA
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Requirements for a new generator
• Simple, i.e. easy to use, manipulate and modify

➡ single purpose: e p → e’ p’ V

➡ write only the necessary core

➡ reuse what is available (and accessible)

• Based on a model that is known to describe data well

➡ Dipole model (works well at Hera)

• Extendable to eA

➡ Dipole model does that

• Modern

➡ C++, integrates with ROOT and other tools

• Output should follow standards as much as possible

• Useful for detector/acceptance studies as well as physics studies (e.g., 
sensitivity to xG(x,Q2) etc. )
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Dipole Model (I)

Many dipole models on the market:

• Use : H. Kowalski, L. Motyka, G. Watt, Phys. Rev. D74, 
074016

• Describes Hera data well

• has b-dependence

• Michael & TU have experience with it

• Henri is around to ask

• can be “easily” modified to do eA (via b-
dependence)

Cross-section for production of final state VM:

Amplitude Overlap between
photon and VM 
wave function

Dipole
Cross-Section

http://arxiv.org/find/hep-ph/1/au:+Kowalski_H/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Kowalski_H/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Motyka_L/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Motyka_L/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Watt_G/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Watt_G/0/1/0/all/0/1
http://dx.doi.org/10.1103/PhysRevD%252E74%252E074016
http://dx.doi.org/10.1103/PhysRevD%252E74%252E074016
http://dx.doi.org/10.1103/PhysRevD%252E74%252E074016
http://dx.doi.org/10.1103/PhysRevD%252E74%252E074016
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Dipole Model (II)
Cross-section for production of final state VM:

Overlap between
photon and VM 
wave function

Dipole
Cross-Section

Wave function:
•Boosted Gaussian
➡ Forshaw, Sandapen, Shaw

•GausLC
➡ Dosch, Gousset, Kulzinger, Pirner, 

Teaney, Kowalski

•Parameters tuned for HERA are 
available
•any improved wave function can 
be easily plugged in

Dipole Cross-Section:
•b-Sat
➡ uses DGLAP evolution from initial G

(x,Q)
➡ can be adapted for A (b-dependence)

•b-CGC
•Parameters tuned for HERA are 
available



18

Basic scheme behind xdvmpGenerator

Dipole Model

Beam 4-momenta

Dipole Model 
Parameter

Use
r

PDF

Kinemati
c

Limits

Random
Generator

W,Q,t,z,b,rFinal State 
Generator

Final State
Particle
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Implementation
• Follow Pythia8 philosophy

➡ main program to be provided by user

➡ xdvmpGenerator is a class with simple methods

‣ init(), generateEvent(), printEventRecord(), ...

‣ event record in plain structure (xdvmpEvent)

‣ setup through runcard (txt file) or programmatically

➡ xdvmpGenerator uses many other classes and functions

‣ class xdvmpDipoleModel (dipole model implementation)

- alphaStrong.cpp  (fcts to calculate αs - adapted from MRST, rewritten in C++)

- laguerre.c,  dglap.c  (for DGLAP from F. Gelis)

‣ class xdvmpFinalStateGenerator (generate final state particles from x, Q2, s, t)

‣ class xdvmpSettings (handle parameter & runcard parsing)

➡ Total ~ 4200 lines of code only (requires only GSL, ROOT libs)
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Dipole Model Test (I) 

W = 90 GeV
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Dipole Model Test (II) 

Q2 = 0.5, 3.2, 7.0, 22.4 GeV2
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Dipole Model Test (III) 
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xDVMP status

Some final testing required before it is released into the 
wild ….



4 GeV e 
x 250 GeV p or 
100 GeV/u Au

  

120m SRF linac
3 passes, 1.3 GeV/pass

STAR

PHENIX

3 pass 
4 GeV ERL

Polarized 
e-gun

Beam
dump

M/eRHIC
detector

MeRHIC MeRHIC at BNL
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Detector requirements from physics
• e+p physics

➡ Need the same detector for inclusive (ep ➞ e’X), semi-inclusive (ep ➞ 
e’X + hadrons) and exclusive (ep ➞ e’p+π) reactions

‣ Need to have a large acceptance (both mid- and forward-rapidity) 

‣ Crucial to have particle identification

- e, π, Κ, p, n over wide momentum range and scattering angles

- excellent secondary vertex resolution (charm)

‣ small systematic uncertainty for e/p polarisation measurements

‣ small systematic uncertainty for luminosity measurements

• e+A physics
➡ most requirements similar to e+p guidelines

➡ additional complication arises from the need to tag the struck nucleus in 
exclusive and diffractive reactions

• Also, important to have the same detector for all energies
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Latest IR Design for MeRHIC at IP2
• No DX magnet

• No synchrotron shielding included

• Height of beam from floor ~ 6 feet

• Allows p and A decay product tagging
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First attempt at detector design

• Dipoles need to have good forward momentum resolution
➡ Solenoid has no magnetic field for r ➞ 0

• RICH, DIRC for hadron pid

• High threshold Cherenkov ➞ fast trigger for scattered lepton

• Radiation length very critical ➞ low lepton energies
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MeRHIC Detector in Geant 3

•Note - no hadronic barrel calorimeter due to height 
restrictions at IP2

Drift Chambers 
central 
tracking
ala BaBar
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MeRHIC detector in Geant 3
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MeRHIC detector in Geant 3
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eSTAR

ePHENIX

Staging all-in tunnel eRHIC:   energy of electron beam is increasing 
from 5 GeV to 30 GeV by building-up the linacs

2 SRF linac
1 -> 5 GeV per pass
4 (6) passes

4 to 6  vertically 
separated
recirculating passes.
# of passes will be 
chosen
to optimize eRHIC 
cost 

Coherent 

e-cooler

5 mm

5 mm

5 mm

5 mm

20 GeV 
e-beam

16 GeV 
e-beam

12 GeV 
e-beam

8 GeV 
e-beamCo

m
m

on
 v

ac
uu

m
 c

ha
m

be
r

Gap 5 mm total
0.3 T for 30 GeV 

eRHIC detector

inj
ec

to
r

RHIC: 325 GeV p 
or 130 GeV/u Au

The most
cost effective 

design
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ARC

1.27 m beam high

30 GeV e+ ring

30 GeV ERL      6 passes

HE ERL passes

LE ERL passes

30 GeV 
25 GeV
20 GeV

15 GeV 
10 GeV
  5 GeV
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Incorporating eSTAR and ePHENIX

• Without changing DX-D0 both the energy and luminosity will be low in 
electron-hadron collisions 

• Parallel operation of hadron-hadron and electron-hadron collisions does 
not allow cooling of hadron beam, hence 10-fold lower luminosity for e-p 
and e-A

• Sequential operation of RHIC as a hadron collider and as an electron-
hadron collider allows to have both full energy and full luminosities in al 
modes of operation, including coherent electron cooling

• CeC would provide 10-fold increases in e-p amd e-A luminosities and 6-
fold increase in polarized p-p luminosity

• We have designs of two IR: low-x (L~3.1033) and high-lumi (L~2.1034)

• We suggest using crossing angle and crab-cavities to have identical 
energy-independent geometry of IRs and no synchrotron radiation in 
detectors 
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Heavy Flavor 
Tracker (2013)

Tracking: TPC

Forward Gem 
Tracker
(2011)

Electromagnetic 
Calorimetry:

BEMC+EEMC+FMS
(-1 ≤ η ≤ 4)

Particle ID: TOF

Full azimuthal particle identification 
over a broad range in pseudorapidity

STAR: A Correlation Machine

Upgrades:
Muon Tracking 
Detector 
HLT

33
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Kinematics at 4+100
Scattered electron Scattered jet

4+100 open kinematics: scatters the electron and jet to mid-rapidity
Forward region (FMS): Electron either Q2 < 1 GeV, or very high x and Q2

     Jet either very soft or very hard
Note: current thinking has hadron in the blue beam: optimized for high x and Q2 



35E.C. Aschenauer             PheniX & STAR meet EIC

Current PHENIX Detector at RHIC
MPC             3.1 < | η | < 3.9
                   2.5o < Θ  < 5.2o                   
Muon Arms     1.2 < | η | < 2.4
      South:      12o < Θ  < 37o

         North:      10o < Θ  < 37o

Central Arms          | η | < 0.35
                    60o < Θ  < 110o                   

e-

electrons will not make it 
to the south muon arm
 to much material
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What will the current PheniX see
4x

10
0

pe: 0-1 GeV pe: 1-2 GeV pe: 2-3 GeV pe: 3-4 GeV

4x100 4x100



36E.C. Aschenauer             PheniX & STAR meet EIC

What will the current PheniX see
4x

10
0

pe: 0-1 GeV pe: 1-2 GeV pe: 2-3 GeV pe: 3-4 GeV

4x100 4x100

Current PheniX detector 
not really useable for

 DIS
acceptance not matched to DIS kinematics



37E.C. Aschenauer             PheniX & STAR meet EIC

HC
AL

EMCA
L

Preshower

How should a ePheniX look like
Coverage in |η| =< 3  0.1 < Q2 < 100 (5o – 175o)

need an open geometry detector
planes for next decadal plan
replace current central detector with a new one covering |η| =< 1
replace South muon arm by a endcap spectrometer able to do DY 
   at |η| > 2.5, preferable 3 < |η| < 4

40cm

2T SolenoidEMCAL
HCAL

IP

Silicon Tracker
VTX + 1 layer

Silicon Tracker
FVTX

1.2 < η < 2.7
  8o < θ  < 37o

North Muon Arm

at least 1.5m

could be ILC-type HCAL 
with µ-ID

might need a RICH
for HI physics or PID

5o @ 2m 
17.4 cm δy	  
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Summary and Outlook
• Lots of MC generators at BNL (anyone can use)

➡ spin: gmc_trans, PEPSI; low-x: PYTHIA, RAPGAP; e+p, e+A: xDVMP

• xDVMP is a promising tool to look at exclusive diffractive vector-meson 
production in a saturated picture

➡ currently works for e+p collisions, needs work to implement in e+A collisions

‣ relatively straight forward

➡ need to develop a more general e+A generator

‣ Yasushi Nara just completed 1 month at BNL, Henri Kowalksi currently at BNL for 
3 months, Tobias Toll is a new post-doctoral hire about to start

• Work underway in implementing detector designs in GEANT to study with the 
generated events

➡ Looking at the possible use of eSTAR and ePHENIX concepts

‣ eSTAR looks promising and the STAR geometry is in the same format as what we 
are using for our other studies
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BACKUP SLIDES
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Accelerator
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MeRHIC parameters for e-p collisions

not coolednot cooled With coolingWith cooling

p e p e

Energy, GeV 250 4 250 4

Number of bunches 111 111

Bunch intensity, 1011 2.0 0.31 2.0 0.31

Bunch charge/current, nC/mA 32/320 5/50 32/320 5/50
Normalized emittance, 1e-6 m, 95% for p / 
rms for e

15 73 1.5 7.3

rms emittance, nm 9.4 9.4 0.94 0.94

beta*, cm 50 50 50 50

rms bunch length, cm 20 0.2 5 0.2

beam-beam for p /disruption for e 1.5e-3 3.1 0.015 7.7

Peak Luminosity, 1e32,      cm-2s-1 0.930.93 9.39.3

41

© V.Ptitsyn

Luminosity for light and heavy ions
is the same as for e-p if measured per nucleon!



eRHIC IR1eRHIC IR1

p /A e

Energy (max), GeV 325/130 20

Number of bunches 166 74 nsec

Bunch intensity (u) , 1011 2.0 0.24

Bunch charge, nC 32 4

Beam current, mA 420 50

Normalized emittance, 1e-6 m, 95% 
for p / rms for e

1.2 25

Polarization, % 70 80

rms bunch length, cm 4.9 0.2

β*, cm 25 25

Luminosity, cm-2s-1 2.8x 1033 
 

2.8x 1033 
 

Luminosity for 30 GeV e-beam operation will be at 20% level

eRHIC IR2eRHIC IR2

p /A e

325/130 20

166 74 nsec

2.0 0.24

32 4

420 50

1.2 25

70 80

4.9 0.2

5 5

1.4 x 1034  1.4 x 1034  

Luminosity in eRHIC
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Nuclear “Oomph”
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The Nuclear “Oomph Factor”
• Enhancing Saturation effects:

‣ Probes interact over distances L ~ (2mnx)-1

‣ For probes where L > 2RA (~ A1/3), cannot distinguish 
between nucleons in front or back of the nucleus.  
Probe acts coherently with all nucleons!!
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‣ Probes interact over distances L ~ (2mnx)-1
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Simple geometric 
considerations lead to:

Nuclear “Oomph” Factor:
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Diffractive
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Diffractive Physics in e+A
‘Standard DIS event’

Activity  in proton direction
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Diffractive Physics in e+A
Diffractive event

Activity  in proton direction• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?
➡Predictions: ~25-40%?      
• Look inside the “Pomeron”
➡Diffractive structure functions
➡Exclusive Diffractive vector meson production: dσ/dt ~ [xG(x,Q2)]2 !!

?
momentum transfer:

t = (P-P’)2P’
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Diffractive Physics in e+A
Diffractive event

• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?
➡Predictions: ~25-40%?      
• Look inside the “Pomeron”
➡Diffractive structure functions
➡Exclusive Diffractive vector meson production: dσ/dt ~ [xG(x,Q2)]2 !!

?

• Distinguish between linear evolution and saturation models

Curves: Kugeratski, Goncalves, 
Navarra, EPJ C46, 413

momentum transfer:
t = (P-P’)2P’

`

xIP = mom. fraction of 
pomeron w.r.t. hadron
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Diffractive Physics in e+A
Diffractive event

• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?
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?
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Diffractive Physics at an EIC
Generated 106 e+p events using RAPGAP 

for a variety of proposed EIC energies
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Diffractive Physics at an EIC
Generated 106 e+p events using RAPGAP 

for a variety of proposed EIC energies

• Significant coverage in x-Q2 

➡ increases by ~ order of 
magnitude over EIC energies

• Plotted the distribution of the 
Most Forward Particle in the event 
for DIS and Diffractive events

➡ significant gap between two 
classes of events

• Reproduce well the “ZEUS” plot

• Important - plot the efficiency vs 
purity 

➡Can place a cut in rapidity 
for ~90% efficiency and 
~90% purity !!
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Diffractive Physics at an EIC
• Significant coverage in x-Q2 

➡ increases by ~ order of 
magnitude over EIC energies

• Plotted the distribution of the 
Most Forward Particle in the event 
for DIS and Diffractive events

➡ significant gap between two 
classes of events

• Reproduce well the “ZEUS” plot

• Important - plot the efficiency vs 
purity 

➡Can place a cut in rapidity 
for ~90% efficiency and 
~90% purity !!

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events
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Diffractive Physics at an EIC - Acceptance

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events



48

Diffractive Physics at an EIC - Acceptance
• ZEUS had a gap in detector 

coverage (acceptance) of ~ 3 units.

• Studied this effect in the MFP 
distribution for EIC energies:

• Keeping the 90% Purity level has the 
following effect:

• 1 unit cut in rapidity

➡ Efficiency falls by factor of 2, rapidity 
moves 2 units to right

• 2 unit cut in rapidity

➡ Efficiency falls by a factor of 4, 
rapidity cut moves farther to right !!

• When designing a detector, it is essential 
to be as hermetic as possible !!!

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events
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UNU.RAN Package
Universal Non-Uniform RANdom number generators 
(Math Department University Vienna)

➡ provides tools to generate pretty much everything

➡ xdvmpGenerator:

‣ Markov chain samplers for continuous multivariate distributions

‣ HITRO: Hit-and-Run Sampler

➡ Bare minimum is implemented in Root/MathCore

•Issues:

Requires uniform limits (domains)

Kinematically allowed

Kinematically not allowed but generated
Need to discard after generation (tries > events)

Requires to pass mode of pdf 
to UNURAN

• pdf is max at |t| = |t|min, x=xmin, 
Q=Qmin

• less obvious for b, z, r

Use MINUIT (TMinuit2)
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Random Generator
• Big Problem: generate random numbers according to a given 

distribution (here 6D PDF)

• Techniques (good overview in Pythia6 manual chapter 4):
➡ Inverse transform method (invert cumulative PDF) 

‣ must integrate pdf and invert (note we have a DGLAP evolution in the PDF) 

➡ Acceptance-rejection method (Von Neumann)

‣ good if pdf is too complex

‣ rather easy in 1-D, nightmare in N-D

➡ and many more

➡ General recommendation in all text books for N-dim: factorize

‣ Problem is we cannot do that since the 6 parameters are heavily intertwined

➡ Largest fraction of code in most simulators is spent on this topic

UNURAN to the rescue (http://statmath.wu.ac.at/unuran/)

http://statmath.wu.ac.at/unuran/
http://statmath.wu.ac.at/unuran/
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Example Main Program
#include "xdvmpGenerator.h"

int main(int argc, char *argv[])

{

    xdvmpGenerator generator;

    bool ok = generator.init(“xdvmpRuncard.txt”);

    xdvmpSettings settings = generator.runSettings(); // for convinience

    TFile *hfile = new TFile(settings.rootfile().c_str(),"RECREATE");

    TH1D *histo_r = new TH1D("histo_r", "r distribution", 200, 0., 2.);

    

    int nPrint = settings.numberOfEvents()/settings.timesToShow();

    unsigned long maxEvents = settings.numberOfEvents();

    

    generator.printEventHeader(cout); 
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Example Runcard
#=======================================================================
#  Comments start with a #
#  Name and value are separated by a "=":  name = value
#
#  The following settings are currently implemented:
#  eBeamEnergy:     electron beam energy (GeV)   (default = 10)
#  pBeamEnergy:     proton beam energy in (GeV)  (default = 250)
#  numberOfEvents:  number of events to generate (default = 10000)
#  vectorMeson:     rho | phi | jpsi  (default = rho)
#  waveFunction:    GausLC | BoostedGaussian (default = BoostedGaussian)
#  dipoleModel:     bSat | bCGC (default = bCGC)
#  timesToShow:     # of print-outs to tell how far we are (default=0)
#  rootfile:        name of root file for histos etc. (default ="")
#  xmin:            min x value (default = 1e-3)
#  Q2min:           min Q2 value (GeV^2)  (default = 1.)
#=======================================================================
eBeamEnergy = 10
pBeamEnergy = 250
vectorMeson = rho
dipoleModel = bSat
waveFunction = BoostedGaussian
numberOfEvents = 10000 
timesToShow = 10;
rootfile = bla.root
Q2min = 1;
xmin = 1e-3;
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Example Output (1)
#================================================================##  
xdvmGenerator##  An event generator for exclusive diffractive vector 
meson#  production using the dipole model.##  Code compiled on Jan 
20 2010  
16:50:46#===========================================================
=====Run started at Wed Jan 20 23:22:34 2010Runcard is 
'xdvmpRuncard.txt'mXmin = 0.001Electron beam is: 0     0       -10     
10      (0.000510999)Proton beam is:   0     0       249.998 250     
(0.93827)sqrt(s) = 100.004Initializing the xdvmp dipole model:Vector 
meson to generate: rhoDipole model used: bCGCWave function used: 
BoostedGaussian
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Example Output (2)

For bCGC this takes < 1 s
For bSat ~ 1-2 min (due to DGLAP setup)

Range of kinematic variables (domain) used in generator:t = 
[-4, 0]Q = [1, 100.004]x = [0.001, 0.99]b = [0, 2]z = 
[1e-12, 1]r = [0.001, 2]Finding mode of pdf:mode = (t=0, 
Q=1, x=0.001, b=0.453883, z=0.5, r=0.526119; value of pdf = 
107769)Initializing the random generator:Dimensions used: 
6pdf in log: noNumber of events to process: 
10000xdvmpGenerator is initialized.
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Example Event Record

• Note the VM does not decay (GEANT can do this if needed)
• VM have zero width (should probably change that)
• The event record can be directly written into a ROOT Tree or any other format, the 

print-out shown here is optional
• Time to generate 1M events ~ 4 min on Thomas’ 3y old MacBook Pro

xdvmpGen event file============================================iEvent, t, Q2, x, y, b, z, r, 
s============================================i, id, px, py, px, E, m, vx, vy, 
vz============================================processed 0 events1       -0.171395       2.03611         0.00254752      0.0799258       
0.525637        0.380722        0.344587        10000.8============================================1           11             0             
0           -10            10   0.000510999             0             0             02         2212             0             0       
249.998           250       0.93827             0             0             03           11   -0.00222092       1.36871      
-9.14977       9.25157   0.000510999             0             0             04         2212      0.214882      0.352692       
248.818        248.82       0.93827             0             0             05          113     -0.212661       -1.7214       
0.33036       1.92867         0.776             0             0             0============= End Event Record =============2       
-0.171395       2.03611         0.00254752      0.0799258       0.525637        0.380722        0.554715        
10000.8============================================1           11             0             0           -10            10   
0.000510999             0             0             02         2212             0             0       249.998           250       
0.93827             0             0             03           11       1.34006     -0.278549      -9.14977       9.25157   
0.000510999             0             0             04         2212      0.390437     -0.134496       248.769       248.771       
0.93827             0             0             05          113       -1.7305      0.413045      0.379414       1.97772         
0.776             0             0             0============= End Event Record =============



56

x-Q2 acceptance vs energy

4x50 GeV
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x-Q2 acceptance vs energy

4x50 GeV4x100 GeV
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electron and proton angles vs Q2

4x100 GeV 4x100 GeV

protonelectron
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electron and proton angles vs Q2
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Ee = 20 GeVEe = 10 GeVEe = 4 GeV

Ep = 50 GeV Ep = 100 GeV Ep = 250 GeV

electron and proton angles vs Q2
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How to measure coherent diffraction in e+A ?
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How to measure coherent diffraction in e+A ?

• Coherent diffraction == low t

• Can measure the nucleus if it is 
separated from the beam in Si (Roman 
Pot) “beamline” detectors

➡ pTmin ~ pAθmin

‣ For beam energies = 100 GeV/n 
and θmin = 0.08 mrad:

• These are large momentum kicks, >> 
the binding energy (~ 8 MeV)
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species (A) pTmin (GeV/c)

d (2) 0.02

Si (28) 0.22

Cu (63) 0.51

In (115) 0.92

Au (197) 1.58

U (238) 1.9
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How to measure coherent diffraction in e+A ?

• Coherent diffraction == low t

• Can measure the nucleus if it is 
separated from the beam in Si (Roman 
Pot) “beamline” detectors

➡ pTmin ~ pAθmin

‣ For beam energies = 100 GeV/n 
and θmin = 0.08 mrad:

• These are large momentum kicks, >> 
the binding energy (~ 8 MeV)

species (A) pTmin (GeV/c)

d (2) 0.02

Si (28) 0.22

Cu (63) 0.51

In (115) 0.92

Au (197) 1.58

U (238) 1.9

For large A, nucleus cannot be separated from beam 
without breaking up
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Diffractive Physics in e+A
‘Standard DIS event’

Activity  in proton direction
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Diffractive Physics in e+A
Diffractive event

Activity  in proton direction• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?
➡Predictions: ~25-40%?      
• Look inside the “Pomeron”
➡Diffractive structure functions
➡Exclusive Diffractive vector meson production: dσ/dt ~ [xG(x,Q2)]2 !!

?
momentum transfer:

t = (P-P’)2P’
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Diffractive Physics in e+A
Diffractive event

• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?
➡Predictions: ~25-40%?      
• Look inside the “Pomeron”
➡Diffractive structure functions
➡Exclusive Diffractive vector meson production: dσ/dt ~ [xG(x,Q2)]2 !!

?

• Distinguish between linear evolution and saturation models

Curves: Kugeratski, Goncalves, 
Navarra, EPJ C46, 413

momentum transfer:
t = (P-P’)2P’

`

xIP = mom. fraction of 
pomeron w.r.t. hadron
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Diffractive Physics in e+A
Diffractive event
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Diffractive Physics at an EIC
Generated 106 e+p events using RAPGAP 

for a variety of proposed EIC energies

• Significant coverage in x-Q2 

➡ increases by ~ order of 
magnitude over EIC energies

• Plotted the distribution of the 
Most Forward Particle in the event 
for DIS and Diffractive events

➡ significant gap between two 
classes of events

• Reproduce the “ZEUS” plot?

• Important - plot the efficiency vs 
purity 

➡Can place a cut in rapidity 
for ~90% efficiency and 
~90% purity !!
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Diffractive Physics at an EIC
• Significant coverage in x-Q2 

➡ increases by ~ order of 
magnitude over EIC energies

• Plotted the distribution of the 
Most Forward Particle in the event 
for DIS and Diffractive events

➡ significant gap between two 
classes of events

• Reproduce the “ZEUS” plot?

• Important - plot the efficiency vs 
purity 

➡Can place a cut in rapidity 
for ~90% efficiency and 
~90% purity !!

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events
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Diffractive Physics at an EIC - Acceptance

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events
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Diffractive Physics at an EIC - Acceptance
• ZEUS had a gap in detector 

coverage (acceptance) of ~ 3 units.

• Studied this effect in the MFP 
distribution for EIC energies:

• Keeping the 90% Purity level has the 
following effect:

• 1 unit cut in rapidity

➡ Efficiency falls by factor of 2, rapidity 
moves 2 units to right

• 2 unit cut in rapidity

➡ Efficiency falls by a factor of 4, 
rapidity cut moves farther to right !!

• When designing a detector, it is essential 
to be as hermetic as possible !!!

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events
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Why 2 o’clock and not 12 o’clock?
• Start at 12 o’clock originally:

➡ Detector cost savings
‣ fully staged detector from MeRHIC to eRHIC

- vertical stage much bigger

- need to buy magnets only once

- can stage detector components (i.e. hadronic calorimeter)

- no moving of detector
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Summary and Outlook
• First steps made on detector design

• Optimisations needed

➡ Do we need 4 T for solenoid and 3 Tm for dipole?

➡ What radiation length can be tolerated for low energy electron?

➡ Optimise the distance from solenoid to dipole

➡ What is the impact of the beam lines through the detector on the 
physics?

➡ Need to optimise acceptance at low scattering angle

‣ Need acceptance down to 1 degree

• Need to add Roman Pots into detector configuration

• Need to include luminosity monitor and lepton polarimeter in IR design
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Photon Flux
Dipole models provide σL,T (γ∗ p → p’ V)
For generator we need to consider σ (e p → ε’ p’ V)
Need Photon Flux ΓT , ΓL 
σe p → ε’ p’ V = ΓL  σLγ∗ p → p’ V + ΓT  σTγ∗ p → p’ V

The full formula is rather complex
What is used is a simplification (not always justified):
For Q2/(4E2) = 0 and Q2/ν2 = 0, me = 0
Pick 2 independent variables best for MC: x, Q2

where Jacobian!
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Full Shebang ...
Dipole model calculations + flux give:

‣ 6-dim Probability Distribution Function (PDF)
‣all variables independent
‣Given (input): beam energies  pe, pp
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Final State Particles
Given: pe, pp, s, t, x, Q2, y
Need: pe’, pp’, pγ*, pVM

Hannes Jung (DESY) gave me analytic solutions for all. After 
many checks: pe’, pγ* formulas are correct!
pp’ is not correct (possible source of problems in RAPGAP?)

New Ansatz:
•t = (p-p’)2, mVM2 = (pγ* + pp - pp’)2, |pp’| = mp

•allows to derive pp numerically (root finder)
•use Hanne’s analytic formula as first guess 
‣fails at times since first guess is off by several GeV

•pVM   trough    pe + pp = pe’+ pp’+ pVM

•solution obtained this way is fully consistent 
‣pe’, pp’, pγ*, pVM   ⇒ s, t, x, Q2, y
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Kinematic Boundaries
Tricky since some formulas neglect masses others not
(something to still work on)

not  just  Q2 = s x y

Currently implemented (but not sufficient):


