
Shell Model Configuration Mixing 

Phenomenology and Foundations



Basic Goal

• Treatment of the all configurations for a few orbits near 
the fermi surface.

• Orbit truncation is based on the observed clustering.
• Goal is to understand the wavefunctions of all low-lying 

states up to about 5 MeV above the yrast line.
• Use this understanding to calculate the overlaps needed 

for astrophysics and weak-interaction physics.



sd shell

pf shell

p shell



Method and Assumptions

• 1) Exact solution of H within the model space

• 2) Single-particle matrix elements of U from experiment

• 3) Two-body matrix elements of V from NN interaction in 
an oscillator basis renormalized to the model space

• Works well when the number of valence particles is small 
and orbits are well bound.



Example for a 132Sn core

• New results for 132Te 
based on the 132Sn core 
and CD-Bonn interaction.

• 132Te = 132Sn + 2p – 2n
• Calculation by

Grineviciute and Brown
• Compared to new 

experimental data from 
Casten et al.
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Method and Assumptions

• 1) Exact solution of H within the model space

• 2) Single-particle matrix elements of U from experiment

• 3) Two-body matrix elements of V from NN interaction in 
a oscillator basis renormalized to the model space

• 4) Emprical Modification of the TBME 



The sd-shell example
• Results for the sd-shell start with the renormalized G matrix 

represented by 63 two-body matrix elements (TBME) and the 
experimental single-particle energies for A=17.

• Linear combinations of these TBME are tuned to a set of data 
– about 50 linear combinations are require – the rest kept at 
the G matrix values.

• The resulting USD hamiltonian can describe on the order of 
1000 energy levels to an accuracy of about 200 keV.

• The only limitation is when intruder states (non sd-shell) 
become important (always at some excitation energy and 
sometimes in the ground state – 32Mg region).





Effective single-particle energies

• The effective single-particle energies represented by the 
mean-field part of the shell model Hamiltonian change with 
mass.

• This change comes from the “monopole” parts of the two-
body interaction.
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Single-particle energies (proton-neutron part)

• The G matrix provides an essential guide for the proton-
neutron interaction.

• For example as protons are added the neutron shell gaps 
change (as neutrons as added the proton shell gaps 
change).

• Talk by Taka Otsuka in the following session.

Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001)



Single-particle energies (T=1 part)

• There is something missing for the T=1 part – e.g. the 
neutron-neutron renormalized G matrix.

• This determines how the neutron shell gaps change as 
neutrons are added.

• Empirical modifications greatly improve the T=1 part.





Effective single-particle energies for the 
oxygen isotopes

USD                                             G matrix



Effective single-particle 
energies based on USD 
hamiltonian

22O

24O
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GANIL 
results for 

22O



Volya-Zelevinsky
Oxygen Isotopes
Continuum Shell Model Calculation
• sd space,  USD interaction 



What determines the extrapolation?

• Properties of excited states near stability
which are related to orbitals which become 
ground states away from stability can be used 
to determine the effective two-body matrix 
elements.



Excitation energy of 
s1/2 states.

Separation energy of 
s1/2 states

Separation energy of 
d5/2 states



Ground-state binding 
energy data for the 
oxygen isotopes

Changes of slope due 
to closed shells

Neutron Number



Effective interactions

• For 22O the important difference between USD and G 
matrix is mainly due to only two matrix T=1 elements. 
The USD values were deduced in 1980 from the 
properties of excited states in stable nuclei (up to 20O)

• USD (G)
< d5/2 s1/2 J=3 | V | d5/2 s1/2 J=3 > =   0.76 (0.17)  MeV 
< d5/2 s1/2 J=2 | V | d5/2 s1/2 J=2 >  = -0.82 (-1.19)  MeV 

• Mainly a monopole shift.
• What is the origin of this shift?





Method and Assumptions

• Exact solution of H within the model spaces  
• Single-particle matrix elements of U from experiment
• Two-body matrix elements of V from NN interaction in a 

oscillator basis renormalized to the model space



Why do the two-body matrix elements need 
to be modified from the G matrix? 

• Oscillator basis is not good enough.

• Effective three-body interactions – e.g. not enough to 
derive a renormalized G matrix for 16O and then apply it 
all the way through to 24O.

• Treating 16O as a closed core is not good enough – e.g. do 
core-excitations (or alpha clustering) modify the spe near 
16O?

• Real three-body forces.



Finite well effect?

Woods-Saxon“Experiment”

Relativistic HFSkyrme HF



Very exotic nuclei – like 78Ni

• The experimental single-particle energies are not known.
• Can we rely on Hartree-Fock calculations as a start? –

SKX was an attempt to fit spe – its OK but not good 
enough.

• The are some essential things missing from Skyrme 
Hartree-Fock such as the tensor interaction (contained in 
the G matrix).

• Near the drip lines the oscillator basis becomes a poor 
approximation. Can we evaluate the renormalized G 
matrix in a finite-well potential (including the 
continuum)?
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sd-pf

See the talk by
Campbell in the 
following session



pf-shell

1011

See the talk by
Dinca in the 
following session
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1013

See the talk 
by Horoi in 
the afternoon
session



No-core and 
GFMC for light 
nuclei.

Arbitrarily large
dimensions

1995-



Experiment vs Theory  for Ca 2+ energies (2001)

• Single-particle energies 
from 41Ca

• (KB3G) Renormalized 
G matrix with some 
modified diagonal two-
body matrix elements



Experiment vs Theory  for Ca 2+ energies (2002)

• Single-particle energies 
from 41Ca

• (GX1) Renormalized G 
matrix, with some 
modified linear 
combinations of two-
body matrix elements

• Otsuka, Honma, 
Mizusaki, Brown (2002)

48Ca 54Ca



New pf shell interaction – GXPF1

•M. Honma et al., Phys. Rev. C 65, 
061301(R) (2002).

•The pf-shell equivalent of USD      
for the sd-shell.

•About 40 parameters
•About 600 data
•A=46-66



What determines the extrapolation?

• Properties of excited states near stability which are 
related to orbitals which become ground states away 
from stability

• A nice recent example is for the excited states in 54Ti 
determined in a unique collaboration
– NSCL beta-decay experiment which found the 2+ energy
– Gammasphere at Argonne which found the high-spin states 

connected to this.
– R.F.V. Janssens et al, Phys. Lett. B546, 55 (2002).



54Ti comparison and 56Ti prediction

• Experimental results for 
54Ti compared to the GX1 
predictions

• The 7+ to 10+ states are 
determined by the the 
1p1/2 and 0f5/2 effective 
single-particle energies

• The agreement points to 
54Ca being a new magic 
nucleus



Latest results from the NSCL
S.N. Liddick et al.





oxygen                                         carbon



Comparison of oxygen and carbon

Implication is that the
difference in neutron 
binding between Z=8 
and Z=6 reduces the 
effective neutron-neutron
interaction by 30%

18C

20C



New Magic Nuclei Towards the Drip Lines

Nuclear properties near magic nuclei

• High excited 2+ states in the even-even magic nucleus
• Change in slope of separation energies

The underlying cause is a gap in the single-particle 
energy spectrum relative to the strength of pairing



Why are magic nuclei important?

• Closed-shell configurations of the magic nuclei provide a 
“vacuum” from which to start configuration mixing 
calculations.

• In each magic nucleus the vacuum is “reset”. This gives us 
many independent systems from which to start.

• Results can be systematically improved upon using 
perturbation theory.

• We try to link the properties of closed shells in Hartree-Fock
theory (Skyrme or RMF), but this has been only partly 
successful.







New Magic Nuclei - Surprise

• Taken together with previous 
observations, one finds a new “rule” 
for the observed magic numbers:

• If there is an oscillator magic number 
(2, 8, 20 or 40) for one kind of 
nucleon, then the other kind of 
nucleon has a magic number for the 
filling of every possible (n,l,j) value. 

• This rule accounts for 18 doubly-
magic nuclei shown by the circles.

• There are no exceptions to the rule.
• New magic nuclei are predicted 54Ca, 

60Ca and 70Ca.
• What is behind this? – Three-body 

interactions…?



New Magic Nuclei - Surprise
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