Single-particle states in neutron-rich 69,71 Cu by means of the (d, 3 He) transfer reaction

In two (d,³He) transfer reactions with MUST2 at GANIL and the split-pole at Orsay, we have determined the position of the proton-hole states in the neutron-rich ⁷¹Cu (N = 42) and ⁶⁹Cu (N = 40) isotopes. We have found that in ⁷¹Cu the hole strength of the $\pi f_{7/2}$ orbital lies at higher excitation energies than expected.

From β -decay and laser spectroscopy, the $\pi f_{5/2}$ first excited particle state in these isotopes was known to come down rapidly in energy when passing N = 40 and even become the ground state in ⁷⁵Cu. This sudden energy shift has been explained in a number of theoretical works. The prediction for the $f_{7/2}$ spin-orbit partner was that it would change in energy too through a related effect. Experimentally, the $\pi f_{7/2}^{-1}$ proton-hole state is not known for N > 40. In ⁷¹Cu two $7/2^{-}$ states around 1 MeV are candidates to be a proton-hole.

The experiment at GANIL took place in March 2011. A secondary beam of ⁷²Zn at 38 AMeV was produced by fragmentation and purified through the LISE spectrometer. The transfer reaction in inverse kinematics was studied with the MUST2 detectors plus four 20 μ m silicon detector to identified the ³He of low kinetic energy. The excitation spectrum of ⁷¹Cu was reconstruct thanks to the missing mass method and the angular distributions were extracted and compared with a reaction model using the DWUCK4 and DWUCK5 code. From this work no states have been populated around 1 MeV concluding that the centroid of the $\pi f_{7/2}$ lies at higher excitation energy.

We then remeasured the single-particle strength in ⁶⁹Cu in the corresponding (d,³He) reaction at Orsay in March 2013 in order to extend the existing data where 60% of the $\pi f_{7/2}$ strength is missing and make sure that there is a consistent analysis of spectroscopic factors between both isotopes in order to well understood and well quantify the evolution of the $f_{7/2}$ orbital when we start filling the $\nu g_{9/2}$ orbital. In this second experiment we have performed the reaction in direct kinematics using a deuteron beam at 27 MeV provided by the tandem and a target of ⁷⁰Zn of 18.7 $\mu g/cm^2$. In this work we were able to extract three new angular distributions and we have measured a new part of the $\pi f_{7/2}$ strength.

Finally in order to interpret the results we have obtained from those two experiments, state-of-the-art shell-model calculations have been carried out in collaboration with the Strasbourg group using the Antoine code. The valence space consists in a core of ⁴⁸Ca with the valence orbitals for protons $f_{7/2}$, $p_{3/2}$, $f_{5/2}$, $p_{1/2}$ and the orbitals $p_{3/2}$, $f_{5/2}$, $p_{1/2}$, $g_{9/2}$, $d_{5/2}$ for neutrons. The calculations have been done allowing 8p-8h and show that the strength is indeed at high energy and no $f_{7/2}$ proton-hole state lies around 1 MeV in ⁷¹Cu.