TUA —  Electrostatic   (19-Jun-12   08:45—10:00)
Chair: N.R. Lobanov, Research School of Physics and Engineering, Australian National University, Canberra, Australia
Paper Title Page
TUA01 Heavy Ion Accelerator Development at IUAC Delhi 105
 
  • D. Kanjilal
    IUAC, New Delhi, India
 
  Inter University Accelerator Centre has been involved in the development of heavy ion accelerators, ion sources, beam lines and experimental facilities for providing various heavy ion beams in a wide energy range varying from a few tens of keV to hundreds of MeV for experiments by more than four hundred research groups from all over India and abroad. A large vertical Pelletron electrostatic tandem accelerator capable of achieving terminal voltage up to 16MV has been in operational for more than a couple of decades. Superconducting niobium linac booster accelerating modules having eight niobium quarter wave resonators each have been developed and used. A high temperature superconducting electron cyclotron resonance ion source (HTS-ECRIS) was designed, fabricated and installed. It is in regular operation for production of highly charged ion beams for alternate high current injector (HCI) system consisting of radio frequency quadrupole and drift tube Linacs. Details of developments of various heavy ion beam facilities and experimental systems at IUAC will be presented.  
slides icon Slides TUA01 [5.689 MB]  
 
TUA02 A Cost-Effective Energy Upgrade of the ALPI Linac at INFN-Legnaro 106
 
  • G. Bisoffi, M. Comunian, A. Facco, A. Galatà, P. Modanese, R. Pengo, A. Pisent, A.M. Porcellato, S. Stark
    INFN/LNL, Legnaro (PD), Italy
  • B.B. Chalykh
    ITEP, Moscow, Russia
 
  The ALPI SC linac at INFN-LNL is being constantly upgraded in terms of maximum beam energy (Ef) and current, made available for experiments. Presently, a liquid-N cooling scheme is being applied to the RF power couplers of the 16 full Nb resonators, to keep them locked at 5 MV/m, vs. present 3 MV/m. A further upgrade of the 44 “medium beta section” cavities, changing the cavity Cu substrates, was prototyped and is reported at this conference: however it is not fully funded yet and is extremely time-consuming. A cost-effective Ef upgrade is proposed here: to move 2 SC buncher cryostats, which house a single working SC QWR but were designed for 4, at the end of ALPI, equipping them with 4 Nb/Cu QWRs each (new bunchers would either be NC QWRs or a single SC cavity cryostat). The contribution of these cryostats to Ef would be extremely effective: e.g. a Ef~10 MeV/A (Ibeam≥ 1 pnA) Pb beam, a very attractive tool for the Nuclear Physics community, is achievable. A being performed upgrade of ALPI cryoplant, expected to increase the refrigeration capability by ~25%, makes this change possible today. Details of this solutions, as well as its limits, will be presented and discussed  
slides icon Slides TUA02 [3.722 MB]  
 
TUA03 The Compact Pulsed Hadron Source Status* 112
 
  • X. Guan
    TUB, Beijing, People's Republic of China
 
  Abstract The Compact Pulsed Hadron Source (CPHS) at the Tsinghua University in Beijing, China has been reported in this paper. CPHS consists of a proton linac, a neutron target station, and a small-angle neutron scattering instrument, a neutron imaging/radiology station, and a proton irradiation station. The proton linac accelerator part is composed of a ECR ion source. LEBT section, a RFQ accelerator, a DTL linac and a HEBT. A 3 meters long of RFQ machine can accelerate the proton to 3MeV. No MEBT will be requirement in this project. The Drift Tube Linac with permanent magnets focusing lens will accept the proton beam direct from RFQ. A 4.3 meters length of DTL will accelerate the beam up to 13MeV. The HEBT section will transport the proton beam from output of DTL to the center of MTR. Up to now, the IS/LEBT and the RFQ heve ready. The first phase of the CPHS construction is scheduled to complete 3MeV proton beam on the target in the middle of 2012.
*Work supported by the “985 Project” of the Ministry of Education of China,
**[email protected]
 
slides icon Slides TUA03 [3.998 MB]