Keyword: extraction
Paper Title Other Keywords Page
PO03 The RIB Dynamics of the SPIRAL 2 Transfer Line ion, quadrupole, solenoid, emittance 54
 
  • D. Boutin, F.R. Osswald
    IPHC, Strasbourg Cedex 2, France
  • N.Yu. Kazarinov
    JINR, Dubna, Moscow Region, Russia
  • C. Peaucelle
    IN2P3 IPNL, Villeurbanne, France
  • T. Thuillier
    LPSC, Grenoble, France
 
  The design of the SPIRAL 2 RIB extraction and mass analysis results of previous experiences at Ganil (SIRa) and SPIRAL* and concerns the ISOL process. The layout presents different beam sections of optical interest starting with a conventional Einzel lens, a 1 T solenoid, a triplet of magnetic quadrupoles and a magnetic dipole for the mass analysis. The down-stream 1+ ions transfer line to the users is designed following a conservative solution composed of emittance limitation, homothetic betatron matching, passive and symmetrical optical lattices (point to point and unitary transport) as well as beam instrumentation enabling the control of the losses (pepperpots, slits, beam profilers, FC, etc.). The presentation will mainly focus on the description of the beam line, its characteristics and on some side effects which have to be taken into account in order to match the beam properly during the operations.
* On Line Isotopic Separator Test Benches at GANIL, R. Anne et al., PAC
proceed. ed. IEEE, 1993
 
 
PO14 Feedback of Slow Extraction in CSRm quadrupole, feedback, synchrotron, emittance 89
 
  • J. Shi, W.P. Chai, J. Li, J.W. Xia, J.C. Yang, Y.J. Yuan
    IMP, Lanzhou, People's Republic of China
 
  The transverse tune of the beam in the synchrotron will fluctuate due to the quadrupole current ripple, which lead the spill ripple through the variation of the separatrices area. In order to reduce the ripple of the spill, a pair of fast response quadrupole (FQ) is adopted to compensate the tune ripple caused by other quadrupoles. After using the FQ feedback, the amplitude of the spill ripple within 800Hz has been reduced to 1/10 times from the normal mode. This method will be used in the HITFiL (Heavy Ion Therapy Facility in Lanzhou).  
 
PO18 Tandem EBIS ion, electron, injection, solenoid 101
 
  • A.I. Pikin, J.G. Alessi, E.N. Beebe, M. Okamura, D. Raparia, J. Ritter, L. Snydstrup
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported under the auspices of the US Department of Energy and the National Aeronautics and Space Administration.
A method to increase the ion beam intensity of RHIC EBIS by extending its ion trap into magnetic field of an additional superconducting solenoid is described. The strong axial support of the cold masses in these solenoids is required to place them on a common axis close to each other. Such configuration of solenoids allows to produce a long EBIS with a single electron gun, electron collector and injection system. Preliminary calculations of magnetic forces, magnetic field and potential distributions are presented along with proposed structure of the ion traps.
 
 
WEA01 Advanced Accelerator Technology Aspects for Hadron Therapy proton, ion, synchrotron, cyclotron 156
 
  • L. Falbo
    CNAO Foundation, Milan, Italy
 
  Nowadays cancer can be considered as one of the wide spread diseases all around the world. Radiotherapy is the clinical technique used in 40% of cancer treatments: nowadays about 40% of the 18000 particle accelerators running in the world are devoted to radiotherapy. Classical radiotherapy employs photons and electrons that damage not only the diseased cells but also the healthy ones. Hadrontherapy is a high-precision radiotherapy exploiting the depth-dose deposition characteristics of the hadron particles. The realization of machines for hadrontherapy is more challenging than for standard radiotherapy: while most of hospitals have a device for classical radiotherapy, the hadrontherapy needs a dedicated building with the needed technology for the hadron acceleration. The first hadrontherapy treatments have been performed in particle physics research centers clinically adapted; nowadays there are dedicated facilities designed and built as hadrontherapy centers. This paper will give an overview on the existing hadrontherapy centers presenting the technologic background that is at the basis of the hadrontherapy world.  
slides icon Slides WEA01 [4.493 MB]