Ion Sources, Traps, and Charge Breeding
Paper Title Page
PO09 Progress on the RFQ Beam Cooler Design for SPES Project 68
 
  • M.M. Maggiore, F. Chiurlotto, M. Comunian, A. Dainelli, M. De Lazzari, A. Galatà, A. Minarello, A.M. Porcellato, S. Stark
    INFN/LNL, Legnaro (PD), Italy
 
  The SPES project is the new Radioactive Ion Beam facility under construction at Laboratori Nazionali of Legnaro, Italy. In this framework in order to improve the beam quality in terms of transversa emittance and energy spread, a study of a new RFQ beam cooler device is in progress. The electromagnetic design of the RFQ section and the electrostatic layout of the injection and extraction regions have been done. The study about the beam dynamic is going on by means of dedicated codes which allow to take into account the interaction of the ions with the buffer gas needed to cool the beams. The preliminary design of the device is carrying on at LNL since 2011 and the feasibility study is funded by V committee of INFN in the framework of REGATA experiment. Both beam dynamics study and the electromagnetic design are presented in this work.  
 
PO17 Simulation of Electron and Ion Dynamics in an EBIS 97
 
  • L. Zhao, E.G. Evstati, J.S. Kim
    Far-Tech, Inc., San Diego, California, USA
  • E.N. Beebe, A.I. Pikin
    BNL, Upton, Long Island, New York, USA
 
  Funding: Grant supported by DOE office of Nuclear Physics
To model the dynamics of the ions in an Electron Beam Ion Source (EBIS), a time-dependent, self-consist particle-in-cell Monte Carlo code (EBIS-PIC) has been developed by FAR-TECH, Inc. The energetic background electron beam is modeled by PBGUNS (http://www.far-tech.com/pbguns/index.html) by dividing the long beam path into several segments to resolve the big length-to-radius spatial scaling problem. The injected primary ions and ionized neutral gas ions are tracked using Monte Carlo method which includes the ionization, charge-exchange and Coulomb collisions with the electron beam and the neutral gas in the potential well, which is calculated by solving the Poisson equation each time step. EBIS-PIC has been able to predict the spatial and velocity space distributions and the evolution of the charge state distribution (CSD) of trapped ions in EBIS devices operating in fast or slow trapping mode. The physical model of EBIS-PIC code and the simulations of the trapping and charge-breeding of injected Cs+1 ions on the Test EBIS* at BNL will be presented. The simulation results have shown good consistency with the experiments.
* S. Kondrashev, J.G. Alessi, E.N.Beebe, C. Dickerson, P.N.Ostroumov, A. Pikin, G. Savard, NIMPR. A, 642 (2011), 18-24.
 
 
PO18 Tandem EBIS 101
 
  • A.I. Pikin, J.G. Alessi, E.N. Beebe, M. Okamura, D. Raparia, J. Ritter, L. Snydstrup
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported under the auspices of the US Department of Energy and the National Aeronautics and Space Administration.
A method to increase the ion beam intensity of RHIC EBIS by extending its ion trap into magnetic field of an additional superconducting solenoid is described. The strong axial support of the cold masses in these solenoids is required to place them on a common axis close to each other. Such configuration of solenoids allows to produce a long EBIS with a single electron gun, electron collector and injection system. Preliminary calculations of magnetic forces, magnetic field and potential distributions are presented along with proposed structure of the ion traps.
 
 
TUC03 Laser Ablation of Solids into an Electron Cyclotron Resonance Ion Sources for Accelerator Mass Spectroscopy 149
 
  • T. Palchan, F.G. Kondev, S.A. Kondrashev, C. Nair, R.C. Pardo, R.H. Scott, R.C. Vondrasek
    ANL, Argonne, USA
  • W. Bauder, P. Collon
    University of Notre Dame, Indiana, USA
  • J.F. Berg, T. Maddock, G. Palmotti, G. Youinou
    INL, Idaho Falls, Idaho, USA
  • G. Imel
    ISU, Pocatello, Idaho, USA
  • M. Paul
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
  • M. Salvatores
    CEA Cadarache, Saint Paul Lez Durance, France
 
  Funding: This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357.
A project using accelerator mass spectrometry (AMS) is underway at the ATLAS facility to measure the atom densities of transmutation products present in samples irradiated in the Advanced Test Reactor at INL. These atom densities will be used to infer effective actinide neutron capture cross-sections ranging from Thorium to Califorium isotopes in different neutron spectra relevant to advanced fuel cycles. This project will require the measurement of many samples with high precision and accuracy. The AMS technique at ATLAS is based on production of highly-charged positive ions in an ECRIS followed by injection into a linear accelerator. We use a picosecond laser to ablate the actinide material into the ion source. We expect that the laser ablation technique will have higher efficiency and lower chamber contamination than sputtering or oven evaporation thus reducing ‘cross talk’ between samples. In addition a multi-sample holder/changer is part of the project to allow for a quick change between multiple samples. The results of off-line ablation tests and first results of a beam generated by the laser coupled to the ECR will be discussed as well as the overall project schedule.
 
slides icon Slides TUC03 [1.610 MB]  
 
WEB01 Electron Beam Ion Sources, Traps, and Strings: Versatile Devices to Meet the High Charge State Ion Needs of Modern Facilities 164
 
  • E.N. Beebe, J.G. Alessi, A.I. Pikin
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, and by the National Aeronautics and Space Administration
Electron beam ion sources (EBIS) and its variants such as the electron beam ion trap (EBIT) and electron string ion source (ESIS) have been selected to provide highly charged ions for several atomic and nuclear physics facilities. Since the capture and breeding can be short and highly efficient, EBIST devices are increasingly being chosen for trapping and/or reacceleration of radioactive beams. The sources can range from petite to grand, using electron beams from ~1mA to 10A or more. They often serve accelerators and beam lines in large laboratories but they can be self contained laboratories where experiments are made in situ. We will discuss the basic principles as well as applications of these sources at various facilities around the world. Some emphasis will be placed on the recently commissioned RHIC EBIS source which is now providing beams for both high energy physics at the relativistic heavy ion collider as well as the NASA space radiation laboratory at BNL.
 
slides icon Slides WEB01 [2.850 MB]  
 
WEB02 Commissioning of CARIBU EBIS Charge Breeder Sub-systems 165
 
  • S.A. Kondrashev, C. Dickerson, A. Levand, P.N. Ostroumov, R.C. Vondrasek
    ANL, Argonne, USA
  • M.A. Batazova, G.I. Kuznetsov
    BINP SB RAS, Novosibirsk, Russia
  • A.I. Pikin
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract number DE-AC02-06CH11357.
A high-efficiency charge breeder based on an Electron Beam Ion Source (EBIS) to increase the intensity and improve the purity of accelerated neutron-rich radioactive ion beams is being developed by the ANL Physics Division. The design of the EBIS charge breeder is complete and manufacturing of the components and sub-systems is in progress. A 6-Tesla superconducting solenoid and a high-perveance electron gun were recently delivered and successfully commissioned. The current status of the ANL EBIS development and commissioning results of different EBIS sub-systems will be presented.
 
slides icon Slides WEB02 [1.219 MB]  
 
WEB03 DREEBIT EBIS/T for Applications in Accelerator Physics 170
 
  • M. Schmidt, A. Thorn
    DREEBIT GmbH, Dresden, Germany
  • G. Zschornack
    Technische Universität Dresden, Institut für Angewandte Physik, Dresden, Germany
 
  Funding: Supported by the European Regional Development Fund (ERDF) and the German Federal Ministry of Economics and Technology
Electron Beam Ion Sources and Traps provide light up to heavy ions of low up to high charge states for various applications in accelerator physics such as medical particle therapy and charge breeding. Beside the well-known but quiet costly superconducting EBIS/T type systems compact and permanent magnet-operated EBIS/T from the DREEBIT Company are available, favorable for low-budget projects. Moreover, the "flagship" of the DREEBIT ion source family, the superconducting EBIS-SC features operating parameters comparable to the complex and expensive systems in the EBIS/T community.
 
slides icon Slides WEB03 [3.655 MB]  
poster icon Poster WEB03 [7.892 MB]  
 
WEB04 Electron and Ion Beam Dynamics in the CARIBU EBIS Charge Breeder 172
 
  • C. Dickerson, S.A. Kondrashev, B. Mustapha, P.N. Ostroumov
    ANL, Argonne, USA
  • A.I. Pikin
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract number DE-AC02-06CH11357.
An Electron Beam Ion Source (EBIS) is being built to charge breed ion beams from the Californium Rare Isotope Breeder Upgrade (CARIBU) for acceleration in the Argonne Tandem Linear Accelerator System (ATLAS) at Argonne National Laboratory (ANL). The overall efficiency of the source and charge breeder system is important since CARIBU will produce many low intensity radioactive ion species. Simulations of the electron and ion beam dynamics have been used to determine the system’s expected performance. The details of these simulations and results will be presented.
 
slides icon Slides WEB04 [1.362 MB]  
 
WEB05 ECRIS Latest Developments 173
 
  • L. Celona, G. Castro, S. Gammino, D. Mascali
    INFN/LNS, Catania, Italy
  • G. Ciavola
    CNAO Foundation, Milan, Italy
 
  The production of intense beams of highly charged ions (HCI) is one of the most relevant challenge for the future accelerator facilities. Electron Cyclotron Resonance Ion Sources (ECRIS) are nowadays the most powerful devices able to feed accelerators with HCI in a reliable and efficient way. The reliability of frontier solutions for magnets and the increased costs for microwave generators make scaling to larger frequency not viable. Any further improvement of ECRIS output currents and average charge state requires a deep understanding of electron and ion dynamics in the plasma. In the past 20 years different teams have been working in the forefront of ion source developments with both experimental and theoretical activities, proposing different solutions to improve the production rate. The paper will discuss the most recent technological developments in the field, worldwide, together with the modeling issues of non-classical evidences like sensitivity of Electron Energy Distribution Function to the magnetic field detuning, influence of plasma turbulences on electron heating and ion confinement, coupling between electron and ion dynamics and relative impact on the formed ion beam.  
 
THB01 New Developments in Low-Z Gas Stripper Sstem at RIKEN Radioactive Isotope Beam Factory (RIBF) 199
 
  • H. Okuno, N. Fukunishi, H. Hasebe, H. Imao, O. Kamigaito, M. Kase, H. Kuboki
    RIKEN Nishina Center, Wako, Japan
 
  Electron stripping process from heavy ion in material is a useful tool in accelerator complex to give higher charge state of the ion, allowing its effective acceleration. This process is competed with electron capture process and reach to the equilibrium charge state. Carbon foils is convenient for charge stripper but have short lifetime due to thermal stress and sputtering in the case of high power beam of heavy ion such as uranium. Gas is basically free from lifetime but gives lower charge state due to absent of density effect. Therefore, charge stripper especially for uranium beams at 10-20 MeV/u could be a bottle-neck problem in high power heavy ion facility such as RIBF, FRIB and FAIR. A charge stripper using low-Z gas (He or H2) is an important candidate to solve the problem because the high equilibrium mean charge states for the low-Z gas stripper are expected due to the suppression of the electron capture process. This presenation will describe the results for the develeopments and tests of He gas stripper for uranium beams at 11 MeV/u.  
slides icon Slides THB01 [7.108 MB]