Author: Takagi, A.
Paper Title Page
TUC02 KEK Digital Accelerator and Recent Beam Commissioning Result 143
  • K. Takayama, T. Adachi, T. Arai, D.A. Arakara, E. Kadokura, T. Kawakubo, T. Kubo, H. Nakanishi, K. Okamura, H. Someya, A. Takagi, M. Wake
    KEK, Ibaraki, Japan
  • H. Asao, Y. Okada
    NETS, Fuchu-shi, Japan
  • Y. Barata, S. Harada
    Tokyo City University, Tokyo, Japan
  • T. Iwashita, K. Okazaki
    Nippon Advanced Technology Co. Ltd., Ibaraki-prefecture, Japan
  • K.W. Leo
    Sokendai, Ibaraki, Japan
  • X. Liu, T. Yoshimoto
    TIT, Yokohama, Japan
  The digital accelerator (DA), which is a small-scale induction synchrotron "*" requiring no high-energy injector and capable of providing various ions, was constructed at KEK"**". Beam commissioning has been carried out. The KEK-DA consists of a 200 kV high voltage terminal, in which a permanent mag. x-band ECRIS is embedded, 15 m long LEBT, ES injection kicker, and a 10 Hz rapid cycle synchrotron equipped with the induction acceleration system. An ion pulse chopped in 5 micro-sec by the newly developed Marx generator driven Einzel lens chopper"***" was guided through the LEBT and injected by the kicker in one turn. 3 micro-sec ion pulse was successfully captured with a pair of barrier voltage-pulses of 2 kV and accelerated up to 12 MeV with another flat induction-acceleration voltage-pulse through an acceleration period of 50 msec. Beam commissioning started with a He1+ ion beam of 100 microA. Details of fully digital-controlled barrier bucket trapping and induction acceleration are described, although the acceleration/extraction is still at a preliminary stage. Some of unique applications, such as laboratory space science using virtual cosmic rays, will be introduced.
* K.Takayama and R.J.Briggs (Eds), “Induction Accelerators”, (Springer, 2010).
** T. Iwashita et al., Phys. Rev. ST-AB 14, 071301 (2011).
*** T.Adachi et al., Rev. Inst. Meth. 82, 083305 (2011).
slides icon Slides TUC02 [2.126 MB]